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Abstract 
As an increasing number of Internet hosts are 

wireless, handheld devices with small memory and 
strict CPU-latency constraints, the performance of 
cryptography methods has become critical for high 
transaction throughput. Elliptic Curve Cryptography 
(ECC) is emerging as an attractive public-key system 
for constrained environments, because of the small key 
sizes and computational efficiency, while preserving 
the same security level as the standard methods. The 
memory performance of ECC algorithms was scarcely 
investigated. 
We have developed a set of kernel benchmarks to 
examine performance of standard and corresponding 
elliptic curve public-key methods. In this paper, we 
characterize the operations and their memory impact 
on performance in Diffie-Hellman key exchange, 
digital signature algorithm, ElGamal, and RSA public-
key cryptosystem, as well as elliptic curve Diffie-
Hellman key exchange, elliptic curve digital signature 
algorithm and elliptic curve El-Gamal algorithm.  
We modeled a typical mobile device based on the Intel 
XScale architecture, which utilizes an ARM processor 
core and studied the benchmark set on that target. 
Different possible variations for the memory hierarchy 
of such basic architecture were considered. We 
compared our benchmarks with MiBench/Security, 
another widely accepted benchmark set, in order to 
provide a reference for our evaluation. 

1. Introduction 
Cryptography algorithms are split into two 

categories: private-key (symmetric) and public-key 
(asymmetric). Internet security protocols (e.g. SSL, 
IPSec) employ a public-key cryptosystem to exchange 
private keys and then use faster private-key algorithms 
to ensure confidentiality of streaming data. In private-
key algorithms, communicating parties share a 
common private key, which is used to transform the 
original message into a ciphered message. The 
ciphered message is communicated to another side, and 
the original message is decrypted by using the same 
private key. Public-key systems, on the other side, do 
not require exchange of keys. The public key, known to 

all, can be used for encrypting messages. However, the 
resulting ciphertext can only be decrypted using the 
receiver's private key.  
Due to expected advances in cryptanalysis and 
increases in available computing power, both private 
and public key sizes must grow over time to offer 
acceptable security. Table 1 [NIST00], [Blake03] shows 
expected key-size growth for various private and 
public-key cryptosystems: Elliptic Curve Cryptography 
has attracted attention due to the reduced key size at 
equivalent levels. 
 

Table 1. Equivalent key size for some 
cryptosystems. 

Public key 
ECC key length  

Prime field Binary field 

RSA  key length  
for approximate 

equivalent security 

private key 
length for 

approximate 
equivalent 
security 

192 163 1024 80 
224 233 2048 112 
256 283 3072 128 
384 408 7680 192 
521 571 15360 256 

 

Because of its favourable characteristics, elliptic curve 
cryptography has been incorporated into two important 
public-key cryptography standards, FIPS 186-2 
[NIST00] and IEEE-P1363 [IEEE1363-00]. These 
standards specify how to use elliptic curves over prime 
fields GF(p) and binary fields GF(2m); recommended 
curves have well-studied properties that make them 
resistant to known attacks. We study elliptic curve 
analogs of following algorithms for recommended 
curves in both types of fields: 

• Diffie-Hellman key algorithm, used for secure 
exchange of private keys [Diffie76]  

• Digital signature algorithm, used for ensuring 
authenticity of data [NIST00] 

• El-Gamal algorithm, used for encrypting data 
[ElGamal85]. 

We compared elliptic curve versions of public-key 
algorithms with corresponding standard versions. We 
also included RSA public-key algorithm [RSA02], since 
it is a de-facto standard in this area. 
The rest of the paper is organized as follows: in Section 
2, we give information necessary for understanding 
public-key cryptography methods, as well as principles 



  

of ECC. Section 3 gives details on bechmarks used, 
Section 4 outlines the methodology, while in Section 5 
we present a workload characterization of public-key 
methods with special emphasis on memory 
perfomance. Section 6 presents related work in this 
area, and Section 7 concludes.  

