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Executive Summary

This document is the second deliverable of WP2 cBararks and Applications. The objective of this
workpackage is to understand the runtime beha¥iapplications in order to establish a guideline in
the design of the other components of the compusygfem in TERAFLUX. As TERAFLUX
explores the design of highly parallel teradeviggtems, a key step in the project is understanitiag
fundamental requirements of highly parallel appgi@a and their implications on all layers of a
computing system that supports a data-flow progremgnand execution model — from the
programming model itself, down to extensions to swdity architecture.

The deliverable describes the results of the segead of the project in task 2.2 and task 2.3 dsd a
the results for milestone 2.2. The objective ofestibne 2.2 was to define the set of benchmarks,
kernels and applications that the partners commnpdrt to the project programming models. The
outcome of this milestone is described in sectipthia Milestone has been successfully achieved in
m18. In the elaboration of this list, the suggestioeceived from the reviewers (adding graph-based
and Recognition, Mining, Synthesis (RMS) applicasip and from the Scientific Advisory Board
were taken into account.

The activities performed in task 2.2 relate to ¢haracterization of the applications. In the firsar

of the project, the different characterization noeliblogies to be used were defined and described in
deliverable D2.1. This year, the partners have hmsforming the characterization of the project
applications using these different methodologiextiBn 3 presents a selection of the results obdain
by the partners, using different methodologies.

Finally, although the task 2.3 was meant to stagtear three of the project, the partners haveestar
this task since there was a need for applicationzetform the characterization and as input foeoth
WPs. Section 4 presents some of the results of theting activities.
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1 Introduction

This is the second deliverable of WP2, Benchmana Applications. Understanding the runtime
behaviour of applications is a crucial guidelinetliie design of computing systems, as they are the
effective consumers of the underlying compute povwerTERAFLUX explores the design of highly
parallel teradevice systems, a key step in theept@ understanding the fundamental requiremdnts o
highly parallel applications and their implicationis all layers of a computing system that supparts
data-flow programming and execution model — froma flnogramming model themselves, down to
extensions to commodity architecture. This exploraincludes:

» Identify applications that can serve as refererm@i@ations for a programming model based
on data-flow principles, and that can efficientbalke to utilize teradevice system.

» Characterize the resource requirements of theselyhigarallel applications, in terms of
memory usage, bandwidth, and latency. Identify texformance requirements from
underlying interconnection network. These char@ties will assist the architectural
exploration performed in WP6.

* Uncover common data-flow and data-locality pattamplicit to the reference applications
that can be disseminated into the programming mduéiP3) as either data-flow or
transactional semantics.

» Port a few applications to the programming modelssen by WP3. The ported applications
will be used by the other work packages to guigdr groposed designs.

» Extract the interesting patterns and data accemsgéghat will assist other work packages
build sensible benchmarks that can test the praposestructs in all domains: programming
model (WP3), compilation platform (WP4), reliabilifWwP5) and architecture (WP6).

1.1 Document structure

The deliverable is organized as follows: this sectintroduces the deliverable and its structure,
section 2 describes the list of applications anachmarks that have been selected by the project in
milestone 2.2 to be ported to the project programynmodels. Section 3 presents relevant results on
the characterization of project applications udiifferent characterization methodologies. Section 4
presents results on porting applications to thgeptgprogramming models, and finally section 5
concludes the document.

1.2 Relation to other deliverables

Along the document there are references to delblefa3.3. Also D2.1 presented metrics for TM that
is not repeated again.

1.3 Activities referred by this deliverable

This deliverable refers to the activities performedrask 2.2 during the second year of the project.
Task 2.3 Porting applications to include new prograng models was supposed to start in the third
year of the project has already started since thvaea need for initial benchmarks and applications
to be used in the other WPs.
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2 ldentification of subset of the reference applications

One of the milestones of the project, M2.2 Sub$dhe reference applications to be ported to the
programming models defined in WP3, was due monttoflhe project. This section presents the
agreement of the partners involved in WP2 Benchmard Applications on which benchmarks and
applications will be ported to the project programgnmodels. The table below lists the benchmarks
and applications, the programming model to which né ported and the partner responsible of this
activity.

The list was elaborated taking into account thiedfgeference applications selected in milestorde 2
and extending it with the recommendations fromréhgewers to add graph-based and Recognition,
Mining, Synthesis (RMS) applications.

Benchmark Responsible partner| Programming Comments
model
Matmul BSC StarSs
INRIA OMP + Sync
ucy DDM
UNIMAN Scala+TM
Radix Sort INRIA OMP
Lonestar - TBC INRIA OMP + Sync
Barnes-Hut BSC StarSs
Cholesky BSC StarSs
ucy DDM
Sparse LU BSC StarSs
INRIA OMP + Sync
ucy DDM
UNIMAN Scala +TM
FFT2D BSC StarSs
INRIA OMP + Sync
SPECFEM3D BSC StarSs
UNIMAN Scala+TM
N Queens BSC StarSs
Lee’s Routing UNIMAN Scala +TM
(Labyrinth) BSC StarSs
INRIA OMP + Sync
UNIMAN + UCY DDM + TM
Kmeans UNIMAN Scala+TM RMS (mining)
BSC StarSs
Ssca? UNIMAN Scala+TM Graph algorithm
STAMP - TBC INRIA OMP + Sync
FFT 1D INRIA OMP
Fmradio INRIA OMP
802.11a INRIA OMP
SimDiasca INRIA Sync
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Benchmark Responsible partner| Programming Comments
model
Picture-in-picture INRIA Sync
Ad-hoc softwarg INRIA OMP + Sync
radio
Convzd ucy DDM
IDCT ucy DDM
Trapez Ucy DDM
Graph 500 BSC StarSs Graph Algorithmsg
Flux BSC StarSs RMS (recognition
(object tracking)
Application Responsible partner | Programming
model

GROMACS BSC StarSs RMS (Synthesis)
PEPC BSC StarSs RMS (Synthesis)
WRF BSC StarSs
STAP (Radar) Thales Seq. code RMS (Recognitiol

BSC StarSs

INRIA OMP + Sync
Viola & Jones THALES Seq code RMS (Recognitiol
(Pedestrian INRIA OMP + Sync
detection)
HPL Linkpack BSC StarSs

Remarks

Table 1 List of project reference applications

OMP = OpenMP with streaming data-flow and transaeti extension
Sync = Data-flow synchronous language with transast

RMS = Recognition, Mining, Synthesis

Other plans

The consortium plans to choose one/two applicatior&arSs in order to port some kernels to lower
data-flow language (i.e. DDM).

LINPACK and GRAPH 500
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Between the list of applications, we propose tackhnthe TERAFLUX application list with two
“single figure” benchmarks:

- LINPACK (HPL-2.0) - used in top500.0rg
- GRAPH 500 - newly introduced [3] for several pramming models (including MPI, OMP, etc.).

Brief Introduction to LINPACK (HPL-2.0)

LINPACK [1] is employed to determine performance fanking supercomputers in TOP500 [2].
TOP500 lists the world’s fastest computers. LINPASKa software library that uses Basic Linear
Algebra Subprograms (BLAS) libraries for performivasic vector and matrix operations.

