
 Dipartimento di Ingegneria dell'Informazione
 Università degli Studi di Siena

Tiled Architectures & Recent Proposals for Chip

Multiprocessors

Sandro Bartolini, Roberto Giorgi, Enrico Martinelli, Zdravko Popovic
{bartolini, giorgi, enrico, popovic}@dii.unisi.it

Siena, 13. May 2005

 -1-

Abstract – How to effectively use the increasing number of transistors available on a

single chip while avoiding the wire delay problem? This is one of the most interesting research

questions for the microarchitecture community. We have finally arrived at the point where the

time needed for signals to reach the opposite edge of a chip is becoming longer than one cycle.

This leads to the impossibility of gaining performance improvements via the scaling of

superscalar architectures. One possible solution for using the available transistors efficiently and

effectively, while hiding wire delay as much as possible is to parallelize resource usage through

resource clustering and decoupling. For example, using on chip multiprocessor architectures is

the most natural way to increase performance beyond what we can obtain from a single

processor core. A generalization of this concept has led to several solutions for chip

multiprocessors. The focus of this paper is to review some recent proposals that employ the

clusterization/tiling paradigm, at different extents, in a comparative fashion, and highlight their

main features and advantages.

Recently, a good number of tiled/clustered architectures have been proposed, indicating

that this field is gathering high interest from both academia and industry: WaveScalar

(University of Washington), TRIPS (University of Texas at Austin), Smart Memories (Stanford

University), Synchroscalar (University of California, Davis and California Polytechnic State

University, San Luis Obispo), Raw (MIT), CODE (Stanford University), SCALE (MIT). Even if

such proposals adopt a resource tiling approach to implement chip multiprocessors, several other

approaches make use of multithreading, dataflow ISA, vectorization and clustering to overcome

the limitations of simple symmetric multiprocessor (SMP) design.

 -2-

Keywords: multiprocessor architectures, scalability, wire delay, chip multiprocessors

1. The main idea

First of all, let’s focus on the potentials of the main idea behind the architectures we are

considering. For example,

WaveScalar architecture is trying to overcome low scalability in current superscalar architectures

aiming to exploit the untapped dataflow locality through static and dynamic prediction of

instruction dependencies in the dynamic trace of an application, and proper allocation of

instructions.

 TRIPS uses a flexible approach to adapt its architecture in order to exploit different types of

application parallelism, like instruction, thread or data-level parallelism, achieving a better

utilization of microarchitectural resources. Processing cores and on-chip memory can be

configured to achieve this.

Smart Memories is a modular reconfigurable architecture made up of an array of tiles, with the

aim to efficiently execute many different types of applications. At design time, each of the tiles

can be configured either as a processing or memory element, and the internal memory

organization of each processing element can be dynamically reconfigured.

Synchroscalar addresses communication and multimedia applications, and it is designed to

provide the flexibility of DSPs while approaching the power efficiency of ASICs through non-

homogeneous voltage and frequency scaling of different tile sets. In this case, the design goal is

to meet performance targets with the lowest possible power consumption.

 -3-

Raw architecture is proposed as a solution for the emerging problem of wire delay by tiling

resources on the chip. Its ISA allows programmer to have an effective control over the

communication hardware between tiles and towards off-chip modules.

The designer of CODE architecture tried to eliminate three main limitations of standard vector

processors (centralized vector register file, precise exceptions, on-chip memory requirement)

with extensive use of clusterization of vector resources and decoupling between operand

transfers and execution.

SCALE is an implementation of vector-threaded architectural paradigm, with the goal of

unifying vector and multithreaded execution.

2. Architectural characteristics and organization – Main characteristics of all examined

architectures are summarized in Table 1. In the effort to clarify the main structure of the

examined architectures, we tried to classify processing tiles as T1-type tiles and other tiles

(mostly memory tiles) as T2-type tiles.

