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Abstract – How to effectively use the increasing number of transistors available on a 

single chip while avoiding the wire delay problem? This is one of the most interesting research 

questions for the microarchitecture community. We have finally arrived at the point where the 

time needed for signals to reach the opposite edge of a chip is becoming longer than one cycle. 

This leads to the impossibility of gaining performance improvements via the scaling of 

superscalar architectures. One possible solution for using the available transistors efficiently and 

effectively, while hiding wire delay as much as possible is to parallelize resource usage through 

resource clustering and decoupling. For example, using on chip multiprocessor architectures is 

the most natural way to increase performance beyond what we can obtain from a single 

processor core. A generalization of this concept has led to several solutions for chip 

multiprocessors. The focus of this paper is to review some recent proposals that employ the 

clusterization/tiling paradigm, at different extents, in a comparative fashion, and highlight their 

main features and advantages.  

Recently, a good number of tiled/clustered architectures have been proposed, indicating 

that this field is gathering high interest from both academia and industry: WaveScalar 

(University of Washington), TRIPS (University of Texas at Austin), Smart Memories (Stanford 

University), Synchroscalar (University of California, Davis and California Polytechnic State 

University, San Luis Obispo), Raw (MIT), CODE (Stanford University), SCALE (MIT). Even if 

such proposals adopt a resource tiling approach to implement chip multiprocessors, several other 

approaches make use of multithreading, dataflow ISA, vectorization and clustering to overcome 

the limitations of simple symmetric multiprocessor (SMP) design.   
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1. The main idea  

First of all, let’s focus on the potentials of the main idea behind the architectures we are 

considering. For example,  

WaveScalar architecture is trying to overcome low scalability in current superscalar architectures  

aiming to exploit the untapped dataflow locality through static and dynamic prediction of 

instruction dependencies in the dynamic trace of an application, and proper allocation of 

instructions. 

 TRIPS uses a flexible approach to adapt its architecture in order to exploit different types of 

application parallelism, like instruction, thread or data-level parallelism, achieving a better 

utilization of microarchitectural resources. Processing cores and on-chip memory can be 

configured to achieve this.  

Smart Memories is a modular reconfigurable architecture made up of an array of tiles, with the 

aim to efficiently execute many different types of applications. At design time, each of the tiles 

can be configured either as a processing or memory element, and the internal memory 

organization of each processing element can be dynamically reconfigured.  

Synchroscalar addresses communication and multimedia applications, and it is designed to 

provide the flexibility of DSPs while approaching the power efficiency of ASICs through non-

homogeneous voltage and frequency scaling of different tile sets. In this case, the design goal is 

to meet performance targets with the lowest possible power consumption.  
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Raw architecture is proposed as a solution for the emerging problem of wire delay by tiling 

resources on the chip. Its ISA allows programmer to have an effective control over the 

communication hardware between tiles and towards off-chip modules.  

The designer of CODE architecture tried to eliminate three main limitations of standard vector 

processors (centralized vector register file, precise exceptions, on-chip memory requirement) 

with extensive use of clusterization of vector resources and decoupling between operand 

transfers and execution.  

SCALE is an implementation of vector-threaded architectural paradigm, with the goal of 

unifying vector and multithreaded execution.  

2. Architectural characteristics and organization – Main characteristics of all examined 

architectures are summarized in Table 1. In the effort to clarify the main structure of the 

examined architectures, we tried to classify processing tiles as T1-type tiles and other tiles 

(mostly memory tiles) as T2-type tiles.  
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Table 1. – Architectural characteristics 

 WaveScalar 

[1], [2] 

TRIPS      

[3] 

Smart Memories 

[4] 

Synchroscalar 

[5] 

Raw 

[6] 

CODE 

[8] 

SCALE 

[9] 

Processing 
elements per chip 

-  number & 
organization 

~ 2K 64 up to 64 
(1) 

16  
organized in 

columns of 4 PE 
16 4  

16   
organized in 4 
lanes, with 4 

clusters in 
each lane 

Brief description 
of PE  1ALU 

1ALU 
 +  

1FPU 

1ALU 
 +  

2FPU 

6ALU 
 +  

2MUL 

1ALU  
+  

1FPU 

Clusters 
including a 

VFU (2) 

