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ABSTRACT
High-Performance Computing (HPC) is one of the strategic priori-
ties for research and innovation worldwide due to its relevance for
industrial and scienti�c applications.We envision HPC as composed
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of three pillars: infrastructures, applications, and key technologies
and tools. While infrastructures are by construction centralized
in large-scale HPC centers, and applications are generally within
the purview of domain-speci�c organizations, key technologies fall
in an intermediate case where coordination is needed, but design
and development are often decentralized. A large group of Italian
researchers has started a dedicated laboratory within the National
Interuniversity Consortium for Informatics (CINI) to address this
challenge. The laboratory, albeit young, has managed to succeed
in its �rst attempts to propose a coordinated approach to HPC re-
search within the EuroHPC Joint Undertaking, participating in the
calls 2019-20 to �ve successful proposals for an aggregate total cost
of 95Me. In this paper, we outline the working group’s scope and
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goals and provide an overview of the �ve funded projects, which
become fully operational inMarch 2021, and cover a selection of key
technologies provided by the working group partners, highlighting
their usage development within the projects.
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1 A VISION ON HPC EVOLUTION IN EUROPE
The Italian HPC community has been very active in di�erent, spe-
ci�c research areas, ranging from HPC hardware components to
programming tools and applications. Notable contributions have
been provided in several EU-funded research initiatives in the frame-
work of EuroHPC and European Processor Initiative roadmaps.

Following the traditional organization of the HPC research com-
munity in the three distinct pillars of i) infrastructures, ii) appli-
cations, and iii) key technologies and tools, a signi�cant number
of researchers and research groups actively participating in the
research activities of the third HPC pillar, in late 2019, started a
working group in the framework of the National Interuniversity
Consortium for Informatics (CINI). CINI is the reference consor-
tium for the Italian national academic research in Computer Science,
Computer Engineering, and Information Technology and involves
1,300+ professors of Computer Science and Engineering belonging
to 39 public universities. CINI currently runs 11 national research
labs in di�erent topics, such as AI, Cybersecurity, Smart city.

In March 2021, the working group transformed into the brand
new HPC key technologies and tools (HPC-KTT) lab that gathers
research groups from 27 Italian universities and eight institutes of
the National Research Council (CNR). Marco Aldinucci was selected
as the �rst director.

The main activities of the laboratory include: i) community build-
ing, exposing competencies, fostering cooperation and coordinating
research and dissemination activities, organizing regular meetings
and events aimed at enforcing cooperation on the HPC key infras-
tructure themes; ii) coordination of the submission of research project
proposals to national and international calls, with particular empha-
sis on speci�c HPC related EU programs and calls; iii) organization
of institutional meetings with the main stakeholders of the sector,
including national research institutions and administrative entities,
iv) driving innovation in the education process of undergraduate and

master students on the topics related to HPC key technologies. The
working group focuses on di�erent research aspects related to the
HPC key technologies and tools, which are described in Section 3.

Programmability and productivity. The programming of HPC ap-
plications, which is being already tricky, will increase in complexity
because of the need to combine domain’s speci�c skills (often in
highly specialized domains such as computational chemistry or
�uid dynamics) with parallel programming skills, which are be-
coming the real bottleneck for industrial adoption of HPC. Current
and future systems require managing heterogeneous and special-
ized processors, controlling more non-functional properties beyond
performance (e.g., robustness, resilience, security), harmonizing dif-
ferent software stacks (such as scienti�c computing, Big Data, and
AI). A considerable evolution of the entire software stack for HPC
and the related development methods will be necessary to solve
this problem, such that levels gradually closer to the application
world provide di�erent abstraction levels to the HPC application
programmer.

Energy e�ciency. The power required by an HPC center can-
not grow beyond local supply limits, yet the forecast is that post-
exascale systems can consume more than 80 MW. To tackle this
problem, HPC infrastructures need to evolve in both hardware and
software terms. 1) Hardware: it is possible to obtain more e�cient
hardware through the use of specialized heterogeneous accelerators
(typically of the recon�gurable type) and/or through "close to mem-
ory" calculation. These systems can have a particularly e�ective
impact in the areas of Big Data and Deep Learning. 2) Software:
the entire software stack should consider the energy consumed so
that applications are made aware of the energy consumed at run
time. Adaptivity and autotuning will be critical for e�cient energy
management of long-life applications.