 -4-

Table 1. – Architectural characteristics

 WaveScalar

[1], [2]

TRIPS

[3]

Smart Memories

[4]

Synchroscalar

[5]

Raw

[6]

CODE

[8]

SCALE

[9]

Processing
elements per chip

- number &
organization

~ 2K 64 up to 64
(1)

16
organized in

columns of 4 PE
16 4

16
organized in 4
lanes, with 4

clusters in
each lane

Brief description
of PE 1ALU

1ALU
 +

1FPU

1ALU
 +

2FPU

6ALU
 +

2MUL

1ALU
+

1FPU

Clusters
including a

VFU (2)

Specialized
clusters

(3)

Memory
associated to each

PE

Instruction
storage

 ~0.75KB (4)

Instruction storage
~1152B (5)

2 integer register
files + 1 shared
and 4 local FP
register files

32x32bits
register file

L1.I$ (32KB)
 +

L1.D$(32KB)

8 vector
registers

(32x64bits)

I$ data +
registers (6)

Total number of
tiles

~ (32T1 +
24T2) 4T1 + 5T2 64(T1 or T2) 16T1 + 4T2 16T1 4T1+1T2 4T1+1T2

Number of PEs in
the processing tile 64 16 1 1 1 1 4

Memory
associated to

processing tile
(T1)

4L1.D$
(16KB)

4 banks L1.I$ (64KB)
+ 4 banks L1.D$

(64KB)
+ 4 register file banks

(128 registers)

8KB x 16 banks L1.D$(32KB)

Instruction
cache for

static router
(64KB)

N/A I$ tags

Other tiles (T2) Memory tiles
 - L2$

Memory tiles
(32KB x 16 banks)

Memory tiles
 (up to 64)

(1)

Control tile
(with 2KB I$) N/A Control tile

(with L1$)
Control tile
(with L1$)

Interconnection
Dynamically
routed grid-

based
network

2D switched
interconnection

network
Mesh Segmented buses

(8 x 32-bit)

 4 point-to-
point mash

32-bit
networks

N/A
Unidirectiona
l ring between

lanes

* These characteristics are mostly taken from the basic configurations evaluated in the referenced papers
(1) A tile can be either a processing tile or a memory tile.
(2) VFU = vector functional unit. This VFU is specialized in each cluster: two cluster have an integer VFU, one has
a load/store VFU and the fourth doesn’t have VFU, but has more vector registers.
(3) All clusters support basic integer operations. And additionally, one cluster supports memory access instructions,
a second one supports fetch instructions, and a third supports integer multiply/divide.
(4) NI * (SI + 3*SO*SQ) with NI = number of instructions that can be stored = 8; SI = size of instruction = 1B; SO
= size of operand = 3B; SQ = operand queue size = 8; 8*(1+3*4B*8) ~ 768B = 0.75KB; all these values, except
number of instruction, are not found in literature but were assumed as a reasonable values.
(5) NI * (SI + 2*SO) = 128*(1+2*4B) = 1152B; values for SI and SO are assumed.

 -5-

WaveScalar – It is the first dataflow architecture able to run programs written in any language,

because it can provide traditional memory semantics [1]. WaveCache (figure 1) is one possible

implementation of the WaveScalar architecture. It consists of a grid of simple Processing

Elements (PE), each one having buffering and storage for up to 8 instructions (only one can fire

each cycle). Each PE also contains logic for instruction placement and execution, input and

output queues for instruction operands, communicational logic and a functional unit (ALU) [2].

PEs are grouped into domains, and four domains are grouped into a cluster, which contains

shared L1 data cache, store buffer and a 4-ported bi-directional network switch. This structure

can be replicated several times, so we consider this as the processing tile (T1, figure 1) of

WaveScalar architecture. Instructions are mapped to some number of processing elements

through a simple greedy strategy that tries to place dependent instructions into the same domain

(there is work in progress on a dynamic placement algorithm), and each PE executes the set of

instructions locally mapped. Unified L2 cache is distributed along edges of the grid. We name

these tiles as memory tiles (T2, figure 1). For communication within a domain there is a set of

shared buses and communication among domains is done through a dynamically routed grid-

based on-chip network. In this grid, each network “hop” takes a single cycle. Domain size is a

tradeoff parameter because large domains require more wires and more area for intra-domain

communication, and small domains increase inter-domain communication costs.

TRIPS – In this architecture, the program is partitioned into blocks by the compiler [3]. A block

is a portion of code with no loops, a single entry point and possibly multiple exit points.