2. Public-Key Algorithms 
In a public-key cryptosystem, the private key is 

always linked mathematically to the public key. 
Therefore, it is always possible to attack a public-key 
system by deriving the private key from the public key. 
The defense against this is to make the problem of 
deriving private key as difficult as possible. 

2.1. Standard Public-Key Methods 
Diffie-Hellman key exchange is used to establish a 

shared key between two parties over a public channel. 
Although it is the oldest proposal for eliminating the 
transfer of secret keys in cryptography, it is still 
generally considered to be one of the most secure and 
practical public-key schemes. The security of Diffie-
Hellman relays on difficulty of calculating discrete 
logarithms (given an element α  in a finite field Fp and 
another element y in the same field, find an integer x 
such that 

p

xy α= ), while it is relatively easy to 

calculate exponentiation.  
Digital signature of a document is a cryptographic 
means for ensuring the identity of the sender and the 
authenticity of data. Digital signature of a document is 
information based on both the document and signer’s 
private key. The National Institute of Standards and 
Technology (NIST) published the Digital Signature 
Algorithm (DSA) in the Digital Signature Standard 
[NIST00]. This standard requires use of Secure Hash 
Algorithm (SHA), specified in the Secure Hash 
Standard [NIST95]. The SHA algorithm takes a long 
message and produces its 160-bit digest; this method is 
known as hashing. Hash function is hard to invert, 
which means that given a hash value, it is 
computationally extremely difficult to find the original 
message. The message digest is then digitally signed 
using the private key of the signer; signature can be 
verified using the sender’s private key. 
RSA cryptosystem [RSA02] is used in the most popular 
applications, such as SSL, IPSec, e-commerce systems, 
e-mail systems (PGP, S/MIME); it has practically 
become the standard for public-key encryption. RSA 
encryption is based on the fact that the only way of 
finding the private key is equivalent to factoring an 
integer, which is computationally impossible if it is 
long enough. RSA key sizes that today offer acceptable 
level of security are 1024 bits and longer. Public 
exponent in common use today is 216 + 1 (65537), since 

it improves the efficiency of algorithm.  
El-Gamal is a public-key cryptosystem often used as an 
alternative to RSA. The encryption algorithm is based 
on dicrete logarithm problem, e.g. finding modular 
inverses of exponentiations in finite field [ElGamal85]. 

2.2 Elliptic Curve Methods 
Unlike standard public-key methods that operate 

over integer fields, the elliptic curve cryptosystems 
operate over points on an elliptic curve. The 
fundamental operation in RSA and Diffie-Hellman is 
modular integer multiplication. However, the core of 
elliptic curve arithmetic is an operation called scalar 
point multiplication, which computes Q = kP (point P 
multiplied by an integer k gives a point Q on the same 
elliptic curve). The security of ECC lies in the fact that 
given P and Q = kP , it is hard to find k; this problem 
has similar difficulty as solving discrete logarithm in 
integer fields, although at the time being this operation 
seems harder in elliptic curve groups. Consequently, 
the same level of security is obtained with smaller key 
sizes compared with standard public-key methods 
(Table 1). While it is possible to carry out a brute force 
approach of computing all multiples of P to find Q, by 
choosing to operate over a large field, for instance 
binary field GF(2163), k is so large that it becomes 
infeasible to determine k this way. The (large) random 
integer k is kept as the private key, while the result Q 
serves as the corresponding public key. 
Elliptic curve can be defined over any field, but for 
cryptographic purposes, we are interested in elliptic 
curves over finite fields. Finite fields commonly in use 
in cryptography are prime and binary fields. In binary 
field, elements can be represented by using polynomial 
or a normal basis. As it is well-known that polynomial 
basis yields more efficient software implementations 
[Hankerson00], we used it in developing our 
benchmarks. Since not every elliptic curve offers strong 
security properties, standards organizations like NIST 
have published a set of recommended curves [NIST00]. 
The use of these curves is also recommended for easier 
interoperability between different implementations of a 
security protocol. For binary polynomial fields, one 
random and one Koblitz curve are recommended for 
key sizes of 163, 233, 283, 409, and 571 bits; for prime 
fields, for each key size (192, 224, 256, 384, and 521), 
one curve is recommended.  
In the polynomial representation of binary field, each 
field element can be viewed as polynomial whose 
coefficients are either 0 or 1. Polynomial addition is 
defined as simple component-wise XOR of the two 
polynomials. Polynomial multiplication is also 
component-wise; the key difference is that 
multiplication may produce a product polynomial of 