Programming models. The programming models should include
the possibility of managing energy e�ciency and the other non-
functional aspects in the same way as all the other more typical
issues of the HPC world (e.g., those related to performance). How-
ever, they should also allow separating the treatment of functional
and extra requirements. Furthermore, it will be essential to en-
sure the possibility of integrating support for accelerators (even of
di�erent types) transparently.

Compilers. Compiler technology can address extra-functional
properties providing performance and automatic optimization of
program properties (e.g., automatic scaling of calculation accuracy).

High-level synthesis. It is necessary to provide high-level syn-
thesis systems that can take full advantage of heterogeneous and
recon�gurable hardware systems. While dynamic recon�guration
times are not an issue in HPC systems, building custom accelerators
requires additional skills that are generally quite di�cult to come
by. To ensure the possibility of designing custom accelerators, it is
necessary to develop a new generation of tools for the automatic
generation of components.

Multi-tenancy and security. HPC platforms are increasingly ex-
posed to critical data in areas like health, �nance, or data analytics.
Reasoning on how to enforce privacy and security for critical data
on shared infrastructures (as supercomputers) is crucial. Hence,
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Figure 1: CINI Technologies across the EuroHPC projects,
classi�ed according to their positioning in the HPC technol-
ogy stack

it is of paramount importance to exploit the security features in
emerging hardware/software technologies, e.g., Intel SGX and con-
tainerization, to support insulated (private, secure, trusted) execu-
tion environments, enabling complete segregation in the future
multi-tenant HPC.

HPC cloud services. HPC and cloud are convergent technologies.
The migration of HPC applications into services is already ongoing,
and we expect to observe an acceleration along the direction of
Software-as-a-Service of signi�cant extreme-scale codebases. An
enabling technology for this to happen is work�ow management
systems that can bridge cloud and HPC system software.

Scienti�c software algorithms and libraries. New algorithms and
scienti�c software libraries need to be developed that support com-
putation at di�erent levels of precision, energy e�ciency, and het-
erogeneity. This requires rethinking many computational kernels of
HPC applications in search of a compromise between reducing the
total energy used in the computation and minimizing the solutions’
development time, promoting numerical stability, reproducibility
of results scalability.

A taxonomy of the solutions that CINI proposes to address these
critical technical goals is reported in Figure 1, along with the devel-
oped tools and frameworks.

2 THE FUNDED PROJECTS
The working group has been actively participating in several calls
in the EuroHPC framework in 2020. Di�erent groups belonging
to di�erent universities have participated in di�erent project pro-
posals as members of the CINI HPC-KTT lab �guring as a single
Italian research entity with a full range of complementary and
synergistic expertise. Eventually, this favored the participation in

several successful project proposals both in H2020-JTI-EuroHPC-
2019-1 (Towards Extreme Scale Technologies and Applications) and
H2020-JTI-EuroHPC-2020-01 (Advanced pilots towards the Euro-
pean exascale supercomputers) calls. The total cost of the described
projects is over 95Me (for 4 years). This section provides a brief
overview of the projects funded with the CINI HPC-KTT working
group’s participation as a partner.

2.1 ACROSS
The ACROSS project aims to build an exascale-ready, HPC and data-
driven execution platform that supports modern complex work-
�ows mixing HPC, Big Data, and AI high-level tasks. ACROSS will
leverage on the next generation of pre-exascale infrastructures, still
being ready for exascale systems, and on e�ective mechanisms to
easily describe and manage complex work�ows. These resources
will be exploited to create value and innovation within the Avia-
tion, Climate and Weather, and Energy industry. The simulation
of the �ow �eld within the turbine aero-engine requires several
HPC resources and generates big data. ACROSS will develop user-
de�ned in-situ data processing to improve physical understanding
and identify and speed-up the most e�cient design points leading
to the innovation of the aero-engine. The multiphysics process
occurring in the combustion chamber of aero-engines (turbulent
�ows, combustion, convection, radiation) is challenging and de-
manding for the CFD (Computational Fluid Dynamics) modeling
of the component aimed at its optimization in terms of pollutant
emissions and durability. In the ACROSS project, a multiscale and
multiphysics methodology for the scale resolving CFD analysis of
aero-engine combustors will be tested and improved to permit its
exploitation at the industrial level on large HPC infrastructures.