The High Performance LINPACK benchmark (HPL-2.0lves an N linear equation system. This
benchmark is executed with increasing matrix si@8swith the purpose of searching for the size
Nmax for which the maximum performance,R is attained. R.x represents the floating point
operations per second to solve the above linedermsysAnother measured point is when half of the
performance (R./2) is accomplished — the corresponding N is callgg

In the experiments carried out at UNISI, the sirfredamachine (provided by the COTSon simulator —
see D7.1, D7.2) consists of a master node (in THRA&called service node), which is the node that
runs the operating system, abeR4 auxiliary cores(64 nodes of 16 cores). Currently, we are able to
run LINPACK (HPL-2.0) experiment with MPI and thegghest value we got By 2.0 GFLOPS(in
such caselN.x =4000, simulated time=21.04). However, we still ché@ carry out more extensive
experiments.

Brief Introduction to GRAPH 500

The main purpose of Graph 500 [3] is to help gulue design of software systems and hardware
architectures, because graph algorithms are apaoteof many analytics workloads. The Graph 500
aims to cover kernels common in domains like oétion (single source shortest path), concurrent
search, and edge-oriented (maximal independent Isethe future, other graph-related computer
industry areas will be covered like Medical Infoting, Data Enrichment, Cyber security, Social
Networks, and Symbolic Networks.

The benchmark consists of two stages: first a ®tr@tlyraph is generated and then some searches are
performed on it. The number of the Traversed EdpsSecond (TEPS) is accounted and presented
at the end for the given problem size (also cakedle’), defined as the logarithm base two of the
number of vertices.

In the experiments carried out at UNISI, we exedute Graph 500 in the same simulated machine
that we used for LINPACK (1 service node, whichguhe Operating System, at624 auxiliary
coreg. The executed command spiexec.hydra —np <X> ./graph_mpi_simple <txhere X =1,
2,4, 8, 16, 32, and 64; where X represents numibgrocesses for the MPI launch¥rrepresentshe
scale of the problem for the Graph-500e highest value we obtainedlig Million TEPS (for X=1,
Y=1). However, also in this case, we still need to catrymore extensive experiments.
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3 Applications characterization

This section presents results on applications cheniaation. Different characterization
methodologies have been used; a description oé ttlearacterization methodologies can be found in
deliverable D2.1.

3.1 Analytic characterization (Thales)

For the purpose of analysing the STAP and the Pealedetection applications, Thales used an
internal co-design environment called SpearDE. s Bmvironment allows for dataflow applications

characterization in view of their parallelisationdacode generation for heterogeneous distributed
(embedded) architectures, by exposing relevanurfestboth in the application and the computing
architecture models.

SpearDE workflow for application characterization and modelling: The applications are modelled
as a dataflow graph based on the graphical interédcPtolemyll, but following a specific multi-
dimensional synchronous dataflow-like model of catagion based on the ArrayOL formalism.

Along with the application graph SpearDE, enabfesrodeling of different heterogeneous parallel
architectures via a structural view (processindgsigliements, memory layout, communication paths)
as well as a performance view (such as time belavinodels of the architecture elements) of the
architecture.

Based on these two models a mapping strategy calefieed, addressing both task-level and data-
level parallelism. The tedious operations linkedrtapping, which are also error prone when done
manually, such as data transfers, data reorderimgoolel consistency in general, are handled by the
SpearDE tool. These are intrinsically linked to tterget hardware and different for each
configuration regardless the fact that the appbcaimodel might be the same. SpearDE generates a
valid scheduling, including software pipelining ftve mapped application, as well as the involved
static memory layout. This leads to rapid perforagasimulation on the given platform and therefore
allows the user to iteratively choose the bestgiesiccording to the imposed constraints. Finally,
code generation is performed using back-end, psocespecific compilers.

Application Analysis: The first step consists in describing the dataflplication as an acyclic
graph whose nodes are statically affine nests opdoto be executed over some Elementary
Transform (ET), whereas the edges represent th&-mpgput flow as multi-dimensional arrays of
data. Each ET is described as a C-code kernellysy@drating onto a subset of the input data, and
which will need to be repeated by the node unél éntire input array has been consumed. SpearDE
computes dynamically the needed loop bounds, peovile dimensions of the input data are known
(non-parametric).

This graphical representation highlights severaisaof parallelism already at functional level befor
even considering a given parallel platform. Taskajgism becomes obvious when considering
different branches in this graph and data paraftelis highlighted inside each node through the
external loops to be executed.

At this point, despite the fact that this applioatrepresentation is architecture agnostic, thamkise
information describing an elementary operationadares are computed by the tool on the fly, this
giving a preliminary estimation of throughput armmaputational load.
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This information will be later used in SpearDE temgare the user-assisted architectural mapping
phase, to automatically generate the communicatidiosving to transfer data between processing
elements, or to automatically fuse several elemmgriesks together to reduce the communication
overhead.

Communications and the Transposition problem:For image and signal processing applications,
the dataflow usually consists of multidimensionabgs, whereas the ETs consist of various filters,
thresholds, etc. to be applied to some dimensibtisomulti-dimensional data independently.
However an Elementary Operation makes no assungtionthe data organization applying itself
systematically to the first dimension(s) of theuhplata. Therefore data reorganisation (e.g. matrix
transpose) might be necessary prior to executimgnmale in the graph, which usually translates into
an inserted communication (e.g. in architecturesh wdistributed memory). To avoid extra
communication costs, those transpositions are pedd alongside with the communications between
processing elements in the architecture, tryinghbtot maximize data-locality and to minimize
memory occupancy.

In order to test the functional validity of the dipation graph, sequential, executable C code @n b
generated for comparison with reference implementaesults if any or for functional debug.

From this Application Analysis phase, the Teraflaroject will take benefits from the data-flow
description of the application, the associatedresed throughput, and from the sequential versfon o
the application to validate against.

Within the Teraflux project, we will first considénose transpositions as extra elementary opegtion
allowing to directly use the Teraflux communicatimodel at the cost of extra communications. In a
second step we will consider embedding those tmsispns into the communication scheme to
reduce the communications and benefits from bdtt locality as presented above.

Pedestrian detection application
For the pedestrian detection application charawdrin D1.1 the dataflow graph contains the nodes:
1. GrabOneFrame — reads image data
2. Integral_rows — computes the Integral Image orrdlaedimension
3. Integral_col — uses the results of the above taskctumulate the results on the column
dimension, thus yielding the Integral Image atehd
4. ImgDotSquare — computes the pixel-wise square imageded for the computation of a
normalization factor.
5. normFactors — computes the variance of each imagdow, using integral images of the
original image and the pixel-wise square image.
6. GrabFeatures — reads the rectangle-features atstagh in the cascade, along with their
associated thresholds and classifier decision peteas) a and b.
7. ScaleFeatures — computes the new coordinates oé¢hengles according to the actual scale
GrabThresholds — reads the stage thresholds inhoran.
9. Detect — is the main task applying the detectioscade on all windows in an image at a
given scale.

o
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Parallelisation: This application is interesting because it exkitseveral axes for parallelisation

according to the scales, the image tiles as wellhasstage filters in the classifier cascade. The
SpearDE characterization immediately highlights tdiger two in the corresponding nodes of the
graph, for instance tile parallelism in Figure 1.

