
Exploiting Locality to Improve Leakage Reduction
in Embedded Drowsy I-Caches at Same Area/Speed

Massimo Alioto, Paolo Bennati, Roberto Giorgi
Department of Information Engineering

University of Siena
Siena, Italy

{malioto,bennati,giorgi}@dii.unisi.it

Abstract In this paper, a technique to reduce the leakage
power consumption in embedded drowsy instruction caches (I
caches) is proposed. The technique is called “Improved Drowsy”
(ID), and adopts a more efficient strategy than standard Drowsy
Caches (DCs) to turn off unused cache lines, based on locality.
The implementation of ID caches requires minor changes, and
the area/speed overhead associated with the additional circuitry
is insignificant. The proposed technique is assessed through
circuit and cycle accurate simulations on an L1 instruction
cache embedded in an ARM XScale processor based system in a
65 nm CMOS technology. Results show that this technique is
able to reduce the leakage power by 69% on average. Leakage of
DC is shown to be significantly lowered with the proposed ID
approach, being DC leakage greater than that of ID by up to
53%, and 10 15% typically.

I. INTRODUCTION
Leakage power consumption is well known to be a major

issue in the design of nanometer VLSI circuits [1], [2]. Cache
memories are particularly sensitive to leakage for various
reasons. First, the leakage power represents a sizeable fraction
of the power budget, due to the low activity rate of cells and
peripheral circuits [3]. Secondly, the cache power
consumption often represents a considerable portion of the
overall chip power and area, especially in high-performance
embedded processors [3], [4], [5]. Thirdly, at each new
technology node, the leakage power is increasing faster than
the dynamic power [1], [2]. For these reasons, new techniques
to reduce leakage of caches are continuously required.

In the last decade, various techniques to reduce leakage in
caches were devised at the boundary of circuit and
architectural level [2]-[4]. Among these approaches, various
techniques were proposed that dynamically vary the supply
voltage of each cache line depending on whether it operates in
active mode (normal operation, high leakage) or standby mode
(not immediately accessible, low leakage). Two well-known
techniques that exploit this mechanism are the Drowsy Cache
(DC) [6] and Cache Decay (CD) schemes [7], both of which
were demonstrated to significantly reduce leakage.

In this paper, a novel “Improved Drowsy” (ID) cache
scheme to improve the Drowsy Cache technique is proposed.
ID takes advantage of locality to implement a more efficient
approach to turn cache lines into standby mode. Analysis
shows that ID caches are able to reduce leakage with an
insignificant speed and area penalty, compared to DC. Hence,
the proposed scheme is a nice replacement of drowsy caches,
as the leakage reduction comes at virtually no cost. ID are also
shown to have a significant (2X) speed advantage compared to

CD caches. Circuit and cycle-accurate simulations on a 65-nm
technology are performed to assess the proposed technique.

REVIEW OF PREVIOUS TECHNIQUES
Caches are designed to exploit the locality of references in

programs, both in space and time [8]. Locality is particularly
evident in instruction caches (I-caches), where lines that are
successively accessed are usually very close to each other
(typically within 1-2 lines in most cases) [8], [10].

Let us consider the generic array structure of a cache
memory in Fig. 1. Since only a minority of cells are accessed
in a given time period, the majority of cells uselessly dissipate
leakage power. To minimize the leakage associated with these
non-accessed cells, they are usually grouped in cache lines
that can operate in active or standby mode [9]. In active mode,
a cache line is powered with the nominal supply voltage VDD,
and operates normally. In standby mode, the cache line
voltage is reduced to a lower value VDD,L that reduces the
leakage, but it does not allow an immediate access to the
corresponding cells. The operating voltage of a cache line is
set by the corresponding cache line controller (CLC), as in
Fig. 1. In the case of drowsy caches (DC), VDD,L is set to a low
value (typically 0.3-0.4 V) that still allows the cell to retain the
previously stored data [6]. Hence, when a cache line in
standby mode is accessed, its voltage must be first switched
from VDD,L to VDD, which usually requires one additional cycle
and an additional dynamic energy contribution. Hence, DC
pays a small speed and dynamic energy overhead, compared
to caches with no cache line voltage control [6].