Compiler statically schedules each block onto the computational engine. Within a block,

 -6-

instructions execute in dataflow order. Processing tile (T1, figure 2) consists of an array of

homogenous processing nodes, each containing an integer ALU, floating point unit, frames(1)

that store instructions and operands waiting to execute, and router to deliver input and output to

all nodes, not just to neighboring (communication takes 0.5 cycles per “hop” in the array of

processing nodes). Nearby this array, there are banked instruction caches and data caches,

banked register files, and block control logic. L1 caches are connected to on-chip memory tiles

(T2 tiles) through chip-wide 2D interconnection network. A TRIPS mode is a configuration of

hardware resources used to exploit different types of parallelism. The following three TRIPS

modes are possible: D-morph (for ILP), T-morph (TLP) and S-morph (DLP). For achieving high

ILP, TRIPS D-morph uses frames as large, distributed issue window and its ISA to allow out-of-

order execution without associative issue window lookups. T-morph is used to map multiple

threads on processing tile, when available single thread parallelism is low. S-morph is useful for

data-parallel applications, where frames are filled with unrolled loops instead of using frames for

speculation or multithreading. In general, resources can be fixed (operate in same manner in

every mode, for example processing nodes), specialized (not needed for every mode) or

polymorphous which means that they can be reconfigured. Polymorphous resources are frames,

register file banks, block sequencing control, and memory tiles. Memory tiles are banks of

memory that can be configured in different ways like NUCA L2 cache banks [12], scratchpad

memory, and synchronization buffers. Prototype chip is expected to have four processing cores,

1 Actually, a frame spans over all the processing elements of the tile; a PE includes storage for N instructions with two operands; each of this storage is a portion of the whole frame space [3].

 -7-

an array of 32KB memory tiles (connected by routed network) and a set of distributed memory

controllers with channels to external memory.

Smart memories – A smart memory chip contains a 2D array of tiles (which can be processing

or memory) connected by dynamically-routed network (figure 3) [4]. This network is also

accessible from the external of the chip, so this chip multiprocessor system can be part of a wider

multiprocessor system. The size of tiles is chosen so that a signal is able to propagate for a length

equivalent to half of the tile perimeter in less than one clock cycle. Four processing tiles are

grouped together into a “quad” connected with the network described below. In this way, there

are less global network interfaces (one per quad), and efficiency of global network is increased.

Each processing tile has its memory system, crossbar interconnect, processor and quad interface.

Memory system is built of sixteen 8KB banks, organized as 1024x64-bit array which can

perform reads, writes, compares and read-modify-writes operations. Four of the banks are fully

dual-ported. Memory system can be organized in many different ways like a direct-mapped

cache, set-associative cache, scratchpad memories, vector/stream register files. Processor

contains two integer clusters and one floating-point cluster. Integer clusters have an ALU, a

register file and a load/store unit, while the floating-point cluster contains two adders, one

multiplier, one divider/sqrt unit, shared register file and each unit has its local register file to

provide high operand bandwidth (figure 3). Quad interconnection network consists of nine 64-bit

buses that can be configured as half-word buses for intra-quad communication, and it also

connects the quad to the global network. There are three execution modes in Smart Memories:

VLIW (each cycle two integer and two FP instructions are issued), multi-threaded (two

 -8-

asymmetric threads per tile, one with just integer instructions, and the other with up to two

instructions per cycle, both integer and FP) and streaming execution mode (four tiles in the quad

are running in SIMD mode) [16].

Synchroscalar – Main targets of this architecture are signal processing applications [5].

Processing tiles form a 2D array structure and are grouped into columns (figure 4). Every column

of processing tiles (T1 in figure 4) is assigned to a single thread of control, with a single SIMD

controller (T2 in figure 4) and 2KB program memory. Processing element contains two 40-bit

ALUs, four 8-bit video ALUs, two 40-bit accumulators, two 16x16 multipliers, one 40-bit barrel

shifter, 32x32 bits register file and 32KB data memory. Each column has a specific clock

generator and voltage that can be reconfigured at startup. It is possible to map different parts of

the application on each column. Then, both voltage and clock frequency of each column can be

tuned to the lowest possible values meeting the application constraints. All control instructions

are executed into T2 tiles and only computation instructions are sent to T1 tiles. T1 and T2 tiles

are interconnected with eight 32-bit separable buses (256-bit wide), that are divided into

segments linking different sets of tiles. With proper control over the segments, the bus can be

organized as a unique bus (broadcast message to all the tiles) or a segmented one allowing

different message transfer in each section at the same time. Each column also contains a Data

Orchestration Unit (DOU) controller, which is responsible to control the bus segments. They

provide “zero-overhead” communication between tiles. “Zero-overhead” means buffered

statically-scheduled communication.