Task name normFactors|

ao || DataFlon | Data Parameters

ComputeTileNormFactors Choose ET

Input mermaries Ramint | Ramink Oukpuk memories Ramint
Segment

Array Way Origin Fitting Loop0d Looy
| 4 101
INL | a 60" row" ) 60|("col” ) "row" “col”
T g 0ICrow™) 60l ) “rov” el
\ 0 ; =

[ Tanore sans [ debug cutpat  [] Input Bloc

|

Figure 1 Detail of one task in the application grap for image tiles of 60x60 pixels. 42x101 computatis ca be done in
parallel in order to use the entire input image.

Then the parallelisation of the application ontanalti-cluster architecture can be done as in the
example below.

Earo0r(1112)
e a2 @
°b6R)
.com
o W

7 Task parameters 9]

Task name ImgDotSquare |

DataFiow | Data Parameters.

mentary Transtom ingootsauas -

Input pattern sizs

Trput meries Ramlnt Outpu memories Ramlnk Segment

Figure 2 Pedestrian detection mapping onto a paral architecture

Figure 2 shows in the left-hand side the allocatibtasks onto processing elements (the different
colours represent so-called segments and each segrezutes a subset of the application graph onto
a subset of the architecture). The right-hand sid®v the result (i.e. mapped application) obtained
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when allocation is complete for the entire graphe Tower side represents the detail of one node in
the graph in which an extra-dimension related éoatchitecture has been added after mapping
(Arch0). Here ArchO contains two processing elemevttich will function in SIMD fashion onto half
of the input data each.

The global control-flow graph for this applicatioas given in Figure 3, shows the previously
mentioned parallelism axes. Note that in this aljor there is a trade-off to be done between
parallelising at filter level or at image tile ldv&he number of filters to apply is much smallér a
early stages in the classifier cascade than dagtetages, while the number of image tiles isdigp
decreasing with the stage index.

integral image
computation

for each
scaling factor
for each
classifier stage
for each
position
for each
filter

apply filter

final position
list

update scale
position list

update
position list

Figure 3 Pedestrian detection control-flow graph

A possible parallelization option is to use the gedile axis at the beginning of the classifying
cascade and the filter level axis at the end ot#seade. The same applies for the scale axis.

According to the number of image tiles at a giveals, another option would be change the

algorithm into applying the entire cascade on miage tiles without updating the position list at

intermediate steps. This introduces another axisaoéllelisation given by the stages in the cascade
that can be applied in parallel. The extra comjputaimight be compensated by the parallel

processing power of the chosen architecture.
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3.2 Characterizing the Memory Requirements of MPI applications
(BSC)

In this work, presented in [4], we characterize tiemory behavior of several well-known parallel
scientific applications. We project the performaneguired from the memory system, to adequately
serve large-scale CMPs, in terms of memory sizenong bandwidth and cache size.

We base our predictions on the per-CPU memory reopgnts of distributed memory MPI
applications. Although this methodology is impetf@data may be replicated between nodes, which
may result in pessimistic predictions when addresshared-memory environments), we believe it
provides a good indication of the requirements fEo@MP memory system.

We base our analysis on a set of four applicatichesen to represent the dominant scientific
domains in the supercomputing centers surveyede Moportantly, the analysis showed that each of
the selected applications stress different aspafctbe memory system. The selected applications
include:

» GADGET (GAlaxies with Dark matter and Gas intErac® code for cosmological
simulations of structure formation. It computesvietional forces with a hierarchical tree
algorithm, optionally in combination with a pargemesh scheme for long-range gravitational
forces. It is one of the most often used applicetjoepresenting the area of astronomy and
cosmology. From the four applications that we u§8DGET had the highest requirements
of memory size.

e MILC (MIMD Lattice Computation). A set of codes fodoing simulations of four-
dimensional SU(3) lattice gauge theory, represdmsarea of particle physics, and in our
analysis had the highest requirements of memorgJseth.

»  WRF (Weather Research and Forecasting). A nextrgdor mesoscale numerical weather
prediction system designed to serve both operdtifumacasting and atmospheric research
needs. It is a well-known DEISA benchmark from #mea of earth and climate. In our
analysis, it is characterized as the applicati@at th bound by the system’s computational
resources.

* SOCORRO — self-consistent electronic-structure watmns utilizing the Kohn-Sham
formulation of density-functional theory. Calcutais are performed using a plane wave basis
and either norm-conserving pseudopotentials oreptoj augmented wave functions. This
application mostly stresses the memory bandwidth.

Each of the applications was executed on 16, 32arédt 128 processors, with the exception of
GADGET — whose memory footprint could not fit on M&reNostrum blades. The input sets in all
of the analyzed applications remained unchangetkwshbaling the number of processors.
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Ovemall memory foopesy: procections
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The total memory footprint is calculated as the hanof processors multiplied by the maximum per-
processor footprint. In case that the memory systiras not satisfy the maximum footprint
requirements of a given application, it would cragken left out of memory space. Our experiments
show that doubling the number of processors doéhalee the size of the per-processor memory
footprint. For both WRF and SOCORRO, doubling thenber of processors only reduces the per-
processor memory footprint by 20-40%. Scaling imewhat better for GADGET, for which scaling
from 32 to 64 processors reduces the per-procdsstprint by 45%, while scaling further to 128
processors reduces the footprint by only 30% m8aling for MILC is very good, as footprint
reduction is very close to 50%. Our projectionsvshioat future manycores consisting of more than
100 cores must be directly backed with a few do@&Bs of main memory in order to support
scientific workloads.

Ovemall memeey baadwicth proections In order to predict memory bandwidth
requirements, we measured the per-
processor bandwidth consumed by each
benchmark at three levels: the off-chip

b - e e e e e e e e -

" ode w2 B om

2 . memory, L2 cache, and L1 cache. Total
= - O 1 BGADGE ] bandwidth is calculated as the average per-
3 - e processor bandwidth multiplied by the

Z = : @SOCORRO number of processors. Our projections show
_’_ S & 32 et 2% 28 512 1028 2088 that future manycore systems consisting of
- Number of processors more than 100 cores may easily require

more than 100 GB/s of main memory bandwidth. Mod®agahitectures such as Intel Nehalem-EX or
IBM Power7 employ 4 and 8 DDR3 channels respegtjveeaking at 102.4 GB/s of bandwidth.

Knowing that the sustained bandwidth is typicaldg@2-25% lower due to page and bank conflicts,
we conclude that such large-scale systems will neegrovide higher bandwidth to support high-
performance scientific computing.

The cycles per instruction (CPI) metric is defiredthe average number of processor cycles needed
to complete one instruction. For any execution sagmit is calculated as a total of elapsed cycles

divided by the number of completed instructionsloy CPI value means that the system resources

are better utilized, and the architecture operelteser to its peak performance.