2.2 ADMIRE
The ADMIRE project aims to overcome the �at storage hierarchies’
performance limitations in today’s HPC infrastructures. Careful
control and appropriate API and policies are needed to avoid con-
gestion and balance computation and I/O requirements to maximize
storage performance. The ADMIRE project proposes a software-
only solution to create an active I/O stack that dynamically adjusts
computation and storage requirements through intelligent global
coordination, the malleability of computation and I/O, and the
scheduling of storage resources along with all levels of the stor-
age hierarchy. The primary objective is to increase individual HPC
applications’ performance by leveraging fast and power-e�cient
node-local storage tiers using ad-hoc storage systems and exploiting
in-transit/in-situ processing facilities. The ADMIRE I/O software
stack will be validated with several use cases from various domains,
including climate/weather, life sciences, physics, remote sensing,
and deep learning.

2.3 TEXTAROSSA
The TEXTAROSSA project aims to achieve high performance and
high energy e�ciency on near-future exascale computing systems
by increasing e�ciency of computation with extreme e�ciency
in HW and new arithmetics, as well as to provide methods and
tools for seamless integration of recon�gurable accelerators in
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heterogeneous HPC multi-node platforms. The main directions for
innovation are towards:
(a) enabling mixed-precision computing, through the de�nition of

IPs, libraries, and compilers supporting novel data types (includ-
ing Posits), also used to boost the performance of stencil/tensor
accelerators;

(b) implementing new multilevel thermal management and two-
phase liquid cooling;

(c) developing improved data movement and storage tools through
e�cient lossy compression;

(d) ensure secure HPC operation through advanced cryptography;
(e) providing RISC-V based IP for fast task scheduling and IPs for

low-latency intra/inter-node communication.
These technologies will be tested on the Integrated Development
Vehicles mirroring and extending the European Processor Initiative
ARM64-based architecture. To drive the technology development
and assess the impact of the proposed innovations, from node to
system levels, TEXTAROSSA will use a selected but representative
number of HPC, HPDA, and AI demonstrators covering challenging
domains such as general-purpose numerical kernels, High Energy
Physics (HEP), Oil & Gas, climate modeling, and emerging domains
such as HPDA and High-Performance AI.

2.4 EUPEX
The EUPEX project (EUropean Pilot for EXascale) aims to build
and validate the �rst HPC platform integrating European, general-
purpose processor technology (EPI), European interconnect tech-
nology (BXI), and a European software stack for HPC. EUPEX will
co-design a modular exascale-pilot system, integrating European
hardware and software technologies to demonstrate the readiness
and the scalability of these technologies towards exascale and pre-
pare applications and European users to exploit the future exascale
machines e�ciently. The hardware platform is sized to be large
enough for relevant application preparation and scalability fore-
cast and a proof of concept for a modular architecture relying on
European technologies and the European processor technology.
The software stack will comprise all necessary software compo-
nents, combining developments of European-funded R&D projects
with best-of-breed open source software where needed. This SW
stack will enable the e�cient exploitation of the resources available
in large-scale modular systems. This way, the co-design applica-
tions will be able to demonstrate exascale readiness on the EUPEX
platform.

2.5 The European PILOT
The European PILOT (Pilot using Independent Local & Open Tech-
nology) aims to be the �rst demonstration of two all-European HPC
RISCV-based accelerators, designed, implemented, manufactured,
and owned by Europe. The European PILOT combines open source
SW and HW design to deliver the �rst entirely European full-stack
software and integrated ecosystem-based on RISC-V accelerators,
coupled to any general-purpose CPU via PCIe Gen 6.0 or CXL 3.0.
The accelerators will be manufactured in the newGlobalFoundries’s
12 nm 3D FinFET transistor technology. This pre-production system
can be realized with a combination of existing IPs coming from the
ongoing European Processor Initiative project, HW veri�cation,

and emulation based on FPGAs and real silicon IC prototypes that
demonstrate the full HW/SW stack feasibility. The implemented
applications will span from AI to HPC, while the aggressive chiplet-
based IC implementation will be the smallest technology node
manufactured in Europe, to be easily adapted for a near-future HPC
product fabrication.

3 CINI HPC KEY TECHNOLOGIES
In this section, we report on the key technologies that the CINI
HPC-KTT and its constituents have developed. Their adoption by
the �ve EuroHPC projects is reported in Figure 1.