Specialized 
clusters 

(3) 

Memory 
associated to each 

PE 

Instruction 
storage 

 ~0.75KB (4) 

Instruction  storage 
~1152B (5)  

2 integer register 
files + 1 shared 
and 4 local FP 
register files 

32x32bits  
register file 

L1.I$ (32KB) 
 + 

L1.D$(32KB) 

8 vector 
registers 

(32x64bits)

I$ data + 
registers (6) 

Total number of 
tiles 

~ (32T1 + 
24T2) 4T1 + 5T2 64(T1 or T2) 16T1 + 4T2 16T1 4T1+1T2 4T1+1T2 

Number of PEs in 
the processing tile  64 16 1 1 1 1 4 

Memory 
associated to 

processing tile 
(T1) 

4L1.D$ 
(16KB) 

4 banks L1.I$ (64KB) 
+ 4 banks L1.D$ 

(64KB)  
+ 4 register file banks 

(128 registers) 

8KB x 16 banks L1.D$(32KB) 

Instruction 
cache for 

static router 
(64KB)  

N/A I$ tags 

Other tiles (T2) Memory tiles 
 - L2$ 

Memory  tiles  
(32KB x 16 banks) 

Memory tiles  
 (up to 64) 

(1) 

Control tile  
(with 2KB I$) N/A Control tile

(with L1$) 
Control tile 
(with L1$) 

Interconnection 
Dynamically 
routed grid-

based 
network 

2D switched 
interconnection 

network  
Mesh  Segmented buses 

(8 x 32-bit) 

 4 point-to-
point mash 

32-bit 
networks 

N/A 
Unidirectiona
l ring between 

lanes 

* These characteristics are mostly taken from the basic configurations evaluated in the referenced papers 
(1) A tile can be either a processing tile or a memory tile.  
(2) VFU = vector functional unit. This VFU is specialized in each cluster: two cluster have an integer VFU, one has 
a load/store VFU and the fourth doesn’t have VFU, but has more vector registers.  
(3) All clusters support basic integer operations. And additionally, one cluster supports memory access instructions, 
a second one supports fetch instructions, and a third supports integer multiply/divide. 
(4) NI * (SI + 3*SO*SQ) with NI = number of instructions that can be stored = 8; SI = size of instruction = 1B; SO 
= size of operand = 3B; SQ = operand queue size = 8; 8*(1+3*4B*8) ~ 768B = 0.75KB; all these values, except 
number of instruction, are not found in literature but were assumed as a reasonable values.  
(5) NI * (SI + 2*SO) = 128*(1+2*4B) = 1152B; values for SI and SO are assumed.  
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WaveScalar – It is the first dataflow architecture able to run programs written in any language, 

because it can provide traditional memory semantics [1]. WaveCache (figure 1) is one possible 

implementation of the WaveScalar architecture. It consists of a grid of simple Processing 

Elements (PE), each one having buffering and storage for up to 8 instructions (only one can fire 

each cycle). Each PE also contains logic for instruction placement and execution, input and 

output queues for instruction operands, communicational logic and a functional unit (ALU) [2]. 

PEs are grouped into domains, and four domains are grouped into a cluster, which contains 

shared L1 data cache, store buffer and a 4-ported bi-directional network switch. This structure 

can be replicated several times, so we consider this as the processing tile (T1, figure 1) of 

WaveScalar architecture. Instructions are mapped to some number of processing elements 

through a simple greedy strategy that tries to place dependent instructions into the same domain 

(there is work in progress on a dynamic placement algorithm), and each PE executes the set of 

instructions locally mapped. Unified L2 cache is distributed along edges of the grid. We name 

these tiles as memory tiles (T2, figure 1). For communication within a domain there is a set of 

shared buses and communication among domains is done through a dynamically routed grid-

based on-chip network. In this grid, each network “hop” takes a single cycle. Domain size is a 

tradeoff parameter because large domains require more wires and more area for intra-domain 

communication, and small domains increase inter-domain communication costs.  