The CPI stack model, which is the breakdown of Gitlie to the individual latencies contributed by
different micro-architectural resources, can theneebe used to determine the key factors that ieped
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performance. Each component in the stack descthmsaiverage number of cycles an instruction
stalled on a particular core resource (like Loaat&Sunit, or Floating Point unit).

(rher coenpleton stalls

GADGET 32p » Suall by :l‘ 5
Sl "w FXL st
2.3 Sull by LSU hasic latercy

w Sl ."_\ DeGache moss
& Sull by LSU reject
Orher ocoenplehion table cmpty cycles

gl | ’M '
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! *‘A"'

Execsion tne (s

GADGET’s most obvious CPI stack patterns are siganift fluctuations of the overall CPI value,
revealing three periodic iterations. Parts of eiefation with low FPU usage have an overall high
CPI value, whereas parts with high FPU usage haweQPI| value. When correlating this with the
frequency of memory accesses, it is noticeable higlt CPI value corresponds to high memory
traffic (more specifically high number of storeghis also justifies fairly large number of LSU $al
(LSU reject, D-cache miss and LSU basic latencythis part of the iteration. Therefore, each of the
three iterations can be divided into a communicatibase (low FPU usage, lots of memory accesses,
high bandwidth, high CPI), and a computation phgsgh FPU usage, few memory accesses, low
bandwidth, low CPI). We do not see much variatioGADGET graphs for 32, 64 or 128 processors.

In summary, LSU related stalls seem to be the namshinant CPI stack component in the
applications tested. The exceptions are GADGETWE R, whose computation phases are limited by
FPU stalls. It indicates that memory hierarchy dotllave an exceptionally high impact on
performance of the future manycores. It is als@rckhat wider superscalar approach can have a
limited impact, and the only ones that could sechignefit are FPU intensive applications.

System designers often use processor’'s arithmetifonmmance measurements to dimension the
required performance of other computer system compis. Dimensioning memory bandwidth is
often based on a ratio of maximum bandwidth and imam theoretical rate of floating point
operations. A common rule of thumb for obtainingimal performance is to keep this ratio around
0.5 bytes per flop. This means that a processoaltapof achieving 9.2 GFLOPS should rely on
memory that supplies 4.6 GB/s of bandwidth. Howewer analysis show that this ratio is heavily
overestimated, and that it should not be takenastmunt at all, mostly due to the underutilizatidn
floating point resources in real applications.

In light of our findings, we expect that current mmy architectures based on on-chip memory
controllers and multiple parallel DDR channels ddobe able to sustain multicores for the next
decade. However, technology constraints are ligitie further scalability, and in order to suppibe
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requirements of multicores consisting of severaidnads of processors, we need to explore other
approaches.

3.3 CPI stack characterization of StarSs applications (BSC)

The previous section presented characterizatianeshory latency and bandwidth and CPI stack for
MPI applications. Similarly, in deliverable D2.1stdts for other MPI applications were presented. In
this section, results for StarSs applications thow a data-flow execution model are presented.
More specifically, the research work has focusedcharacterizing the CPI stack for StarSs
applications using the BSC CEPBA-Tools performanocts.

We present a method of obtaining and analyzing sE&dk information. In this case, the CPI stack is
built based on runtime architectural informatioroypded by Power PowerPC 970 Performance
Monitor Units. A clustering algorithm is used taogp instances of tasks into clusters with the same
performance characteristics. This section pregestdts for the STAP application.

3.3.1 Instrumentation

The application to be analyzed in compiled by Omp&spiler (one of the StarSs implementations)
with instrumentation set to on. The instrumentapaickage used byt the OmpSs runtime is Extrae,
which is part of the CEPBA-tools toolset. The comoation between the instrumented application
and Extrae is managed by an instrumentation plug4me plug-in is a part of the OmpSs runtime
library. The compiler inserts calls to API providey instrumentation plug-in in task’s code. Thd<al
are as follows:

e Call for registering a task as a user functionBrirae
» Calls that start and stop collecting values of ganince counters.

Functions that are used in the second bullet gemeraegistration key, set by the call from thetfir
bullet, to identify task’s instance performanceomfation that has been gathered for. Trace
information collected by Extrae is then emittedtte trace file.

3.3.2 Clustering and CPI Stack

After the trace file containing values of perforroancounters mapped onto tasks’ instances is
generated, a clustering algorithm is applied. déniifies and groups into clusters executed ins&nce
with similar performance characteristics. The dusg algorithm we used is DBSCAN. This
algorithm builds clusters based on density of negghood around a given point that exceeds a
threshold MinPts. The neighborhood is shaped withsen distance function dist(p, q) between points
p and g. For points p and q that lie inside a elutte following holds: dist(p, q) <= Eps. These®tw
parameters, MinPts and Eps, are parameters pastesldlgorithm.

By altering the value of Eps we can change thehtwighood of the points and by that change the
shape of the clusters. Lower values of Eps makealfparithm generate smaller and dense clusters
with low number of border points (points on thedsrof a cluster), with higher number of pointstha
are considered noise. Higher values of Eps gendaeger and sparse clusters with many border
points, with lower number of points that are codriteas noise.
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The metrics that we use are IPC (Instructions Bete} combined with Instructions Completed. They
form a distance function used for DBSCAN to clustestances of tasks with similar performance

characteristics.

The output of the clustering process is data teatiibe the clusters grouping tasks’ instances with
respect to the mentioned metrics, and Paraver tilacghowing the tasks mapped onto clusters. Once
the clusters grouping tasks with similar perfornembaracteristics are determined, the CPI stack

information is generated.

3.3.3 Discussion of results
STAP

We start our discussion of the results by analy#iregclusters that were shaped from executed tasks.
The plot with clusters containing instances of sasith similar performance characteristics is shown

below:

DBSCAN (Eps=0.009 MinPoints=10)
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Clusters 1, 2, 3 and 4 group instances of tasksctrdribute the most into the overall performante
the application; the contribution of the clustessat least 3% of the total execution time of the

application. These clusters group the followinganses of tasks:

e Cluster1

o Apply Filter_task
e Cluster 2

o Calc_Filter_task
e Cluster 3

o tfac_task
e Cluster 4

o Mt _Invert task
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TasksApply_Filter_task andCal c_Fi |l ter_t ask are the largest in terms of duration, and
with the highest number of executions. Because Hae high number of instances (2880 for both
tasks), clusters grouping instances of these tamks a large variance with IPC ranging from alniost
to more than 1.2 for cluster 1 and from almostta.fore than 1.6 for cluster 2. A similar case lban
observed for cluster 5 grouping instances of fask_Dop_t ask (also with 2880 instances). The
instances of this task are much smaller than iostwmnof tasksApply_Filter _task and
Cal c_Filter_task. However, cluster 5 has a large variance witheespo IPC ranging from
values below 1 to 1.4.

Size and duration of instances of tasks in clustesad 2 are the main factors that contribute ltot
high number of instructions completed by the instanof these tasks.

The points representing instances of taskac_t ask andMat _| nvert _t ask form smaller and

denser clusters (clusters 3 and 4) with low valitgbwith respect to the IPC. The number of insesc
is much smaller compared to tasks in clusters 12afi@i4 for taskvat _| nvert _t ask and 180 for

taskt f ac_t ask).