In the simplest Drowsy Cache scheme, the global signal
all drowsy periodically sets all cache lines in standby mode at

Fig. 1. Cache array and routing of signal ������� to nline 2 cache lines
above and below the i-th line (other signals are omitted).

the beginning of a time period tDROWSY called “update window”
(usually a few thousands of clock cycles) [6]. Then, the
accessed cache lines are set in active mode and stay in the
same mode until the end of the update window. In detail, the
operation mode of a cache line is set by an SR Flip-Flop (FF)
included in the corresponding cache line controller in Fig. 1):
if the stored signal ������� is 1 (0), the i-th line is in standby
(active) mode. When the all drowsy signal turns to high at the
beginning of the update window, input R of all FFs is set to 1
and hence the cache lines are all set to standby mode.

Cache decay (CD) approach is not very different from DC,
except for the fact that VDD,L=0 V, which permits to further
reduce the leakage power compared to DC [7]. However,
since VDD,L=0 V, cells in standby mode are not able to retain
the previously stored information, and a cache miss occurs
whenever a “decayed” cache line in standby mode is accessed
(hence, a high latency must be paid to wait for the recovery of
the missed data from the slower RAM memory). For these
reasons, CD caches exhibit a lower leakage compared to DC,
but have a considerably worse performance (an access to a
decayed line is nothing but a miss).

REDUCING LEAKAGE IN DROWSY I-CACHES
The main limit of DC in reducing leakage is that a cache

line activated at a given point of time is kept active until the
completion of the update window tDROWSY. Hence, even if a
cache line is used just once within the update window, it stays
in active mode for the rest of the window, thus wasting power.

Leakage in Drowsy Caches may be further reduced by
adopting an appropriate “Improved Drowsy” (ID) cache
mechanism that turns active cache lines into standby mode
immediately after they are not accessed any longer. This ID
mechanism should be “simple” to minimize the power/area
overhead (which may easily nullify the leakage reduction).
Moreover, this ID mechanism should be “local”, in the sense
that it must involve a small number of cache lines. Indeed, the
circuit implementation of a centralized controller monitoring
the activity of all cache lines is unfeasible, since it would
require a complex and power-hungry routing to all cache lines.

In the following, locality of I-caches is exploited to devise
a novel technique to reduce leakage that satisfies both
requirements (simple, local). It is well known that I-caches
exhibit high spatial locality, i.e. newly accessed cache lines
are physically close to the lines that were accessed previously
[8], [10]. Hence, when a new cache line is accessed, it is likely
that some nearby line was previously used, but it will not be
used any longer. Hence, in most cases the previously active
lines that have to be turned again in standby mode must be
searched in the neighborhood of the currently accessed cache
line. This consideration enables a “local” mechanism to turn
into standby mode the cache lines that are no longer used.
Indeed, when the generic i-th cache line is accessed, the high
value of its drowsy signal ������� indicates that this line is in
active mode. Hence, signal ������� can be sent directly to the
nearby cache lines to force them to turn into standby mode,
without the need of a centralized control circuitry. More
specifically, signal ������� is sent to nline cache lines before
and after the i-th line (i.e., to adjacent cache lines with index
ranging from i-nline to i+nline, excluding the i-th line).