TRIPS – In this architecture, the program is partitioned into blocks by the compiler [3]. A block 

is a portion of code with no loops, a single entry point and possibly multiple exit points. 

Compiler statically schedules each block onto the computational engine. Within a block, 
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instructions execute in dataflow order. Processing tile (T1, figure 2) consists of an array of 

homogenous processing nodes, each containing an integer ALU, floating point unit, frames(1) 

that store instructions and operands waiting to execute, and router to deliver input and output to 

all nodes, not just to neighboring (communication takes 0.5 cycles per “hop” in the array of 

processing nodes). Nearby this array, there are banked instruction caches and data caches, 

banked register files, and block control logic. L1 caches are connected to on-chip memory tiles 

(T2 tiles) through chip-wide 2D interconnection network. A TRIPS mode is a configuration of 

hardware resources used to exploit different types of parallelism. The following three TRIPS 

modes are possible: D-morph (for ILP), T-morph (TLP) and S-morph (DLP).  For achieving high 

ILP, TRIPS D-morph uses frames as large, distributed issue window and its ISA to allow out-of-

order execution without associative issue window lookups. T-morph is used to map multiple 

threads on processing tile, when available single thread parallelism is low. S-morph is useful for 

data-parallel applications, where frames are filled with unrolled loops instead of using frames for 

speculation or multithreading. In general, resources can be fixed (operate in same manner in 

every mode, for example processing nodes), specialized (not needed for every mode) or 

polymorphous which means that they can be reconfigured. Polymorphous resources are frames, 

register file banks, block sequencing control, and memory tiles. Memory tiles are banks of 

memory that can be configured in different ways like NUCA L2 cache banks [12], scratchpad 

memory, and synchronization buffers. Prototype chip is expected to have four processing cores, 

                                                           
1 Actually, a frame spans over all the processing elements of the tile; a PE includes storage for N instructions with two operands; each of this storage is a portion of the whole frame space [3].  
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an array of 32KB memory tiles (connected by routed network) and a set of distributed memory 

controllers with channels to external memory.  

Smart memories – A smart memory chip contains a 2D array of tiles (which can be processing 

or memory) connected by dynamically-routed network (figure 3) [4]. This network is also 

accessible from the external of the chip, so this chip multiprocessor system can be part of a wider 

multiprocessor system. The size of tiles is chosen so that a signal is able to propagate for a length 

equivalent to half of the tile perimeter in less than one clock cycle. Four processing tiles are 

grouped together into a “quad” connected with the network described below. In this way, there 

are less global network interfaces (one per quad), and efficiency of global network is increased. 

Each processing tile has its memory system, crossbar interconnect, processor and quad interface. 

Memory system is built of sixteen 8KB banks, organized as 1024x64-bit array which can 

perform reads, writes, compares and read-modify-writes operations. Four of the banks are fully 

dual-ported. Memory system can be organized in many different ways like a direct-mapped 

cache, set-associative cache, scratchpad memories, vector/stream register files. Processor 

contains two integer clusters and one floating-point cluster. Integer clusters have an ALU, a 

register file and a load/store unit, while the floating-point cluster contains two adders, one 

multiplier, one divider/sqrt unit, shared register file and each unit has its local register file to 

provide high operand bandwidth (figure 3). Quad interconnection network consists of nine 64-bit 

buses that can be configured as half-word buses for intra-quad communication, and it also 

connects the quad to the global network. There are three execution modes in Smart Memories: 

VLIW (each cycle two integer and two FP instructions are issued), multi-threaded (two 
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asymmetric threads per tile, one with just integer instructions, and the other with up to two 

instructions per cycle, both integer and FP) and streaming execution mode (four tiles in the quad 

are running in SIMD mode) [16].  

Synchroscalar – Main targets of this architecture are signal processing applications [5]. 