However, these clusters differ when values of utdions completed are compared: instances of task
tfac_task complete around 1 Minstructions while instances task Mat _| nvert _t ask
complete more than 2 Mintructions. This indicatieat tcluster 4 groups computationally intensive
instances of tasks.

Now we analyze the CPI breakdown of clusters 3 and 4. CPI breakdown is shown on the plot
below:

CPI Stack: Detailed Breakdown stap_001 clustered clusters_info csv
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Tasks in all the clusters perform floating-pointcaations so they all experience latency related t
FPU execution unit. As it was mentioned beforekthdht | nvert_task (cluster 4),
although is the smallest, is the most computatlgriatensive: it completes the highest number of
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instructions with high latency caused by the FPhisTask implements a matrix inversion with Gauss
elimination method. Also two larger tasksCalc Filter task (cluster 2) and
Apply_Filter_task (cluster 1) are computationally intensive. Theyplement a filter
calculation and an algorithm that reduce the dgignal in the STAP method.

The only task that wastes cycles on FXU (fixed-pamit) is taskt f ac_t ask grouped by cluster 3.
This task does integral calculations on array ieslicResults of these calculations are used as
predicates in f statements. This explains the high number of syalasted cycles on miss-predicted
branches. This also causes higher ratio of wastel with highest CPl comparing to other tasks.

SPECFEM3D

We will start analysis of CPI stack for SPECFEM3{pdxamining clusters’ shapes and distribution
of points. As it was a case for STAP, we will foaurs clusters whose tasks cover more than 3% of
execution time in total of the application. Thekesters are:

* Cluster1

0 process_el enent
e Cluster 2

0 scatter
* Cluster 3

o0 gather

These clusters are shown on the plot below:
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Table below shows a description of the tasks’ imsta grouped by aforementioned clusters.
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Name of task Number of instances Total executime fins]
process_el ement 720 7.498.931.151
scatter 720 3.001.285.428
gat her 720 397.080.482

Cluster 1 groups instances of the taslocess_el enent . As we can see in the table above, the
task is the largest in terms of duration. The IP@e points in the cluster varies from 0.6 to T.Bey
complete the largest number of instructions amoasgk tinstances grouped by clusters under
consideration (2.8 Minstructions). The cluster asbieves the highest values of IPC. These factors
indicate that these task instances do not suffen flnajor issues that degrade its performance.

Shape of cluster 3, that collects instances of gaskher , is similar to cluster 1. The points that form
the cluster are scattered in terms of IPC with eslthat range from 0.6 and 0.8. The value of IPC is
lower than in cluster 1. Also, the task instancempmlete a lower number of instructions (0.9
Minstructions) and they are smaller in terms ofesand duration. This indicates taght her
encounters runtime issues that degrade the penfmenaf its instances.

The instances of the tagkcatt er form cluster 2. The cluster is dense and taskant&s are
concentrated in one place. They share the samesvafyperformance characteristics. Value of CPI is
the lowest (less than 0.2) among all the clustadeuexamination, with small number of instructions
completed (less than 1.7 Mintructions). That inthsathat task instances suffer from the same
performance problem that causes their inefficiency.

Now we will analyze CPI stack of tasks whose ins¢ésnare grouped in clusters 1, 2 and 3. The plot
showing CPI stack breakdown is shown on the nexyépa

As it was already mentioned the highest performarate is achieved by instances of task
process_el ement grouped in cluster 1. Each instance of the tasitates on local mesh that has
been previously collected by instances of tgakher . This provides data distribution and isolation
among task instances. Task instances of the clast@munter small number of d-cache misses (0.04
MCycles wasted on handling this issue comparedtsd humber of 23MCycles). This indicates good
spatial and temporal locality of memory accessehb &sk instance performs.
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CPI Stack: Detailed Breakdown smpss_08_t_001 clustered clusters_info csv
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Operations performed by tagk ocess_el enent are floating-point calculations (mainly addition
and multiplication). We can see that large numhialisscaused by FPU instructions (5 MCycles
compared to total number of 23MCycles).

Cluster 3 collects instances of tagkt her . The task instances feature worse performance raetric
compared to task instances from cluster 1. The lasMdizes data from global displacement vector
and, using indirect addressing, places it in lonakh. This is the task whose instances touch their
local meshes for the first time. This generatesiche misses (97 KCycles wasted compared to total
number of 1.2 MCycles) and causes stalls in LSUenttata from lower levels of memory hierarchy
is being fetched (0.2 MCycles). This explains pperformance of task instances. The data is then
reused by task instances from cluster 1. This @xplgood performance metrics of instances of task
process_el enent .

Cluster 2 groups instances of tasiat t er . The task iterates over array that is shared artiegds
that execute instances of the task. Synchronizaisoprovided by#pragna onp atomc
operations. The operation is compiled to assembbjecthat implements spin lock by emulating
compare-and-set operation using instructionar x (Load Word and Reserve Indekeohdst wcx
(Store Word Conditional IndexgdThese instructions are placed in loop; they aggpdly access
memory trying to acquire reservation. This putsi@aital pressure on LSU (3.2MCycles caused by
LSU instructions compared to total number of 9.4MIE€g).

There’s one more reason why LSU encounters higinéat while instances of tagicatter are
executed. PowerPC 970MP uses store-through witlieteb-on-write policy. This means that
whenever shared data (in our case elements of agegssed with OpenMP atomic operation) is
written to by the core, all the other cores needetoh this data from main memory. If they store
copies of data being accessed to in their L1 deathe cache line containing shared data is
invalidated. When they access the data cache mgsnerated and they have to fetch the correct data
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from memory. It also explains high number of d-eachisses duringcatt er task’s instances
execution (0.4 MCycles compared to total number.4fMCycles).

Cholesky

We will now analyze clusters and CPI stack breaku@# a kernel that implements a Cholesky
factorization. Clusters whose task instances cowae than 3% of execution time of applications are
as follows:

* Cluster1
0 smpSs_sgemm_tile
e Cluster 2
0 zz_copyBlockTransposed
* Cluster3
0 smpSs_strsm_tile
e Cluster 4
0 smpSs_ssyrk_tile
* Cluster5

0 zz_copyBlock

Although task instances are grouped into five elisstwe will focus on clusters 2 and 5. ClusteB 1,
and 4 group instances of tasks that call to BLASin@s that operate on tiles of a matrix. Resuits o
the CPI stack breakdown for these tasks depenteoBItAS library being used. So analysis given in
this section will obscure CPI stack results of exien of the application built against differenhet
BLAS libraries. However, analysis of CPI stack ta@vn prepared for several BLAS libraries will
help choosing the library that is the most effitiene.

Shape of clusters 1 and 5 is shown on the next.pBgé&h clusters 2 and 5 encounter poor
performance metrics. Task instances grouped inatlésfeature IPC value of 0.3, IPC value of task
instances in cluster 2 ranges from 0.01 to 0.02s irdicates similar performance issues related to
memory accesses that we have described for SPECBEMBusters 2 and 3 (grouping instances of
tasksscat t er andgat her respectively).