According to discussion in Section II, we will reasonably
assume nline=2, hence the signal ������� must be distributed

only to the two lines above and below the i-th line, as shown
in Fig. 1. Hence, the wires driven by ������� are very short,
and the resulting area and power overhead is expected to be
very small. Once signal ������� of each cache line is
distributed to the 2nline adjacent lines as in Fig. 2a, the drowsy
cache line controller (CLC) of the generic i-th line must be
slightly modified w r.t. Drowsy Caches. Indeed, CLC must
force the i-th line into standby mode only if the following
conditions are satisfied at the same time: 1) the considered i-th
line is not selected by the row decoder (i.e., if seli=0, being seli
the cache line selection signal provided by the row decoder),
2) if some nearby line is in active mode (i.e., if drowsyj=0 for
some j�i ranging from i-nline to i+nline) or if the signal
all drowsy that triggers the new update window is set to 1
(according to the conventional drowsy scheme). Accordingly,
since the standby mode of a cache line is forced by setting
R=1 in the SR Flip-Flop in Fig. 2a storing the cache line state
[6] (drowsy/active), signal Ri in the CLC of i-th cache line has
the following logic expression:

	�

�
� � �������

�������

������������
� ����������

�
�� �!�" (1)

where symbol $ is the logical sum (i.e., OR) of terms �������
associated with adjacent lines that are far at most nline rows.

From the above considerations, the cache line controller of
the proposed ID caches is very similar to that of drowsy
caches [6], where the drowsy state logic (which generates Ri)
is replaced by the block in Fig. 2a. Actually, a more compact
implementation of (1) can be achieved by embedding the logic
function in (1) into the SR Flip-Flop as shown in Fig. 2b, and
implementing the Flip-Flop in the well-known 6T topology [6]
(see transistors M1-M6 in Fig. 2b). In the resulting transistor-
level implementation reported in Fig. 2b, the cache line
controller has only seven transistors more than the
conventional Drowsy Cache controller [6] (i.e., M7-M11 and
the two transistors of the inverter driving transistor M11).

Fig. 2a. ID cache gate-level implementation of (1) in the drowsy state logic.

Fig. 2b. Efficient circuit implementation of drowsy state logic in ID caches.

sel i

al
l

dr
ow

sy

drowsy state logic

S Q

Q

SR l atch
R drowsyi

drowsyi

Ri

drowsyi 2

drowsyi 2

drowsyi 1

drowsyi 1

sel i

al
l_

dr
ow

sy

S Q

Q

SRlatch

R
drowsy 2

drowsy 1

drowsyi 1

drowsyi 2

VDD

M1

M2

M 3

M4

VDD

a
l_

dr
ow

sy

dr
ow

sy
i

2

dr
ow

sy
i

1

dr
o

ws
yi

-1

d
ro

ws
y i

-2

sel i

seliM5M6 M7 M8M 9 M10

M 11

Q Q

These transistors can be minimum sized since the cache line
controller is not required to be fast [6].

DESIGN CONSIDERATIONS ON THE ID TECHNIQUE
In this section, practical issues are discussed. First, it

should be observed that the all drowsy signal in (1) used in
conventional drowsy caches is still needed in the proposed
scheme. Indeed, if the signal all drowsy was not available, a
given line accessed for one time might remain in active mode
indefinitely, if the adjacent lines are in standby mode1. For this
reason, a large number of lines may remain in active mode
even if they are no longer accessed, thus severely increasing
the leakage power consumption. Therefore, to make sure that
unused lines are periodically turned into drowsy, and hence to
avoid the above leakage power waste, the update window
technique used in conventional drowsy caches is still used in
the proposed approach.

It is worth noting that the proposed technique is less
effective in reducing leakage for code that contains many
jumps. However, program exhibits sequential locality to a
great extent [9], [10], hence it is expected that the proposed
technique provides an appreciable leakage reduction in most
practical cases. In regard to the speed, both conventional and
improved drowsy caches incur in a one-cycle penalty when
lines in drowsy state are accessed. Scarce sequential locality
may affect the proposed technique also on the performance
side. Anyway, we experimentally found that such influence is
very limited, as discussed in Section V.

Finally, observe that there is virtually no difference
between DC and ID caches in terms of cycle time and impact
of process/voltage/temperature variations, as the proposed ID
cache scheme differs by DC only by the seven transistors in
Fig. 2b (which affect speed - and its variations - very weakly).