Processing tiles form a 2D array structure and are grouped into columns (figure 4). Every column 

of processing tiles (T1 in figure 4) is assigned to a single thread of control, with a single SIMD 

controller (T2 in figure 4) and 2KB program memory. Processing element contains two 40-bit 

ALUs, four 8-bit video ALUs, two 40-bit accumulators, two 16x16 multipliers, one 40-bit barrel 

shifter, 32x32 bits register file and 32KB data memory. Each column has a specific clock 

generator and voltage that can be reconfigured at startup. It is possible to map different parts of 

the application on each column. Then, both voltage and clock frequency of each column can be 

tuned to the lowest possible values meeting the application constraints. All control instructions 

are executed into T2 tiles and only computation instructions are sent to T1 tiles. T1 and T2 tiles 

are interconnected with eight 32-bit separable buses (256-bit wide), that are divided into 

segments linking different sets of tiles. With proper control over the segments, the bus can be 

organized as a unique bus (broadcast message to all the tiles) or a segmented one allowing 

different message transfer in each section at the same time. Each column also contains a Data 

Orchestration Unit  (DOU) controller, which is responsible to control the bus segments. They 

provide “zero-overhead” communication between tiles. “Zero-overhead” means buffered 

statically-scheduled communication.  
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Raw – The Raw chip is divided into n2 identical programmable T1 tiles (current value of n is 4) 

[6]. Tile size is chosen so that one clock cycle is needed for signals to travel across the tile and 

through interconnection logic. Each T1 tile (figure 5) contains computational resources (8 stage 

in-order single-issue MIPS like processor and 4 stage pipelined FPU), three programmable 

routers (a static one having routes specified at compile time, and two dynamic routers having 

routes specified at run time), and one on-chip L1 cache memory (instruction and data cache for 

computation, 32KB each, and instruction cache for static router of 64KB). Each tile is connected 

to its four neighbors through channels containing two static and two dynamic 32-bit full duplex 

networks. At the borders of each tile, the on-chip network has a register that retains sent or 

received data. These registers are included directly into computational resources. Because of this, 

no wire is longer than the length or width of a tile. In this way, high clock speeds and further 

scalability can be exploited. Moreover, the programmer can program these on-chip networks 

through the ISA to achieve carefully orchestrated transfers of data between tiles. Also, two types 

of network are available, static and dynamic networks: static networks are used for operand 

transport between tiles, and dynamic for all other traffic (memory, interrupts, I/O, message 

passing). On the edges of the chip, network buses are multiplexed in hardware onto pins of the 

chip and they can be used for DRAM access or external I/O device.  

CODE (Clustered Organization for Decoupled Execution) – CODE contains a scalar core (a 

MIPS like processor with L1 I and D caches), vector issue logic (T2 tile, figure 6), clustered 

vector processors and a communication network (T1 tile, figure 6) [8]. T2 tile controls several 

T1 tiles named “clusters”. Each cluster contains a Vector Functional Unit (VFU), a portion of the 
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vector register file (CLustered Vector Register File - CLVRF), one instruction queue and one 

input and one output interface for vector register transfers between clusters. VFU can be an 

arithmetic or a load-store unit. Some of the clusters (not all) can have more vector registers 

replacing the VFU. To execute each instruction on a large number of elements in each cycle, 

multiple lane organization can be applied, where each lane is a group of clusters and includes 

additional support for parallel datapaths and address generators (equal to number of lanes). The 

use of CLVRF allows us to separate the tasks of delivering operands to functional units from 

operand communication between functional units. In this way, the classical problem of 

scalability in a centralized vector register file is solved. Moreover, area, power consumption, 

latency and complexity of each portion of CLVRF are constant. For transferring vector operands 

among clusters there is a communication network. Since exchange of vector operands is 

separated from VRF, the type of communication network can be chosen at design time, 

depending on the performance that is needed. All instructions for moving vector registers are 

generated automatically by vector issue logic, which also selects one cluster to execute each 

vector instruction. CODE uses renaming vector registers to allow us to access all clustered 

registers globally, instead of the 32 seen by the programmer. Renaming table is also maintained 

in vector issue logic. CODE addresses the problem of sensitivity to memory latency through 

execution decoupling. In fact, network interfaces are allowed to look ahead in instruction queue 

and, if there are no dependencies, start vector register transfers before the start of a certain 

instruction that needs these operands. Special case is considered for precise exceptions through 

the use of a history buffer in vector issue logic. With this buffer, it is possible to restore previous 
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state of the machine, if some instruction causes an exception. History buffer holds just renaming 

information, not values of vector registers.  