Both tasks implement copying elements of one awagnother. The difference between these tasks is
that task zz_copyBlockTransposed realizes in thevilng manner: value of element ali,j of array
Al is assigned to element a2j,i of array A2; ineca$ task zz_copyBlock value of element ali,j of
array Al is assigned to element a2i,j of array Alese accesses, in both cases, are realized inside
two nested loops.

We can see that accesses to array A2 in task zyBtagkTransposed are realized in column-oriented
manner. So instances of the task touch non-conimyieces of memory. Accessing memory this
way does not provide good spatial locality. Alsetémces of task zz_copyBlockTransposed touch
elements of the array A2 for the first time. Theaises significant number of d-cache misses.

When we look at graph showing CPI stack break d¢ihat is shown on the next page), we see that
instances of taskz_copyBl ockTr ansposed encounter wide range of problems related to
memory access, for example: d-cache misses (0.8ME€yompared to total number of 20MCycles)
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and ERAT misses (1.3MCycyles). This in turn resuitstalls LSU encounters (6.5 MCycles). These
memory access phenomena are caused by scheme ofyrerness the task implements and result in
very high value of CPI (72 cycles per instructiaith value of 0.035 MCycles of completion cycles).

DBSCAN (Eps=0.015, MinPoints=10)
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Cluster 5 that contains instances of task zz_capgBhchieves better performance characteristics
than cluster 2. Cluster 5 features CPI of valuec§@es per instruction. Although, as it was alyead
mentioned, it implements straightforward functigtyal the operation causes some performance
degradation related to memory accesses. Instardeslozz_copyBlock access the same arrays as
task instances of zz_copyBlockTransposed. The&driatgances are also executed just after instances
of task zz_copyBlockTransposed complete (in betwiestances of task zz_makeBlockSymmetric
touch array Al). This means that it's likely th&idks of array A2 were evicted from cache and need
to be load there again. This is a reason for deacisses (0.5 MCycles compared to total number of
5.4 MCycles) instances of task zz_copyBlock enaaunt
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3.4 Characterisation of StarSs + TM applications (BSC)

As described in deliverable D3.3, one of the e#fart the project deal with the integration of
Transactional Memory with the StarSs programmingl@hoto provide an alternative mechanism for
accessing shared data with mutual access or tosaadata atomically, but also to provide a
mechanism to enable the speculative execution sistan conditional and while-loop structures,
allowing for better performance on the executiothef StarSs applications.

While the results presented in deliverable D3.3af@et of benchmarks are promising, we wanted to
further understand the impact of software TM in 8tarSs runtime. While StarSs runtime is already
instrumented and Paraver tracefiles can be gewetiase enable to analyze both the behavior of the
application and of the runtime, we further instrumeel the runtime in those areas where the
application was entering a transaction. The instmation marks when an application thread enters a
transaction, when the thread performs a commitvemeh it aborts.

With this instrumentation, tracefiles for the bemartks queens, matmul and specfem3D have been
generated, and we have characterized the transactay each of them. We have analysed the
tracefiles with regard the impact of TM using PamavMore specifically, we have generated
histograms of the duration of the periods when eglication is in a transaction, is performing the
commit and when it is aborting. We have analyzeabehtimes for different numbers of threads to
understand how TM impacts when increasing the numbiareads.

The figures below show the histogram of the duratb the periods when each application is in a
transaction. To better understand how this timéesawith the number of threads, what is shown for
each value of time is the percentage of the nurmbistances that have a given duration.
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Figure 4 Characterization of transactions time

For each of the applications we observe a sligtifferent behavior. Both in the matrix multiply and
the SPECFEMS3D cases, the number of threads doeseerat to affect severely the duration of the
time in a transaction. It is noticeable that theation of the time in a transaction is smaller hie t
SPECFEM3D case, but this is because fewer opesatoa performed. However, for the Queens
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case, the average time in transactions increageall tases the time in the transaction is not very
large (most of cases less than 1 microsecond)wanthink that this time can be further reduced with
hardware support.

Similarly, the figures below show the histograntloé duration of the periods when each application
is in the commit stage. Again, what is shown farte@alue of time is the percentage of the number of
instances that have a given duration.
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Figure 5 Characterization of commit time

For all the applications we observe a similar bérawith the time increasing when increasing the
number of threads. This may represent a problemrmvgialing to large number of threads. It would
be interesting to understand how this time wouldhewhen hardware support is provided.

Finally, next figure shows the evolution of the rhenof aborts for the matrix multiply case. Ithet
only case that it is shown since for the Queens,aas aborts are observed and for the SPECFEM3D
case, although the number of aborts increase hitmtimber of threads, these are scattered without a
defined trend, with values varying between 1.5 Ananicroseconds.

In this case, the histogram of the number of ircarper a given period time is shown to illustrate
that not only the duration of the aborts increagé whe number of threads but also the number of
aborts. The duration of the abort is significanlyger than the time in transaction or in abort,
therefore it would be more important to improvesttime when implementing hardware solutions.

Matrix multiply, abort time

=4 threads

# of instances
e

=838 threads

16 threads

-]

0 5 10 15 20 25 30

Time in abort (usecs)

Figure 6 Characterization of abort time
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3.5 TFlux Data-flow model (UCY)

During this period we continued our effort in pogimore applications to the Data-flow model. We
did this by analyzing the application code and theymenting the code with the TFlux pragma
directives (see Deliverable 3.2). We have now pbitte following applications:

» Cholesky: This is a blocked Cholesky decompositidre reference code is from the SMPSs
implementation (http://www.bsc.es/plantillaH.php?dd=425)

» IDCT: This is an implementation of the inverse dite cosine transform algorithm. The code
is based on the IDCT kernel from the mpeg libragdec similar to one found in:
http:/www.irisa.fr/master/ COURS/CAPS/CoursCD/HTMIddes/ExercicesScap/exercice9/i

dct.c
 LU: This is an application implementing the blocketd decomposition algorithm. The
reference code can be found in the examples from lISE€e

(http://lwww.bsc.es/plantillaH.php?cat_id=421)

« MMULT: This is a matrix multiply application. We @sent results for two versions, the
original and the blocked.

» Trapez: This is an application that implementsTrepezoidal Rule of Integration.

* LEE: Lee's routing algorithm guarantees to findhartest interconnection between two points
using the Expansion-Backtracking technique. Itsscuprimarily in the process of producing
an automated interconnection of electronic comptmeérhe reference code can be found in
the STAMP benchmark suite.

Notice that the last application, LEE, was portedtir data-flow model using the new TFlux+TM
pragma directives (see Deliverable 3.3). This wesllaboration effort between UCY and UNIMAN.