  

degree that is greater or equal to the field size. In such 
a case, the product needs to be reduced by the 
irreducible polynomial (usually trinomial or 
pentanomial), defined in [NIST00]. Operations on 
elliptic curves in binary fields imply using finite field 
operations. For example, doubling of point in a binary 
field requires ten finite field operations: two 
multiplications, one squaring, six additions, and one 
field inversion  [Menezes01].  
The most time-critical operation in prime field is 
modular multiplication; among most important 
improvements is Montgomery algorithm [Monty85]. 
The most time-consuming finite field operation is 
finding a multiplicative inverse of an element: most 
often, the extended Euclidean algorithm, or almost 
inverse algorithm are used [Fiskiran02]. Cryptographic 
algorithms based on discrete logarithm problem can be 
efficiently implemented using elliptic curves. 

3. Benchmark description 
We set up a series of kernel benchmarks to cover the 

cryptographic algorithms mentioned in Section 2. Our 
benchmarks were written by using MIRACL C library 
procedures for big integer arithmetic [Miracl02]. The 
MIRACL library consists of over 100 routines that cover 
all aspects of multiprecision arithmetic and offers 
procedures for finite-field elliptic curve operations. All 
routines have been optimized for speed and efficiency, 
while at the same time remaining standard, portable C.  
Inside the library, a data type called big for storing 
multiprecision integers is defined. It is in the form of a 
pointer to a fixed length array of digits, with sign and 
length information encoded in a separate 32-bit integer. 
Algorithms used to implement arithmetic on the big 
data type are taken from [Knuth81]. Montgomery 
arithmetic [Monty85] is used by many of the MIRACL 
library routines that require extensive modular 
arithmetic, such as the highly optimized modular 
exponentiation function powmod, and those functions 
which implement GF(p) elliptic curve arithmetic.  
The benchmarks we setup are listed in Table 4. The use 
of elliptic curve cryptography also involves choosing a 
finite field, a specific curve on it, and a base point on 
the chosen curve. The finite fields and the elliptic 
curves used in our benchmarks are chosen according to 
NIST standard [NIST00]. Elliptic-curve benchmarks in 
graphs and tables have the following notation: 

<benchmark>.<b | p><three digit number> 

The abbreviation b denotes an elliptic curve over binary 
field, while p denotes use of a prime field. Three-digit 
number indicates the size of the field; for example, 
b163 denotes the use of GF(2163) binary field, while 
p384 denotes prime field with binary length of prime p 

equal to 384 (also indicated as ||p||). Therefore, the ec-
dh.p192, ec-dh.p224, ec-dh.p256, ec-dh.p384, and ec-
dh.p521 represent results of simulating elliptic curve 
Diffie-Hellman key exchange.  
NIST curves over a prime field GF(p) are of form: 

bxxy +−= 332    where b random1 

while the curves over GF(2m) are of the form 

bxxxyy ++=+ 232  with b random2. 