 -9-

Raw – The Raw chip is divided into n2 identical programmable T1 tiles (current value of n is 4)

[6]. Tile size is chosen so that one clock cycle is needed for signals to travel across the tile and

through interconnection logic. Each T1 tile (figure 5) contains computational resources (8 stage

in-order single-issue MIPS like processor and 4 stage pipelined FPU), three programmable

routers (a static one having routes specified at compile time, and two dynamic routers having

routes specified at run time), and one on-chip L1 cache memory (instruction and data cache for

computation, 32KB each, and instruction cache for static router of 64KB). Each tile is connected

to its four neighbors through channels containing two static and two dynamic 32-bit full duplex

networks. At the borders of each tile, the on-chip network has a register that retains sent or

received data. These registers are included directly into computational resources. Because of this,

no wire is longer than the length or width of a tile. In this way, high clock speeds and further

scalability can be exploited. Moreover, the programmer can program these on-chip networks

through the ISA to achieve carefully orchestrated transfers of data between tiles. Also, two types

of network are available, static and dynamic networks: static networks are used for operand

transport between tiles, and dynamic for all other traffic (memory, interrupts, I/O, message

passing). On the edges of the chip, network buses are multiplexed in hardware onto pins of the

chip and they can be used for DRAM access or external I/O device.

CODE (Clustered Organization for Decoupled Execution) – CODE contains a scalar core (a

MIPS like processor with L1 I and D caches), vector issue logic (T2 tile, figure 6), clustered

vector processors and a communication network (T1 tile, figure 6) [8]. T2 tile controls several

T1 tiles named “clusters”. Each cluster contains a Vector Functional Unit (VFU), a portion of the

 -10-

vector register file (CLustered Vector Register File - CLVRF), one instruction queue and one

input and one output interface for vector register transfers between clusters. VFU can be an

arithmetic or a load-store unit. Some of the clusters (not all) can have more vector registers

replacing the VFU. To execute each instruction on a large number of elements in each cycle,

multiple lane organization can be applied, where each lane is a group of clusters and includes

additional support for parallel datapaths and address generators (equal to number of lanes). The

use of CLVRF allows us to separate the tasks of delivering operands to functional units from

operand communication between functional units. In this way, the classical problem of

scalability in a centralized vector register file is solved. Moreover, area, power consumption,

latency and complexity of each portion of CLVRF are constant. For transferring vector operands

among clusters there is a communication network. Since exchange of vector operands is

separated from VRF, the type of communication network can be chosen at design time,

depending on the performance that is needed. All instructions for moving vector registers are

generated automatically by vector issue logic, which also selects one cluster to execute each

vector instruction. CODE uses renaming vector registers to allow us to access all clustered

registers globally, instead of the 32 seen by the programmer. Renaming table is also maintained

in vector issue logic. CODE addresses the problem of sensitivity to memory latency through

execution decoupling. In fact, network interfaces are allowed to look ahead in instruction queue

and, if there are no dependencies, start vector register transfers before the start of a certain

instruction that needs these operands. Special case is considered for precise exceptions through

the use of a history buffer in vector issue logic. With this buffer, it is possible to restore previous

 -11-

state of the machine, if some instruction causes an exception. History buffer holds just renaming

information, not values of vector registers.

SCALE – In this architecture, a conventional MIPS based scalar processor is extended with a

vector-thread unit, divided into some lanes (T1 tiles, figure 7) [9]. Tile T2 contains the control

processor. Each lane contains physical registers and functional units. In this case, lanes execute

decoupled from each other, which is different from other vector processor architectures. By

means of time-multiplexing functional units the vector-thread unit can provide different numbers

of virtual processors (VP), depending on the number of registers needed to each processor for

holding its state and data. Each lane has the same number of VPs. There are two interacting

instruction sets – one for control processor and one for VPs. VP executes strings of RISC-like

instructions grouped into Atomic Instruction Blocks (AIBs). Control processor directs execution

on VPs by delivering the same AIB to all VPs (for data-parallel code), or one AIB to a single

VP, with vector-fetch and VP-fetch instructions respectively. Each VP can also direct its own

execution with thread-fetch instructions that requests to execute a new AIB once active AIB has

finished. When a thread starts, it executes completely before that another command from control

processor is executed. In this way, threaded execution in VPs is supported. A T1 tile (lane)

includes one Command Management Unit (CMU) and one Execution Unit (EU) (figure 7). For

transfers between VPs, there is a unidirectional ring that connects lanes (it can be used for loops

with cross-iteration dependencies). The CMU decides which fetch command to process. The EU

contains multiple heterogeneous clusters with independent register sets, and a small cache for

holding AIBs (big enough to hold at least one AIB of maximal size). The cluster provides basic

 -12-

integer operations and memory access instructions, fetch instructions or integer multiply/divide

instructions in particular cluster. Clusters that perform some specialized operations can be added

too. Registers can be allocated as private (preserve their values among AIBs) or shared.