3.5.1 Characterization

The applications presented in the previous secismentioned before, have been ported to the data-
flow model using the TFlux pragma directives. Tpel&ations were then passed through our source-
to-source preprocessor and then compiled withefalargcc compiler (version 4.5.2). They are then
linked with our Data-Driven Multithreading runtinsystem. They were then executed on an 8 core
Intel Xeon E5320 1.86GHz system. Given that we armgning natively using our software
implementation of the model, we use only 7 outhef 8 cores for worker threads while the other core
is reserved for the execution of the software TShk executions were performed with 4 different
input data set sizes, which we call IDS1, IDS2,3D&nd IDS4. For Cholesky, IDCT, LU, MMULT,
and MMULT-BIk, these input data set sizes corresptm 512, 1024, 2048, and 4096 rows in the
matrix, respectively. For Trapez the sizes corredpo a range of 25, 50, 100, and 150. For LEE the
sizes correspond to a maze of dimension 32x32x3668, 128x128,x3, and 256x256x3. We
collected the statistics using tperf system tool. This tool uses the system’s progranmters to
measure different events. For this work we coll@a&eough information to report the IPC, Last-Level
Cache and TLB miss rate, and Bandwidth. We prebentifferent results in the following charts.
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Figure 7 IPC for different input data sets for (a)data-flow and (b) data-flow+TM applications

From Figure 7, which presents the IPC for the dgifié applications and the different input data set
sizes, it is possible to observe that all applaretiother than LU show a near constant IPC for the
different input data sets. For LU we observe a buadetrease in the IPC as the input data set is
increased. This shows that LU becomes less effiagithe input data set is increased. As for LEE we
observe the opposite of LU with a slight increakthe IPC as the input data set sizes increases. Th
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Figure 8 LLC cache misses rate for different input déa sets for (a) data-flow and (b) data-flow+TM applcations

In Figure 8 we present the LLC miss rate for défarinput data sets. From these results it is plessi
to observe a general increase in the miss rateeamput sets increase. This increase is observad i
larger degree for both MMULT applications. This siirg that LLC cache is not able to capture the
working set. The input data set size does increame than linearly from set to set does the redativ
increase in the miss rate is actually relativelyalken than the rate of increase of the input data.

Interestingly, the behavior shown by LEE is the apfe as its miss rate decreases as the input set
increases. This may be a consequence of the fatcthid core of the data used by this applicatiesdo
not increase as the input data increases. It nsy @@ that the cache is not used efficiently tat sta
with for this application. We need to further stutlg reason for these observed behaviors.
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Notice that even though we have measured alsoateeTd.B miss rate, as the values observed were
very small (<0.1%) we did not consider relevanntude in this report.

Finally, in Figure 9 we present the Bandwidth foe tifferent input data sets.
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Figure 9 Bandwidth for different input data sets fa (a) data-flow and (b) data-flow+TM applications

The results in Figure 9 show that the applicationgeneral increase their bandwidth demands as the
input data set sizes are increased, as expectedbdrdwidth requirement is larger than 14Mbps for
both the original MMULT and LU for the larger deget size. Between the two MMULT versions it is
possible to observe the blocked version as expéetednuch smaller bandwidth requirement, around
8Mbps instead of 14Mbps for the larger input dat sze. Finally, IDCT does not show a large
bandwidth requirement neither it changes for differinput data set sizes. Regarding LEE, it again
shows a different behavior. First, its bandwidtlquieement is much larger than the rest of the
applications ranging from 20 to 55 Mbps. Secorglhighest point is for the smallest data set even
though after IDS2 it starts to increase again geeted. Once more we need to take a further look
into this application as to better understand éfisawvior.
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4 Applications porting

Although porting of applications was planned fog #econd half of the project, some of the partners
have already started the porting of applicationtheocorresponding programming models. Some of
the more relevant porting efforts to Scala andS&tare reported in this section.

4.1 Scala (UNIMAN)

This section presents the progress in porting beacks to Scala using dataflow and TM. Although
these benchmarks are also being ported to C paggnas, we are exploring the use of a programming
notation based on the Scala language to cateidhrgnoductivity software developers.

When writing in a dataflow style, we have found fukéo have certain language features to ease
dataflow (functional) composition. The ability teturn tuples as function results and to match again
them as arguments is probably the most importare.strong typing of Scala also facilitates theistat
detection of errors.

We use only a subset of Scala omitting both conerat synchronisation and arbitrary shared state
manipulation. Shared state manipulation only occwithin atomic sections (TM). We have
developed a new Scala-based dataflow library whighuse in conjunction with a Scala-based
Transactional Memory library (see more informatiom ERAFLUX Deliverable 3.3).

During this year we have successfully ported: matratrix multiplication (no TM needed),
Vacation, Lee Routing (Lee-TM, i.e., labyrinth) akiMeans. We have not done performance tuning
of the libraries nor of the benchmarks yet. For-Lak we have attempted several approaches to
stretch the infrastructure being developed.

Lee-TM is a circuit router that makes connections autoralyi between points. Routing is
performed on a 3D grid that is implemented as aidinlensional array, and each array element is
called a grid cell. The application loads connewidas pairs of spatial coordinates) from an input
file, sorts them into ascending length order (tduce ‘spaghetti’ routing), and then loads them into
thread-local queues in a round-robin manner. Eadat then attempts to find a route from the first
point to the second point of each connection byopeing a breadth-first search, avoiding any grid
cells occupied by previous routings. If a routéoisnd, backtracking lays the route by occupyingl gri
cells. Concurrent routing requires writes to thigl go be performed transactionally. Lee-TM is fully
parallel, with conflicts at concurrent read/writevarite/write accesses to a grid cell. A secondsizer

of Lee-TM has been implemented that uses earhaseleThis version removes grid cells from the
readset during the breadthfirst search. Two trditgecmay be routable in parallel, i.e. the segrid
cells occupied by their routes does not overlap,because of their spatial locality, the breadtstfi
search of one transaction reads grid cells to wthielsecond transaction writes its route, thusingus
a read/write conflict. Removing grid cells from treadset during the breadth-first search eliminates
such false-positive conflicts.
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Figure 10 Preliminary results on Scala for Lee-TM (Salability with number of cores).

Vacation simulates a travel booking database in which meltipreads transactionally book or cancel
cars, hotels, and flights on behalf of customehse@ds can also execute changes in the availatility
cars, hotels, and flights transactionally. Eachtamsr has a linked list holding his reservationse T
execution of Vacation is completely parallel, butiéable parallelism is limited by the number of
relations in the database and the number of custome

Experimental Setup: Having constructed each of ehbsenchmarks with our Dataflow and
Transactional Memory libraries, we present soméop@iance results. The results are obtained on a
12 core machine (2x AMD Opteron (Six-Core) ModeR2)} with 32 Gigabytes of RAM (8x 4GB
667MHz DDRZ2). Scala version 2.9 is used, with taeaJSE Runtime Environment 1.6, using the
Hotspot 64 bit server VM. We have also used traesell simulation to produce expected
performance figures for executing these codes opragessor with support for dataflow and
transactional memory. The simulation assumes sksdidataflow hardware with no latency for the
passing of tokens. Threads are scheduled immegliaftelr their inputs are ready, and a free progesso
is available. For TM, we selected a non-optimalnac®. When a transaction conflicts with one
already running, this is handled conservativelydbiaying the start of the transaction so that tigere
no overlap.
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Figure 11 Preliminary results on Scala for Kmeans$calability with number of cores).