SIMULATIONS, RESULTS AND REMARKS
The benefits and drawbacks of the proposed technique

were evaluated by considering L1 I-caches with size ranging
from 8 KB to 32 KB and operating at 400 MHz, which are
typical values in embedded caches for low-power systems
[11]. The considered I-caches are separated from the data
cache, are direct-mapped and have a 64-B cache line size, 1-
bank organization, single read/write port, segmented bitlines
and wordlines, H-tree organization for address/data bus
interconnects (no L2 cache was used). We adopted the typical
4096-cycle update window [9] and extensively used clock
gating. The caches were accessed by an ARM Xscale
processor, on which all MiBench benchmarks run [12].
MiBench is a free and general suite widely accepted as a
representative set for embedded systems [12].

The caches were simulated by resorting to mixed circuit
and cycle-accurate simulations, as it is usually done in the
analysis of cache memories [4], [7], [11]. Spectre simulations
were performed to extract the main power and delay
contributions of each block associated with cache accesses.
Wire capacitances were extracted by assuming a 6T cell size
of 1.3 μm X 0.6 μm. A 65-nm design kit was used to perform
these simulations and extract wire parasitic, and VDD was

1 This is clear from (1) by setting all drowsy=0 Indeed, if the adjacent lines are in drowsy mode (i e , �������=0 in (1)), Ri remains at 0 and thus the i-th line remains in active mode

assumed to be 1.1 V (VDD,L in standby mode was set to 0.3 V).
Data resulting from the circuit simulations were then used to
perform cycle-accurate simulations with HotLeakage
simulator [13] (version for ARM-based processors), which
was modified to implement the proposed ID cache technique.
The CACTI 5.3 simulator was included in the HotLeakage
source code to estimate access time, energy and area for the
considered cache parameter values [14].

The proposed Improved Drowsy technique (ID) was
compared to the Drowsy Cache (DC) and Cache Decay (CD)
approaches. The average leakage reduction factor of the three
techniques with respect to the case with none of these
techniques is reported in Table I, where data are averaged
across all MiBench benchmarks and cache sizes. To perform a
fair comparison, in Table I the power overhead paid for the
implementation of these techniques (i.e., the power of the
cache line controller and the power dissipated to switch the
cache lines) was included in the leakage evaluation.

As expected, CD offers the greatest leakage reduction
(4.09X), but pays for a dramatic speed penalty (IPC is reduced
by a factor of about 2), which makes CD not competitive for
moderate- to high-performance applications. On the other
hand, DC has negligible performance degradation (IPC
increases by a factor of only 1.003), and still permits a
significant leakage reduction (although lower than CD).

The proposed ID technique was confirmed to be effective
in reducing leakage. For example, this is shown in Fig. 3,
where the leakage reduction in an 8-KB cache is plotted for
each benchmark (very similar results were obtained for the
other cache sizes). From this plot, the leakage reduction
permitted by ID caches is rather consistent among the
benchmarks, and is 69% on average.

Interestingly, the above leakage reduction of ID caches
comes at negligible speed penalty. Indeed, from the plot of
IPC reduction of ID with respect to a standard cache without
any low-leakage technique in Fig. 4, the IPC is almost
unaffected by the ID technique. More specifically, the ID
technique determines an IPC degradation that is typically less
than 1% (according to Table I), slightly greater than 1% for a
couple of benchmarks, and significantly greater (11%) only
for the benchmark bitcount. Accordingly, virtually no speed
degradation is observed in ID caches.