The elliptic curve methods inside the benchmark use 
parameter files, for initializing the curve, setting the 
base point on the curve, and setting the irreducible 
polynomial for multiplication in binary fields. An 
example of the structure of prime fields’ parameter files 
p192.txt, p224.txt, p256.txt, p384.txt, p521.txt is given 
in Table 3, while Table 4 gives the typical structure of 
binary field parameter file. For standard cryptography 
benchmarks we use the following notation: 

<benchmark>.<key_length> 

Table 3. Example of the parameter file  
for a prime field GF(p), ||p||=384. 

prime p 
(dec) 

394020061963944792122790401001436138050797392704
654466679482934042457217714968703290472660882589

38001861606973112319 
curve term b 

(hex) 
b3312fa7e23ee7e4988e056be3f82d19181d9c6efe81411203

14088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef 
base point x 
coord. (hex) 

aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b985
9f741e082542a385502f25dbf55296c3a545e3872760ab7 

base point y 
coord. (hex) 

3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9
da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f 

 

Table 4. Example of the parameter file  
for a binary field GF (2283). 

degrees of the irreducible 
polynomial terms 

283  12   7   5  0 

curve coefficient b (hex) 
27b680ac8b8596da5a4af8a19a0303fca97fd

7645309fa2a581485af6263e313b79a2f5 
elliptic curve base point 

coordinate x (hex) 
5f939258db7dd90e1934f8c70b0dfec2eed25

b8557eac9c80e2e198f8cdbecd86b12053 
elliptic curve base point 

coordinate y (hex) 
3676854fe24141cb98fe6d4b20d02b4516ff7

02350eddb0826779c813f0df45be8112f4 
 

The following benchmarks are representative of 
commonly used public-key methods: 

• dh (Diffie-Hellman key exchange). It uses a prime 
suitable for Diffie-Hellman; generates two 160-bit 
random primes, calculates shared key and writes it 
into a file. 

• dssign (digital signing). It reads private key from 
file, calculates message digest of a file given as 
argument, and writes signature into a file. 

• dsverify (digital signature verification). It reads 
public key and signature from files and verifies it. 

                                                
1 Prime field operations are defined as integer addition and 
multiplication modulo p. 
2 In case of binary field, an irreducible polynomial is used when the 
degree of multiplication product polynomial is greater than field size. 



  

Table 2. Our public-key benchmark suite. 
Benchmark acronym Benchmark name Input set description Input set value 

 

dh.1024 Diffie-Hellman key exchange key length 1024 

ec-dh Elliptic curve Diffie-Hellman key exchange elliptic curve parameter file b163.txt 
 

dssign Digitally signing a file file to sign input_small.asc 

dsverify Verifying a signature of a file signed file input_small.dss 

ec-sign Elliptic curve digitally signing a file elliptic-curve parameter file, file to sign b163.txt, input_small.asc 

ec-verify Elliptic curve verifying a signature of a file elliptic-curve parameter file, signed file b163.txt, input_small.dss 
 

rsae.1024 RSA encryption with exponent 65537 public key length, small text file 1024, test.asc 

rsad.1024 RSA decryption with exponent 65537 private key, small encrypted text file rsa.key, test.enc 
 

elge ElGamal encryption public key length, small text file 1024, test.asc 

elgd ElGamal decryption private key, small encrypted file elg.key, test.enc 

ec-elg Elliptic curve El-Gamal key generation, 
encryption and decryption 

elliptic-curve parameter file, small text file p192.txt, test.asc 

 

• rsae (RSA encryption with exponent 216+1). 
Reads public key from a file and encrypts file 
passed as argument. Writes ciphered text into a 
file. 

• rsad (RSA decryption with exponent 216+1). It 
reads private key from file, reads ciphered content 
from a file passed as argument and writes 
decrypted content to a file. 

• elge (ElGamal encryption). It reads public key 
from a file and encrypts file passed as argument. 
Writes ciphered text into a file. 

• elgd (ElGamal decryption). It reads private key 
from file, reads ciphered content from a file passed 
as argument and writes decrypted content to a file. 

• ec-dh (elliptic curve Diffie-Hellman). It reads 
parameter file for elliptic curve, generates two 16-
bit random primes, calculates shared key and 
writes it into a file. 

• ec-sign (elliptic curve digital signature). It reads 
private key and elliptic curve parameters from 
files, calculates message digest of file given as 
argument, and writes signature to a file. 