Figure 11 presents the first results for KMeans for a notimiged scenario. We do not want to make
any claims yet about the scalability (althoughsitldoking promising), but simply illustrate the
progress that we are making with porting applicatio

Figure 12 presents a graphical representation of a subsbealataflow graph executed by KMeans.
This graph is generated automatically by the datafibrary implemented in Scala to aid software
developers.KMeans clusters objects into a specified number of clestdihe application loads
objects from an input file, and then works in twteanating phases. One phase allocates objects to
their nearest cluster (initially cluster centers assigned randomly). The other phase re-calculates
cluster centers based on the mean of the objectadh cluster. Execution repeatedly alternates
between the two phases until two consecutive itaratgenerate, within a specified threshold, simila
cluster assignments. Assignment of an object tlustar is done transactionally, thus parallelism is
controlled by the number of clusters. Executionsists of the parallel phase assigning objects to
clusters, and the serial phase checking the vanidtetween the current assignment and the previous.
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Figure 12 A subset of the executed dataflow graplof KMeans

4.2 Improvements of the implementation of STAP in StarSs

The STAP (Space Time Adaptive Processing) apptinatomes from airborne radar domain. It
provides simplified implementation of MTI (Movingafget Indication). The original sequential
implementation was provided by Thales in C, anitst implementation in StarSs was also written.
This section analyzes the performance of thisahithplementation and how it was optimized.

Three different versions of the STAP algorithm ased in this section:

* An OpenMP-based implementation with parallel loops

» A StarSs-based implementation. It encapsulates tibnsc that operate on data
representing signals into tasks.

* A sequential implementation.

4.2.1 Initial Results

The initial measurements show that the OpenMP imeigation of STAP outperforms StarSs
implementation. Already the StarSs using a singheead is slower than the sequential
implementation. The reason for this is that StaiB®lementation suffers from the overhead
introduced by the StarSs runtime. Such phenomenativisible for OpenMP implementation.

The largest difference between OpenMP and Star&Sows is visible in case of execution for 16
threads. The StarSs has an speedup of 2.0 agdiestsdquential case, while the OpenMP
implementation has an speedup larger than 9.5.
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In the plot above showing the execution phaseb@fStarSs version it can be observed that the time
the application spends executing the tasks is smhgmproportional to the number of threads. This is

visible for both main thread and worker threads.the main thread, the task execution drops to more
than 80% for a single-threaded execution to 0%ef@cution with 12 threads. That means that for a
number of threads larger than 11, the main threacbmpletely busy managing and synchronizing

tasks.

For worker threads this ratio drops from 70% foo tiiread execution to 15% for an execution with
16 threads. In this case the threads keep idliriingdor tasks being scheduled by the main thread.
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4.2.2 Optimization

The optimization we applied to the StarSs implemeon of STAP increases the granularity of the
tasks with the objective of decreasing the relabwerhead in the runtime.

* For example, tasks are generated inside loopstérate over data that is further passed to
generated tasks. Let’s look at the call site akda 3_1:
for (i=0; i<dintl; i++) {
for (j=0; j<ding; j++) {
X 3_1(dinB, a[i][j], b[jI[i]);
}
}
We can see that the body of the nested loops én3lirs executed dim1*dim2 times. It means
that if we change value loop variable is alteredviegy change the number of tasks generated
during loop execution: if loop variable i is altdréoy n, number of generated tasks is
dim1*dim2/n. Aforementioned piece of pseudocode vdook as follows:
for (i=0; i<dintl; i+=n) {
for (j=0; j<ding; j++) {
X 3_1(n, dine, din8, &[il[j], &I[j1[i]);
}
}

This change groups data that is processed by skertt tiles; size of data increases n times.
» Tasks perform computation by looping over datacstmed into multidimensional arrays.
Now let's look at the body of task 3 1:

#pragma css task input(dinB, a) output(b)
void X_3_1(int dinB, Cplfloat a[dinB], Cplfloat b[dinB]) {
int k;
for (k=0; k<dinB; k++) {
b[k].re = a[k].re;
b[k].im= a[k].im

}

We see here that task’s execution time dependsiober of iterations of the loop from line
4. So, if we alter size of iteration space we die & change the duration of task’s instance.
This is achieved by increasing size of data tasikcgsses. This in turn can be achieved by
applying changes from previous bullet. This grofiptanges applied to code above results in
the following pseudocode:
#pragma css task input(n, dinR, dinB, a) output(b)
void X 3 1(int n, int din2, int dinB
, Cplfloat a[1][dinB], Cplfloat b[1][dinB]) {
int i, j;
for (i=0; i<n; i++) {
for (j=0; j<dinB; j++) {
(*(b+i))[j]l.re = (*(ati*dim))[j].re;
(*(b+i))[j].im= (*(ati*dinR))[j].im
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What happens in this piece of code is that bodyhefloops is now executed n*dim3 by
changing size of data processed times n.

Optimization has been applied to all the taskstar$s-based implementation of STAP algorithm. In
the implementation, the values that alter loop tensnand change size of data processed by tasks are
calleddel ta and delta_nrfg.

For each task, different valuesddl t a anddel t a_nr f g were evaluated experimentally.

4.2.3 Final Results

After applying the optimization, the speedup impadwisibly (see figure below). For the case of the
optimized application the best speedup we achiésealmost 12 for 16 threads. This result was
reached for StarSs implementation configured wight a_nr gf set to 5. It outperforms OpenMP
implementation that reaches speedup of 10 for fetts.
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Execution phases for the StarSS-based STAP impleti@m configured witldel t a_nr gf set to 5
also note improvement comparing to non-optimizegdlémentation. This is shown on the following
plot:
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For 16 threads, the main thread contributes instaskecution, it is less busy with generating and
scheduling them. The improvement introduced by dpémization also becomes visible if we

compare single-threaded executions: in case ofoptimized implementation, the task execution was
performed for 82% of lifetime of main thread; inseaof the optimized implementation the task

execution takes more than 95% of the execution.time

Improvement is also visible for worker threadstHa 16-thread execution, the workers spend 75% of
time executing tasks; in case of non-optimized an@ntation, for the same number of threads, task
execution reaches 15% and waiting for task to eeelbbacomes threads’ main activity. In optimized

implementation waiting for tasks covers less thd® ®f running time.
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5 Conclusions

This document describes the results for WP2 of TRRAFLUX project in the second year. The
activities related to the workpackage dealt with felection of applications, characterization & th
applications and porting of the applications todifeerent programming models.

Although the project has now a consolidated ligvefichmarks, kernels and applications, the addition
of new ones under request of partners or otheebtd#lers in the project are not discarded.

With regard to the characterization, relevant tssbibve been obtained in terms of requirements for
the characteristics of the underlying hardware. &ample, aspects related to the requirements on
memory bandwidth and latency, or to the requiresiémt performance of TM have been described.

Also, several efforts to port the applicationstie project programming models are ongoing. Indeed,
some groups are already working on the optimizatibthese applications based on the results of
performance analysis.

Next year, the project partners will continue thpseting activities with also performance analysis
evaluation of the applications using the underlhanchitecture designed in the project.
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