When ID is compared to DC, it exhibits a better leakage
reduction by keeping essentially the same area, performance
and dynamic power. In detail, the resulting leakage increase of
DC with respect to the proposed ID cache in the adopted 65-
nm technology is shown in Fig. 5 for an 8- KB cache and
various benchmarks (very similar results were obtained for

50%

55%

60%

65%

70%

75%

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fis
h�
…

di
jk
st
ra FF
T

gs
m
�d
ec
od
e

gs
m
�e
nc
od
e

IF
FT

is
pe
ll

jp
eg
�d
ec
od
e

jp
eg
�e
nc
od
e

m
ad

pa
tr
ic
ia

pg
p�
de
co
de

pg
p�
en
co
de

qu
ic
ks
or
t

ri
jn
da
el
�…

ri
jn
da
el
�…

rs
yn
th sh
a

st
ri
ng
se
ar
ch

su
sa
n�
co
rn
er

su
sa
n�
ed
ge

tif
f2
rg
ba

tif
fd
ith
er

ty
pe
se
t

Leakage reduction of ID

Fig. 3. Leakage reduction in a 8KB ID I-cache vs. MiBench test.

0.00%

2.00%

4.00%

6.00%

8.00%

10 00%

12 00%

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fis
h�
…

di
jk
st
ra FF
T

gs
m
�d
ec
od
e

gs
m
�e
nc
od
e

FF
T

is
pe
ll

jp
eg
�d
ec
od
e

jp
eg
�e
nc
od
e

m
ad

pa
tr
ic
ia

pg
p�
de
co
de

pg
p�
en
co
de

qu
ic
ks
or
t

ri
jn
da
el
�…

ri
jn
da
el
�…

rs
yn
th sh
a

st
ri
ng
se
ar
ch

su
sa
n�
co
rn
er

su
sa
n�
ed
ge

tif
f2
rg
ba

tif
fd
ith
er

ty
pe
se
t

IPC reduction of ID (%)

Fig. 4. IPC reduction (lower is better) for a 8KB i-cache. ID vs DC.

other cache sizes). From Fig. 5, Drowsy Caches have a
significantly higher leakage consumption compared to ID
caches. Indeed, leakage of DC is higher than ID typically by
10-15%, and up to 53% (for the rijndael encode benchmark).
As expected from the considerations in Sections III-IV, this is
because ID caches are able to turn a greater number of cache
lines in standby mode, compared to DC. Note that ID caches
have almost the same leakage as DC (within 1%) in a few
benchmarks (tiff2bw, CRC32, tiffmedian, susan smooth,
ADPCM encode, ADPCM decode, bitcount).

ID caches also have an insignificant area overhead
compared to DC. Indeed, the only circuit overhead consists of
seven minimum-sized transistors (highlighted in gray in Fig.
2b) for each cache line (which, on the other hand, consists of
thousands of transistors). In regard to the performance, the
average IPC of ID caches was found to be very close to DC
(within less than 1%, as shown in Table I). Again, this
confirms that ID caches have a negligible speed degradation,
as previously discussed. Regarding the dynamic power
consumption, it was also found to be the same as DC. Indeed,
any power overhead associated with the implementation of the
technique was included in the evaluation of leakage, as
pointed out above. According to these results, the proposed ID
technique is equivalent to DC in terms of performance, area
and dynamic power, but it further reduces leakage.

In regard to the comparison with CD, as expected the latter
has a lower leakage power compared to the other techniques,
but its performance is severely worse (see Table I). More in
detail, the IPC of ID is on average 2X (and up to 8X for some
benchmarks) better than that of CD. This is because the CD
mechanism pays a large speed penalty due to the frequent
misses associated with the access to standby lines. Again, this
confirms that CD is not suitable for moderate- to high-
performance applications, and its increased average leakage
reduction (better than ID by 27% from Table I) does not
justify its adoption.

CONCLUSION
In this paper, the Improved Drowsy cache technique was

proposed as a more efficient scheme to turn unused cache line
into standby mode. Analysis has showed that the proposed
technique is a good replacement of Drowsy caches, as it
permits to reduce leakage (typically by 10-15%, up to 53%) at
virtually no cost in terms of area/speed/dynamic power. This
is enabled by the more efficient mechanism according to
which cache lines are turned on and off, which explicitly relies
on locality.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fis
h�
…

di
jk
st
ra FF
T

gs
m
�d
ec
od
e

gs
m
�e
nc
od
e

FF
T

is
pe
ll

jp
eg
�d
ec
od
e

jp
eg
�e
nc
od
e

m
ad

pa
tr
ic
ia

pg
p�
de
co
de

pg
p�
en
co
de

qu
ic
ks
or
t

ri
jn
da
el
�…

ri
jn
da
el
�…

rs
yn
th sh
a

st
ri
ng
se
ar
ch

su
sa
n�
co
rn
er

su
sa
n�
ed
ge

tif
f2
rg
ba

tif
fd
ith
er

ty
pe
se
t

Leakage increase of DC w.r.t. ID (%)