Additionally, there are also chain registers for two ALU input operands to avoid reading and

writing the register file. Depending on how many shared and private registers are required in

each VP, control processor configures the total number of VPs. This is usually done once outside

each loop.

3. Benchmarks and simulation framework – In Table 2, we highlight more information about

the evaluation methodology, including simulators, tools, compilers and benchmark applications

that are used in the reference papers evaluating the discussed architectures ([1], [3], [4], [5], [7],

[8], [9]). SPEC (92, 95 or 2000) [19] is one of the mostly used benchmark. EEMBC [20] suite is

used for evaluating performance of vector architectures, because those benchmarks are highly

vectorizable. For evaluating computational power and ability to exploit ILP, both SPEC and

Mediabench [13] are used. In the column other benchmarks, we put all applications that were

used as separate applications or algorithms, apart from other standard benchmark-suites.

 -13-

Table 2. – Benchmarks, simulators, compilers and tools

SPECint

SPECfp

Media-

Bench
EEMBC Other benchmaks Simulation framework

vpr, twolf, mcf (2000) WaveScalar
[1] Equake, art (2000)

adpcm,
mpeg2encode - fft

tool for converting Alpha binaries into
WaveScalar ISA; execution-driven

simulator
bzip2, gzip, mcf, parser,
twolf, vortex, m88ksim,

compress
TRIPS

(D morph)
[3] Ammp, art, equake,

swim, mgrid, hydro2d,
tomcatv, turbo3d

adpcm, mpeg2 -
dct

Compiling with Trimaran tool set;
scheduling with custom scheduler/rewriter

Mcf, bzip2, parser,
m88ksim TRIPS

(T morph) [3] art, equake, tomcatv,
compress

- - - same as D – morph

TRIPS
(S morph) [3] -

Convert, dct, fft8,
fir16, idea, transform

(extracted from)
- -

hand-coding in TRIPS meta-assembly
language; mapping with custom
scheduler; event-driven simulator

Compress, ijpeg (95) Smart
Memories [4] M88ksim(95), alvin(92)

mpeg -
fft, fir, dct convolve
(Imagine); grep, wc,

simplex (Hydra)

Adaptation of Imagine and Hydra
compilation and simulation tools

Synchro-
scalar

[5]
- - - DDC, Stereo Vision,

802.11a, MPEG4

Adapted variant of SimpleScalar; ISA
retargeted to BlackfinISA; compilation to
assembly, hand-optimizing inner loops,
hand parallelized, hand-scheduling
communication and insertion of NOPS

vpr, mcf, parser, bzip2,
twolf (2000)

RAW
[7]

Fppp, tomcatv,
nasa7(92), swim(95),
mgrid, applu, mesa,
equake, ammp, apsi

(2000)

- -

jacobi, life (*), SHA,
AES decode; six

StreamIt benchmarks;
linear algebra

algorithms; 8b/10b
Encoder,

802.11a ConvEnc:
STREAM

Validated simulator; Rawcc compiler

CODE
[8] - -

rgb2cmyk, rgb2yiq, filter,
cjpeg, djpeg, autocor,

conven, bital, fft, viterbi
(**)

-
Traces generation with VIRAM

vectorizing compiler and ISA simulator;
trace-driven simulator

SCALE
[9] - adpcm

rgbcmy, rgbyiq, hpg,
text, dither, rotate,

lookup, ospf, pktflow,
pntrch, fir, fbital, fft,

viterb, autocor, conven

rijndael, sha, qsort, li VTU code hand-written, execution-driven
simulator; C compiler under development

(*) Two applications from Raw benchmark suite

(**) No floating point operations in these benchmarks

 -14-

4. Evaluation and metrics

WaveScalar – In the evaluation of the WaveScalar architecture, a WaveCache with 16 element

domain was used (~2K PEs, unbounded input queues, perfect L1 data caches) [1]. WaveCache

performance is measured relative to a superscalar (15 pipeline stages, 16-wide out-of-order

processing core, 1024-entry issue window, g-share branch predictor, store-buffer, perfect

memory system) and TRIPS processors. Results are reported through AIPC metric (Alpha-

equivalent Instructions Per Cycle), which doesn't include instructions added by Alpha-to-

WaveScalar binary-rewriter, specific for WaveScalar ISA – just instructions from original Alpha

binary are counted in order to have a fair comparison. WaveCache outperforms the superscalar in

every benchmark application (average factor 3.1). Compared to TRIPS, WaveCache in some

applications has better and in some worse results, ranging from factor 2.5 in IPCs in favor of

WaveCache to factor 2 better results in favor of TRIPS. Also, the effects of domain size, cache

capacity, input queue size, and control memory speculations on performance of WaveCache are

evaluated.