SCALE – In this architecture, a conventional MIPS based scalar processor is extended with a 

vector-thread unit, divided into some lanes (T1 tiles, figure 7) [9]. Tile T2 contains the control 

processor. Each lane contains physical registers and functional units. In this case, lanes execute 

decoupled from each other, which is different from other vector processor architectures. By 

means of time-multiplexing functional units the vector-thread unit can provide different numbers 

of virtual processors (VP), depending on the number of registers needed to each processor for 

holding its state and data. Each lane has the same number of VPs. There are two interacting 

instruction sets – one for control processor and one for VPs. VP executes strings of RISC-like 

instructions grouped into Atomic Instruction Blocks (AIBs). Control processor directs execution 

on VPs by delivering the same AIB to all VPs (for data-parallel code), or one AIB to a single 

VP, with vector-fetch and VP-fetch instructions respectively. Each VP can also direct its own 

execution with thread-fetch instructions that requests to execute a new AIB once active AIB has 

finished. When a thread starts, it executes completely before that another command from control 

processor is executed. In this way, threaded execution in VPs is supported. A T1 tile (lane) 

includes one Command Management Unit (CMU) and one Execution Unit (EU) (figure 7). For 

transfers between VPs, there is a unidirectional ring that connects lanes (it can be used for loops 

with cross-iteration dependencies). The CMU decides which fetch command to process. The EU 

contains multiple heterogeneous clusters with independent register sets, and a small cache for 

holding AIBs (big enough to hold at least one AIB of maximal size). The cluster provides basic 
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integer operations and memory access instructions, fetch instructions or integer multiply/divide 

instructions in particular cluster. Clusters that perform some specialized operations can be added 

too. Registers can be allocated as private (preserve their values among AIBs) or shared. 

Additionally, there are also chain registers for two ALU input operands to avoid reading and 

writing the register file. Depending on how many shared and private registers are required in 

each VP, control processor configures the total number of VPs. This is usually done once outside 

each loop.  

 

3. Benchmarks and simulation framework – In Table 2, we highlight more information about 

the evaluation methodology, including simulators, tools, compilers and benchmark applications 

that are used in the reference papers evaluating the discussed architectures ([1], [3], [4], [5], [7], 

[8], [9]). SPEC (92, 95 or 2000) [19] is one of the mostly used benchmark. EEMBC [20] suite is 

used for evaluating performance of vector architectures, because those benchmarks are highly 

vectorizable. For evaluating computational power and ability to exploit ILP, both SPEC and 

Mediabench [13] are used. In the column other benchmarks, we put all applications that were 

used as separate applications or algorithms, apart from other standard benchmark-suites. 
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Table 2. – Benchmarks, simulators, compilers and tools 

SPECint  

SPECfp 

Media- 

Bench 
EEMBC Other benchmaks Simulation framework 

vpr, twolf, mcf (2000) WaveScalar 
[1] Equake, art (2000) 

adpcm, 
mpeg2encode - fft 

tool for converting Alpha binaries into 
WaveScalar ISA; execution-driven 

simulator 
bzip2, gzip, mcf, parser, 
twolf, vortex, m88ksim, 

compress 
TRIPS  

(D morph) 
[3] Ammp, art, equake, 

swim, mgrid, hydro2d, 
tomcatv, turbo3d 

adpcm, mpeg2 -  
dct 

Compiling with Trimaran tool set; 
scheduling with custom scheduler/rewriter

Mcf, bzip2, parser, 
m88ksim TRIPS  

(T morph) [3] art, equake, tomcatv, 
compress 

- - - same as D – morph 

TRIPS  
(S morph) [3] - 

Convert, dct, fft8, 
fir16, idea, transform  

(extracted from) 
- - 

hand-coding in TRIPS meta-assembly 
language; mapping  with custom 
scheduler; event-driven simulator 

Compress, ijpeg (95) Smart 
Memories [4] M88ksim(95), alvin(92) 

mpeg - 
fft, fir, dct convolve 
(Imagine); grep, wc, 

simplex (Hydra) 