Fig. 5. Leakage increase of DC with respect to the proposed ID cache (higher
is better) for a 8KB I-cache: ID vs DC.

TABLE I. COMPARISON OF DIFFERENT SCHEMES ACROSS MIBENCH
SUITE FOR THE BASELINE CONFIGURATION.

 CD DC ID
leakage reduction factor 4.09X 2.7X 3.2X
IPC degradation factor 1.98X 1.003X 1.01X

ACKNOWLEDGEMENTS
This work was partially funded on EU projects HiPEAC
(IST-217069), ERA (249059), TERAFLUX (249013).

REFERENCES
[1] S. G. Narendra, A. Chandrakasan, Leakage in Nanometer CMOS
Technologies, Springer, 2006.
[2] Y. Nakagome, M. Horiguchi, T. Kawahara, K. Itoh, "Review and future
prospects of low-voltage RAM circuits", in IBM J. R&D, vol. 47, pp. 525-
552, 2003.
[3] K. Itoh, M. Horiguchi, H. Tanaka, Ultra-low Voltage Nano-scale
Memories, Springer, 2007.
[4] N. S. Kim, D. Blaauw, T. Mudge, "Quantitative analysis and optimization
techniques for on-chip cache leakage power", in IEEE Trans. on VLSI
Systems, vol. 13, 2005, pp. 1147-1156.
[5] C. H. Kim, J. J. Kim, S. Mukhopadhyay, K. Roy, "A forward body-biased
low-leakage SRAM cache: device and architecture considerations," in Proc.
of ISLPED 2003, pp. 6-9, 2003.
[6] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, T. Mudge, "Drowsy
caches: simple techniques for reducing leakage power", in Proc. of ISCA'02,
pp. 148-157, 2002.
[7] S. Kaxiras, Z. Hu, M. Martonosi, "Cache Decay: Exploiting Generational
Behavior to Reduce Cache Leakage Power", in Proc. of ISCA'01, pp. 240-
251, 2001.
[8] D. A. Patterson, J. L. Hennessy, Computer organization and design the
hardware/software interface (2nd ed), Morgan Kaufmann, 1997.
[9] D. Parikh, Y. Zhang, K. Sankaranarayanan, K. Skadron, and M. Stan,
"Comparison of State-Preserving vs. Non-State-Preserving Leakage Control
in Caches", in Workshop on Duplicating, Deconstructing and Debunking
(held in conjunction with ISCA'03), pp. 14 25, 2003.
[10] R. Giorgi, C. A. Prete, and G. Prina, "Cache Memory Design for
Embedded Systems Based on Program Locality Analysis", in Proc. of
MSE'97, pp. 16-18, 1997.
[11] Intel, "The Intel XScale Microarchitecture", in Technical Summary - av.
at: http //www.intel.com/design/intelxscale/xscaledatasheet4.htm, 2000.
[12] M. R. a. R. Guthaus, J.S. and Ernst, D. and Austin, T.M. and Mudge, T.
and Brown, R.B., "MiBench: A free, commercially representative embedded
benchmark suite", in Proc. of WWC'01, pp. 83-94, 2001.
[13] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
"HotLeakage: A Temperature-Aware Model of Subthreshold and Gate
Leakage for Architects", University of Virginia Tech report, Charlottesville
CS-2003-05, 2003
[14] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. P. Jouppi, "CACTI
5.1", Technical Report HPL-2008-20, HP Labs