TRIPS – The three supported modes (D-morph, T-morph, S-morph) are evaluated separately [3].

D-morph performance is measured in IPCs, and configurations with different number of A-

frames (1 to 32) were used (A-frames are several frames in which one block is mapped). Deeper

speculation is possible with a higher number of A-frames. For some benchmarks, IPC number

has its peak with 8 or 16 A-frames. Almost every of these configurations outperform Alpha

21264 (from factor 2 to factor 7 on average). In T-morph, several benchmarks are executed

together as a multithreaded workload (in D-morph they are executed as single threads). It is

 -15-

considered that T-morph has same efficiency as D-morph (100%) when it gets the same IPC.

From the experiments, T-morph has an efficiency ranging from 80-100% for 2 threads to 39%

for 8 threads, due to inter-thread contention, pollution and reduced number of available frames.

Still T-morph estimated speedup is from 1.4 to 2.9, because it executes more applications in

parallel with the assumption is that each application has approximately the same running time. S-

morph has higher IPC by factor 2.4 on average than D-morph. Technique of revitalization for

execution of loops is used in this evaluation. In this technique, the instructions of the iteration

block are not removed from the A-frame until all the iterations are completed (without it

performance of S-morph drops by factor 5 on average).

In the early stages of the project it wasn’t feasible to test large number of applications directly, so

the evaluation of Smart Memories [4] architecture is presented through the evaluation of two of

its mappings, Imagine [10] and Hydra [11]. These two architectures were chosen because they

have very different memory systems and arrangement of computational resources, and thus show

reconfigurable power of Smart Memories. For Imagine mapping, performance degradation is

from 20% to 80%, mostly because of fewer functional units. In Hydra mapping, performance

degradation is from 10% to nearly 80%, mostly because cache latencies and algorithmic

modifications (some hardware structures doesn't exists in Smart Memories).

Synchroscalar – This architecture is evaluated for its capability to reduce power consumption

given a certain performance targets of chosen applications [5]. Depending on the application,

configurations from 16 to 64 PEs are used. Power consumption ranges from 8 to 30 times worse

then ASICs and from 10 to 60 times better than DSPs.

 -16-

Raw – This processor is compared to Intel Pentium III (P3) [7]. Die areas are 331mm2 and

106mm2 for Raw and P3 respectively, while frequencies are 425MHz for Raw and 600MHz for

P3. The reference processor has 16 tiles and it outperforms P3 for almost all benchmark

applications (ILP computation – 2x for low ILP and 2-9x for high ILP; stream computation, bit-

level computation and server tasks 10-100x better results). Speedup is measured in both numbers

of cycles and time spent. In some benchmarks, P3 is outperformed even by a Raw with a smaller

number of tiles.

CODE – The designers of this architecture compared it with a previous architecture (VIRAM,

vector processor with centralized vector register file) [8]. The same scalar cores, memory system,

computational capabilities, die areas and frequencies are used in both architectures. CODE has

worse performance in benchmarks with frequent inter-cluster transfers (filter, see Table 2) or no

decoupling chances across clusters (bital, see Table 2), but for most other benchmarks it

outperforms VIRAM. Depending on number of lanes used in both architectures, performance

growth is from 42% for 1 lane to 21% for 8 lanes. Support of precise exception degrade

performance of less than 5% on average with 8 registers per clusters. The proposed techniques

for memory latency tolerance reduce (32 cycles latency) lead to performance loss less than 25%,

while VIRAM demands 8 cycles latency.

SCALE – various configurations (with 1, 2, 4, 8 lanes) are compared to several processors

(AMD Au1100, Philips TM 1300, Motorola PowerPC, VIRAM, BOPS Manta, TI TMS). The

metric for EEMBC benchmarks is the iterations per second, and for others benchmarks the total

number of cycles. Overall SCALE configuration with 8 lanes has very good results for every

 -17-

benchmark. In many applications even a configuration with 4 lanes gives also better results than

other processors.