Stream�ow. The StreamFlow framework [14, 15] is a container-
native Work�ow Management System (WMS) written in Python 3
and based on the CommonWork�ow Language (CWL) Standard [5].
StreamFlow has been designed around two main principles: (1) Al-
lowing the execution of tasks in multi-container environments, in
order to support concurrent execution of multiple communicating
tasks in a multi-agent ecosystem; (2) Relaxing the requirement of a
single shared data space, in order to allow for hybrid work�ow exe-
cutions on top of multi-cloud or hybrid cloud/HPC infrastructures.
StreamFlow source code is available on GitHub under the LGPLv3
license. A Python package is downloadable from PyPI and Docker
containers can be found on Docker Hub. More details about the
tool and its applications can be found in the StreamFlow website1.

Fast�ow. FastFlow [4] is a C++ programming library targeting
multi/many-cores. It o�ers both a set of high-level ready-to-use
parallel pattern implementations and a set of mechanisms and com-
posable components (called building blocks) to support low-latency
and high-throughput data-�ow streaming networks. FastFlow sim-
pli�es the development of parallel applications modeled as a struc-
tured, directed graph of processing nodes. The graph of concurrent
nodes is constructed by the assembly of sequential and parallel
building blocks and higher-level components (i.e., parallel patterns)
modeling recurrent schemas of parallel computations (e.g., pipeline,
task-farm, parallel-for, etc.). FastFlow e�ciency stems from the
optimized implementation of the base communication and synchro-
nization mechanisms and its layered software design.

CAPIO. The Cross-Application Programmable I/O (CAPIO) is
a research-grade software layer capable of coordinating legacy
modules of data-driven large-scale software pipelines that coop-
erate using the I/O storage as a temporary communication bu�er.
Through the transparent mapping of standard I/O calls, CAPIO
moves data directly between application components, excluding
the storage from the critical path. The resulting application-tailored
I/O infrastructure reduces the congestion on the back-end layers
and increases the opportunity to exploit data locality.

Besides, the emerging inclusion of fast storage tiers in HPC
infrastructures enables on-the-�y data processing while data is
generated at temporary locations to reduce the �nal size of the
dataset and enable the co-execution of data-intensive analytics
tasks together with other computationally intensive tasks. CAPIO
provides the suitable entry points to inject in-transit computations

1https://stream�ow.di.unito.it

https://streamflow.di.unito.it
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of data at the edge of the cooperating components. CAPIO is an
open-source project under the LGPL v3.0 license2.

BBQ. Barbeque (BBQ) is a run-time resource manager (RTRM)
that enables node-level resource management across multiple ap-
plications, taking into account the available resources (processing
elements, memories, bandwidth, etc.) as well as application needs
and priorities expressed through “recipes”, which provide di�er-
ent operating points for the application, using di�erent amounts
of resources [3]. The resource management is dynamic, allowing
resource reallocation through application feedback, which is pro-
vided by collecting heartbeats. BBQ supports three main integration
modes: (1) the OpenCL and mangolibs programming models for
C/C++, which support transparent integration with BBQ for het-
erogeneous platforms; (2) the Adaptive Execution Model, which
is a generic model available in C++, Python and Fortran and al-
lows management of homogeneous platforms; (3) a lightweight
control, where no integration is needed, but there is no feedback
on application performance.

Mango. The MANGO FPGA-based manycore emulation plat-
form has been developed in the framework of an H2020 FETHPC
project [17]. The platform provides a large-scale cluster of multi-
FPGA boards intended for experimenting with customized many-
core systems, at the level of both processor and interconnect/system
architecture, along with the supporting software stack. Among
other developments, the project has delivered an open-source con-
�gurable GPU-like processor and related compilation toolchain. The
cluster prototype is currently maintained for demonstration and
will be instrumental to the activities of the CINI Lab. As a further
development, the RECIPE project [2] is extending the architecture-
related investigation of MANGO by developing a multi-FPGA node
with additional features of relevance for HPC, particularly check-
point/restart functions and remote direct accelerator memory ac-
cess, to be used for example in MPI one-sided communication prim-
itives with heterogeneous workloads.

Celerity. Celerity [33] is a programming model that allows pro-
grammers to write highly parallel applications that can be run on a
cluster of accelerator nodes. It consists of a programming interface
that extend SYCL [32], an open-standard high-level C++ language
by Khronos Group for programming accelerators, and a distributed
runtime system [20], which is responsible for the asynchronous
scheduling and distribution of the work. Celerity also provides a
compilation framework used for modeling and optimization and a
large selection of benchmarks [22].