Adaptation of Imagine and Hydra 
compilation and simulation tools 

Synchro-
scalar  

[5] 
- - - DDC, Stereo Vision, 

802.11a, MPEG4 

Adapted variant of SimpleScalar; ISA 
retargeted to BlackfinISA; compilation to 
assembly, hand-optimizing inner loops, 
hand parallelized, hand-scheduling 
communication and insertion of NOPS 

vpr, mcf, parser, bzip2, 
twolf (2000) 

RAW 
[7] 

Fppp, tomcatv, 
nasa7(92), swim(95), 
mgrid, applu, mesa, 
equake, ammp, apsi 

(2000) 

- - 

jacobi, life (*), SHA, 
AES decode; six 

StreamIt  benchmarks; 
linear algebra 

algorithms; 8b/10b 
Encoder, 

802.11a ConvEnc: 
STREAM 

Validated simulator; Rawcc compiler 

CODE 
[8] - - 

rgb2cmyk, rgb2yiq, filter, 
cjpeg, djpeg, autocor, 

conven, bital, fft, viterbi 
(**) 

- 
Traces generation with VIRAM 

vectorizing compiler and ISA simulator; 
trace-driven simulator 

SCALE 
[9] - adpcm 

rgbcmy, rgbyiq, hpg, 
text, dither, rotate, 

lookup, ospf, pktflow, 
pntrch, fir, fbital, fft, 

viterb, autocor, conven 

rijndael, sha, qsort, li VTU code hand-written, execution-driven 
simulator; C compiler under development 

(*) Two applications from Raw benchmark suite 

(**) No floating point operations in these benchmarks 
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4. Evaluation and metrics  

WaveScalar – In the evaluation of the WaveScalar architecture, a WaveCache with 16 element 

domain was used (~2K PEs, unbounded input queues, perfect L1 data caches) [1]. WaveCache 

performance is measured relative to a superscalar (15 pipeline stages, 16-wide out-of-order 

processing core, 1024-entry issue window, g-share branch predictor, store-buffer, perfect 

memory system) and TRIPS processors. Results are reported through AIPC metric (Alpha-

equivalent Instructions Per Cycle), which doesn't include instructions added by Alpha-to-

WaveScalar binary-rewriter, specific for WaveScalar ISA – just instructions from original Alpha 

binary are counted in order to have a fair comparison. WaveCache outperforms the superscalar in 

every benchmark application (average factor 3.1). Compared to TRIPS, WaveCache in some 

applications has better and in some worse results, ranging from factor 2.5 in IPCs in favor of 

WaveCache to factor 2 better results in favor of TRIPS. Also, the effects of domain size, cache 

capacity, input queue size, and control memory speculations on performance of WaveCache are 

evaluated.  

TRIPS – The three supported modes (D-morph, T-morph, S-morph) are evaluated separately [3]. 

D-morph performance is measured in IPCs, and configurations with different number of A-

frames (1 to 32) were used (A-frames are several frames in which one block is mapped). Deeper 

speculation is possible with a higher number of A-frames. For some benchmarks, IPC number 

has its peak with 8 or 16 A-frames.  Almost every of these configurations outperform Alpha 

21264 (from factor 2 to factor 7 on average). In T-morph, several benchmarks are executed 

together as a multithreaded workload (in D-morph they are executed as single threads). It is 
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considered that T-morph has same efficiency as D-morph (100%) when it gets the same IPC. 

From the experiments, T-morph has an efficiency ranging from 80-100% for 2 threads to 39% 

for 8 threads, due to inter-thread contention, pollution and reduced number of available frames. 

Still T-morph estimated speedup is from 1.4 to 2.9, because it executes more applications in 

parallel with the assumption is that each application has approximately the same running time. S-

morph has higher IPC by factor 2.4 on average than D-morph. Technique of revitalization for 

execution of loops is used in this evaluation. In this technique, the instructions of the iteration 

block are not removed from the A-frame until all the iterations are completed (without it 

performance of S-morph drops by factor 5 on average).  