5. Advantages and disadvantages – In Table 3 major advantages and disadvantages are

described. These characteristics are just those mentioned in papers regarding that particular

architecture. Common advantage of all architectures is good scalability. Some architectures are

in the early phase of development, so it is hard to look at all possible disadvantages.

Table 3. – Advantages and disadvantages

 Advantages Disadvantages

WaveScalar [1] good initial performance characteristics and parallelism
exploiting many open questions (interrupts handling, I/O)

TRIPS [3] Exploiting three types of parallelism efficiently open questions about interface between software and reconfigurable
hardware

Smart Memories [4] general model; architecture can be configured to match
the structure of applications

performance will always be worse than on machines optimized for
special applications

Synchroscalar [5] power saving tied to performance targets, not highest performance possible; for
signal processing applications

RAW [6] good scalability; high bandwidth; good performance for
many different applications

CODE [8] good scalability; support for precise exceptions; possible
multi-lane organization

inter-cluster transfers can reduce performance; not all VFUs can
perform all operations

SCALE [9] Efficient execution of all kinds of loops and
multithreaded execution

 -18-

6. References:

[1] Steven Swanson, Ken Michelson, Andrew Schwerin, Mark Oskin “WaveScalar”, in the 36th

International Symposium on Microarchitecture (MICRO-36 2003)

[2] Steve Swanson, Andrew Schwerin, Andrew Petersen, Mark Oskin and Susan Eggers

“Threads on the Cheap: Multithreaded Execution in a WaveCache Processor”, in the

Workshop on Complexity-effective Design (WCED) held in conjunction with the 31st

Annual International Symposium on Computer Architecture (ISCA), June 2004

[3] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk

Huh, Doug Burger, Stephen W. Keckler Charles R. Moore “Exploiting ILP, TLP and DLP

with the Polymorphous TRIPS Architecture”, in the 30th Annual International Symposium

on Computer Architecture

[4] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, Mark Horowitz, “Smart

Memories: A Modular Reconfigurable Architecture”, in International Symposium on

Computer Architecture, June 2000

[5] John Oliver, Ravishankar Rao, Paul Sultana, Jedidiah Crandall, Erik Czemikowski, Leslie

W. Jones IV, Diana Franklin, Venkatesh Akella, Frederic T. Chong, “Synchroscalar: A

Multiple Clock Domain, Power-aware, Tile-based Embedded Processor”, in 31st

International Symposium on Computer Architecture, Munich, Germany, June 2004

[6] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben

Greenwald, Henry Hoffmann, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert Ma, Arvind

Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman

 -19-

Amarasinghe, Anant Agarwal “The Raw Microprocessor: A Computational Fabric for

Software Circuits and General Purpose Programs“, IEEE Micro, Mar/Apr 2002.

[7] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben

Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan

Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, Anant Agarwal,

“Evaluation of the Raw Microprocessor: An Exposed Wire Delay Architecture for ILP and

Streams”, in Proceedings of the International Symposium on Computer Architecture, June

2004

[8] Christos Kozyrakis, David Patterson, “Overcoming the Limitations of Conventional Vector

Processors” in Proceedings of the 30th International Symposium on Computer Architecture

(ISCA), June 2003

[9] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian Phariss,

Jared Casper, Krste Asanovic, “The Vector-Thread Architecture”, in 31st International

Symposium on Computer Architecture (ISCA-31), Munich, Germany, June 2004

[10] S. Rixner, et al. “A Bandwidth-Efficient Architecture for Media Processing”, in

Proceedings of the 31st Annual International Symposium on Microarchitecture, pages 3-13,

Nov.-Dec. 1998

[11] K. Olukuton, et al. “Improving the Performance of Speculatively Parallel Applications on

the Hydra CMP”, in Proceedings of the 1999 ACM International Conference on

Supercomputing, June 1999

 -20-

[12] C. Kim, D. Burger, and S.W. Keckler, ”An Adaptive, non-uniform cache structure for wire-

delay dominated on-chip caches”, In 10th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pages 211-222, October

2002.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for evaluating and

synthesizing multimedia and communication systems”, in International Symposium on

Microarchitecture, 1997.

[14] http://wavescalar.cs.washington.edu/index.html

[15] http://www.cs.utexas.edu/users/cart/trips/

[16] http://velox.stanford.edu/smart_memories/

[17] http://cag.csail.mit.edu/raw/

[18] http://www.cag.lcs.mit.edu/scale/

[19] http://www.spec.org

[20] http://www.eembc.org

 -21-

2

T1 T2 T1

T2 T2 T2

T1 T2 T1

Control

Instruction

FU

Router

Frame 0
Frame 1

Frame N

...