DF-Threads. DF�T������[18] is a low-level API which allows
an e�cient management of thread-level data �ow; DF-Threads
can outperform by more than one order of magnitude other well-
known similar APIs like the Open Community Runtime (OCR).
While several parallel programming models like OmpSs, Legion,
Dharma are beingmapped onOCR, DF-Threads o�ers an alternative
implementation both in software and hardware [19] to achieve
better energy e�ciency by reducing unnecessary synchronization
and data movement and to achieve resiliency for HPC applications
due to the idempotency of DF-threads computations [34].

2https://github.com/alpha-unito/capio

TAFFO and ���VC. TAFFO [12] is a set of plugins for the LLVM
Compiler Framework that enables automated precision tuning. In
HPC, often wide �oat formats are used even when a lower precision
could be successfully employed at a better performance/energy
point. TAFFO allows �ne-tuning the selection of data types, taking
into account the cost of casting. It can be coupled with a code
versioning library to dynamically perform the tuning, which has
been proven a key point in addressing large scale applications
where the input data characteristics can change over time [11].
���VC [10] is the code versioning library adopted for TAFFO. It
has been developed as a tool to support the online exploration
of code specialization opportunities in a scenario of continuous
optimization in HPC application scenarios, as part of the ANTAREX
project [30, 31].

COUNTDOWN. COUNTDOWN [7, 8] is a runtime library for
performance-neutral energy saving in MPI applications. It saves
energy only during MPI synchronization without inducing a time-
to-solution increase for applications. Indeed energy-consumption
minimization alone can lead to execution time penalties, which
reduces capacity and does not always result in a reduction of the
total cost of ownership [6]. With COUNTDOWN the energy saving
is obtained transparently to the user, without requiring applica-
tion code modi�cations or recompilation of the application. The
COUNTDOWN runtime will intercept MPI calls in which to reduce
the power consumption and the CPU performance, and separate
waiting time from copy time and computing time.

GVirtuS. It enables the execution of CUDA (and OpenCL) kernels
on physical or virtualmachines unprovided of general-purpose GPU
acceleration [26]. GVirtuS components (the front-end providing the
stub libraries, the back-end dealing with the physical accelerated
device, and the communicator enabling the remote call invocation)
are independent of the hypervisor, the communication technology,
and the virtualized/remoted general-purpose GPU [23]. GVirtuS is
transparent for developers: no changes are required in the software
source code to leverage on virtualization/remoting or any pecu-
liar programming model except the CUDA and OpenCL standards.
Within the H2020 RAPID project, GVirtuS has been used in mobile
computing acceleration and computation at the edge scenarios [21]
where an Android interface has been made available. GVirtuS is an
open-source project under the Apache 2.0 license3.

DagOnStar. Named after the Phoenicians’ god known by ancient
Greeks as Triton, it enables the execution of direct acyclic graph
(DAG) jobs on anything, ranging from the local machine to virtual
HPC clusters hosted on private, public or hybrid clouds [24]. DagOn-
Star is a production-oriented work�ow engine targeting computa-
tional scientists focused on operational applications for routinely
produced weather and marine forecasts. DagOnStar implements
some peculiar features as the workflow:// schema for data-�ow
implicit dependencies and external application sandbox execution;
task-level parallelism based on virtual containers and microser-
vices [28] and the IoT components orchestration [29]. DagOnStar
is an open-source project under the MIT license4.

3https://github.com/gvirtus
4https://github.com/dagonstar
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CppPosits. C��P����� [13] is a library developed at DII-University
of Pisa, supporting mixed-precision and Posits arithmetic, and com-
pliant with LLVM compiler, to increase the e�ciency of AI and
video computing kernels. CppPosits has been ported on ARM SVE
and RISC-V with Vector extension ISA, proving that the same accu-
racy of FP32 can be achieved by reducing by a factor of 4 the data
transfer and storage cost.

CRFlex. CRF��� is a library of HW accelerator IPs developed
at DII-University of Pisa, supporting energy-e�cient implemen-
tation of cryptographic algorithms for symmetric and public key
cryptography, hashing, digital signature and veri�cation, secure
key generation and management, random number and seed gener-
ation. The library includes the support also of new Lattice-based
schemes being ready for post-quantum cryptography applications.
The IP library has been veri�ed by porting it on recon�gurable
HW (FPGAs/FPSOCs) and nanoscale ASICs (https://www.european-
processor-initiative.eu/dissemination-material/crypto-tile-factsheet/).