In the early stages of the project it wasn’t feasible to test large number of applications directly, so 

the evaluation of Smart Memories [4] architecture is presented through the evaluation of two of 

its mappings, Imagine [10] and Hydra [11]. These two architectures were chosen because they 

have very different memory systems and arrangement of computational resources, and thus show 

reconfigurable power of Smart Memories. For Imagine mapping, performance degradation is 

from 20% to 80%, mostly because of fewer functional units. In Hydra mapping, performance 

degradation is from 10% to nearly 80%, mostly because cache latencies and algorithmic 

modifications (some hardware structures doesn't exists in Smart Memories).  

Synchroscalar – This architecture is evaluated for its capability to reduce power consumption 

given a certain performance targets of chosen applications [5]. Depending on the application, 

configurations from 16 to 64 PEs are used. Power consumption ranges from 8 to 30 times worse 

then ASICs and from 10 to 60 times better than DSPs. 
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Raw – This processor is compared to Intel Pentium III (P3) [7]. Die areas are 331mm2 and 

106mm2 for Raw and P3 respectively, while frequencies are 425MHz for Raw and 600MHz for 

P3. The reference processor has 16 tiles and it outperforms P3 for almost all benchmark 

applications (ILP computation – 2x for low ILP and 2-9x for high ILP; stream computation, bit-

level computation and server tasks 10-100x better results). Speedup is measured in both numbers 

of cycles and time spent.  In some benchmarks, P3 is outperformed even by a Raw with a smaller 

number of tiles.  

CODE – The designers of this architecture compared it with a previous architecture (VIRAM, 

vector processor with centralized vector register file) [8]. The same scalar cores, memory system, 

computational capabilities, die areas and frequencies are used in both architectures. CODE has 

worse performance in benchmarks with frequent inter-cluster transfers (filter, see Table 2) or no 

decoupling chances across clusters (bital, see Table 2), but for most other benchmarks it 

outperforms VIRAM. Depending on number of lanes used in both architectures, performance 

growth is from 42% for 1 lane to 21% for 8 lanes. Support of precise exception degrade 

performance of less than 5% on average with 8 registers per clusters. The proposed techniques 

for memory latency tolerance reduce (32 cycles latency) lead to performance loss less than 25%, 

while VIRAM demands 8 cycles latency.  

SCALE – various configurations (with 1, 2, 4, 8 lanes) are compared to several processors 

(AMD Au1100, Philips TM 1300, Motorola PowerPC, VIRAM, BOPS Manta, TI TMS). The 

metric for EEMBC benchmarks is the iterations per second, and for others benchmarks the total 

number of cycles. Overall SCALE configuration with 8 lanes has very good results for every 
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benchmark. In many applications even a configuration with 4 lanes gives also better results than 

other processors.  

 

5. Advantages and disadvantages – In Table 3 major advantages and disadvantages are 

described. These characteristics are just those mentioned in papers regarding that particular 

architecture. Common advantage of all architectures is good scalability. Some architectures are 

in the early phase of development, so it is hard to look at all possible disadvantages.  

 

 

Table 3. – Advantages and disadvantages 

 Advantages Disadvantages 

WaveScalar [1] good initial performance characteristics and parallelism 
exploiting many open questions (interrupts handling, I/O) 

TRIPS [3] Exploiting  three types of parallelism efficiently open questions about interface between software and reconfigurable 
hardware 

Smart Memories [4] general model; architecture can be configured to match 
the structure of applications  

performance will always be worse than on machines optimized for 
special applications  

Synchroscalar [5] power saving tied to performance targets, not highest performance possible; for 
signal processing applications 

RAW [6] good scalability; high bandwidth; good performance for 
many different applications  

CODE [8] good scalability; support for precise exceptions; possible 
multi-lane organization 

inter-cluster transfers can reduce performance; not all VFUs can 
perform all operations 

SCALE [9] Efficient execution of all kinds of loops and 
multithreaded execution  
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Figure 2. – TRIPS architecture 
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Figure 4. – Synchroscalar architecture 
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Figure 1. – WaveScalar architecture 
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Figure 3. – Smart Memories architecture 
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Figure 5. – Raw architecture 
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Figure 7. – SCALE architecture 
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Figure 6. – CODE architecture 