Operands

M M

M M

M M

M M

D
ra

m
 in

te
rf

ac
e

M M

M M

M M

M M

D$ LSQ

D$ LSQ

D$ LSQ

D$ LSQ

PredictorBlock
control

Register file
0-31 32-63 64-95 96-127

I$

I$

I$

I$

I$

L2 Cache

up left - chip; T1 - processing tile,
T2 - memory tile
left middle - detailed processing core;
array of processing nodes, data and
instruction caches, register file, block
control and predictor
LSQ - load/store queue
down left - detailed memory tile;
M - memory bank
down right - detailed single processing
node; functional unit, reservation
stations, and router connections

Figure 2. – TRIPS architecture

T1

T1

T1

T1

T2

T1

T1

T1

T1

T2

T1

T1

T1

T1

T2

T1

T1

T1

T1

T2 up left - chip;
T1 - processing tile;
T2 - control tile for each column
down left - detailed control tile
DOU - Data Orchestration Unit
down right - detailed description of a
single processing element

SIMD

DOU

I$

2 40-bit ALU
4 8-bit video ALU
2 40bit accumulators
2 16x16 multipliers
1 40-bit barrel shifter
32x32 register file
32KB data memory

Figure 4. – Synchroscalar architecture

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

D$ D$

D$

D$

SB

Net

dom
ain

cluster

L2

up left - chip;
T1 - processing tile,
T2 - memory tile, L2 cache
down left - cluster of four domains 16
processing elements each, with shared
data cache, store buffer and network
interface for communicating among
domains;
SB - store buffer
Net - network switch
down right - detailed single
processing element;
tag - wave number management

T2 . . .
T1 T1T1 . . .

T1 T1T1 . . .

. .
 .

. .
 .

T1 T1T1 . . . T2

T2 . . .

. .
 .

. .
 .

T2

T2

T2
T2

T2

FU

Input control

O
ut

pu
t c

on
tro

l

tag

decode

Figure 1. – WaveScalar architecture

QI
Tile

QI
Tile

QI
Tile

QI
Tile

Crossbar interconnect

Processor

Q
ua

d
 in

te
rfa

ce

Tile
 memory

. . .

. .
 .

. . .

up left - chip; T1 - processing tile
middle left - four tiles connected into a
quad, with quad interconnection
network; QI - quad interface
down left - detailed single processing
tile; processor, memory, quad interface
and interconnection
middle right - detailed processor in a
tile, LRF - local register file;
FP SRF - floating point shared register
file

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

T1 T1
T1 T1

Integer
cluster

FP adder
LRF

LRF

FP adder
LRF

LRF

FP
divide /sqrt

LRF

LRF

FP
multiplier

LRF

LRF

FP SRF

FP cluster

Integer
cluster

. . .

Figure 3. – Smart Memories architecture

 -22-

T1 T1

T1 T1

T1 T1

T1 T1

T1 T1

T1 T1

T1 T1

T1 T1

Computing
resources

Programmable
routers

up left - chip;
T1 - processing tile
down left - single processing tile;
computational unit, routers and
network for connecting to other tiles
or to pins of the chip

Figure 5. – Raw architecture

AIB$

w
riteback

transport

ALU

RF

next VP

previous VP

T2 T1 T1 T1 T1

up left - chip; T1 - lane;
T2 - control tile
middle left - detailed control tile; AFU -
AIB Fill Unit; SSQ - Start/Stop Queue
of unidirectional ring;
down right - detailed single lane; wires
to and from lane form unidirectional
ring
CMU - command management unit; EU
- execution unit; C - cluster
down left - detailed single cluster;
RF - register file; transport - for sending
data to other cluster;
writeback - to receive data from other
clusters

Control processor

AFU

SSQ

L1$

to first
lane

EU

CMU

Lane

previous lane next lane

C C C C

Figure 7. – SCALE architecture

T1 T1 T1 T1

T2

CLVRF

VFU Input
Output

from VIL

Portion of
CN

up left- chip; T1 - cluster;
T2 - control tile
down left - detailed single cluster;
instruction queue, CLVRF, VFU and
I/O interfaces;
CLVRF - clustered vector register file;
VFU - vector functional unit
down right - detailed control tile
SC - scalar core;
VIL - vector issue logic

SC
D$

I$

VIL

to each cluster

Figure 6. – CODE architecture