U-Therm3D. U�T����3D is a multiphysics-multiscale CFD based
methodology developed at DIEF-University of Florence [27] to
handle complex phenomena such as the turbulent combustion oc-
curring in gas turbine combustors. Several physical phenomena
are involved and strongly interact during the process, requiring
dedicated numerical models. The concurring physics (turbulence,
chemical kinetics, radiation and heat conduction) are also inter-
ested by huge di�erences in the characteristic time scales which
indeed need to be solved in order to properly describe the process.
U�T����3D is based on well established high-�delity unsteady
CFD methods such as LES (Large Eddy Simulation) adopting a time
de-synchronization to manage the multiscale nature of the prob-
lem, permitting to greatly accelerate the convergence. Di�erent
solvers used for the involved physics are managed and integrated
in parallel SMP approach suitable for HPC environment.

Vector Processing Hardware Acceleration. Sapienza University de-
veloped the RTL implementation of vector processing units in the
context of Embedded HPC (Klessydra processor family [9]) and con-
tributed the core RTL design of the Vector Processing Unit in the
European Processor Initiative project [1]. The intrisic parameteri-
zation of the vector processing subsystem in Klessydra processors
opens the way to con�gurable vector accelerators in FPGA devices,
or to silicon implementations optimally customized for a speci�c
application domain. The binary interface visible to the application
programmer is a custom extension of the RISC-V instruction set,
and it is integrated in the ��� compiler tool-chain by means of
a lightweight set of C language intrinsic functions. Further pos-
sibilities include the support of reduced precision arithmetic and
the hardware support for resilience to faulty bits, the latter being
based on innovative resilience simulation integrated in a Universal
Veri�cation Methodology environment.

4 OUR APPLICATIONS
While the focus of the HPC-KTT workgroup is on key enabling
technologies, members of the workgroup also develop several ap-
plications that can serve as a vehicle for demonstrating the key
technologies. In this section, we brie�y describe two such applica-
tions in key industrial and scienti�c domains.

Environmental modeling. Simulation of pollutants transport and
dispersion in inshore and o�shore marine environments using Wa-
ComM++ (Water quality Community Model Plus Plus) [25]. Wa-
ComM++ is an MPI, OpenMP, and CUDA hierarchical and het-
erogeneous parallel model simulating Lagrangian particles as in-
ert tracers. Its parallelization schema enables the user to run the
model using advanced High-Performance Computing architectures
in any combination of distributed memory processes, shared mem-
ory threads, and single or multiple CUDA-enabled GPU devices
e�ciently and e�ectively. WaComM++ has a production role in
forecasting the contamination of the mussels produced in the farms
of the Campania Region, Italy [16]. WaComM++ is an open-source
project under the MIT license5.

Greener aeroengines. ACROSS project will investigate the appli-
cability to the aeronautic sector of breakthrough solutions merging
advanced HPC resources with innovative numerical methods based
on multiphysics optimization capability and boosted by Arti�cial
Intelligence (AI). The main focus is on the complex work�ows typi-
cally faced in the design of critical aeroengine components. Two
aeronautical pilot cases are considered to improve knowledge and
control in a critical area of the engine for what concerns emis-
sions and fuel consumption (e�ciency): the combustor, faced by
DIEF-University of Florence withU�T����3D and the low-pressure
turbine, studied by DIME-University of Genova. A signi�cant im-
pact in terms of design quality and design-to-market time reduction
is expected: this is a fundamental step to improve engineering pro-
ductivity in New Technology Introduction (NTI) and New Product
Introduction (NPI) aeronautical processes.

5 FUTURE DIRECTIONS
The HPC-KTT working group turned into an entire National Labo-
ratory within CINI in March 2021. The laboratory will increase the
group’s national and international visibility and provide a more ro-
bust collaboration framework looking forward to the forthcoming
Horizon Europe funding programme.

From the technology perspective, the technologies developed by
the HPC-KTT working group set it in the ideal position to pursue
research and development in the most promising directions for
HPC technology, including, among others: (1) the development and
exploitation of heterogeneous accelerators; (2) the development
of tools to enable the convergence of cloud computing technolo-
gies with HPC infrastructures, such as multi-tenancy approaches;
(3) the development of e�ective and scalable tools to control the run-
time behavior of ultra-large-scale systems, and the enforcement of
extra-functional properties at system and application level; (4) the
development of machine learning and arti�cial intelligence tools
that would enhance the e�ectiveness in designing key industrial
components.
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