• ec-ver (elliptic curve digital signature 
verification). It reads public key, elliptic curve 
parameters and signature from files and verifies 
the signature. 

• ec-elg (elliptic curve El-Gamal). It generates 
public-private key pair, encrypts the base point on 
a curve, and then immediately decrypts it. 

4. Methodology 
The performance evaluation of our public-key 

cryptography benchmarks is done using the sim-
outorder simulators from ARM version of the 
SimpleScalar toolset [Ss97]. The sim-outorder tool 
performs a detailed timing simulation of the modeled 
target. Simulation is execution driven, including 
execution down any speculative path until the detection 
of a fault, TLB miss, or branch misprediction. The 
ARM target of the SimpleScalar set supports the ARM7 
integer instruction set, with the pipeline and memory 

system models for the Intel StrongARM SA-1110 and 
XScale SA-2 microprocessors [Austin02]. The 
simulated processor configuration is modeled after Intel 
ARM Xscale architecture [Intel03], with details of 
configuration given in Table 5. The benchmark code 
was compiled using arm-linux gcc cross-compiler, 
available at SimpleScalar Web site [Ss02].  
We compared the performance of our benchmarks with 
MiBench/Security benchmarks [Guthaus01] (Table 6), 
available at SimpleScalar Web site [Ss02]. MiBench is 
a set of commercially representative, freely available 
embedded programs. It offers different categories of 
real-world embedded applications, among which is the 
security category. MiBench security category is 
primarily based on private-key methods; the only 
public-key application is PGP encryption/decryption, 
which uses RSA algorithm for signing messages. Due 
to problems in execution of PGP decode on 
SimpleScalar-ARM simulator (unimplemented system 
calls), we simulated only PGP encoding; we expect that 
PGP decode will have similar performance 
[Guthaus01]. MiBench is used as a reference point 
including cryptography applications for 
embedded/mobile environments. To make the 
comparison as close as possible, we also used MiBench 
input files (small ASCII text files) as input for our 
benchmark simulations, where it was applicable. For 
reasons of space, we reported only the results for the 
first and the last key size in case of elliptic curve 
benchmarks (e.g. b163, b571, p192, p521). 
When presenting our benchmark statistics (Table 7), 
number of source lines includes comments. The library 
files actually used in each benchmark are individuated, 
and their source lines counted. Static instruction count 
is obtained by compiling C source and library files with 
–S option, which produces assembly files, and by 
counting number of lines in assembly files. Static 
executable size is the number of bytes occupied on disk, 
while all dynamic instruction counts, loads and stores 
are obtained as sim-outorder simulation statistics. 
 



  

Table 5. Simulated architecture. 
Fetch queue (instructions) 4 

Branch prediction 8k bimodal, 2k 4-way BTB 
Fetch & Decode width 1 

Issue width 1 (in  order) 
ITLB 32-entry, fully associative 
DTLB 32-entry, fully associative 

Functional units 1 int ALU, 1 int MUL/DIV 
Instruction L1 cache 32k-Bytes, 32-way 

Data L1 cache 32k-Bytes, 32-way 
L1 cache hit latency 1 cycle 
L1 cache block size 32 Bytes 

L2 cache none 
Mini-data cache not modelled 

Memory latency (cycles) 24 , 96 
Memory bus width (bytes) 4 

 

Table 6. MIBENCH/SECURITY benchmarks. 
Benchmark 

acronym 
Benchmark  

name 
Input set 

description 
Input set value 

bf.enc Blowfish encrypt file to encrypt input_small.asc 
bf.dec Blowfish decrypt file to decrypt output_small.enc 
rj.enc Rijndael encrypt file to encrypt input_small.asc 
rj.dec Rijndael decrypt file to decrypt output_small.enc 
sha SHA file to hash input_small.asc 

pgp.enc PGP encode small text file  test.asc 
pgp.dec PGP decode small text file test.enc 

5. Workload Characterization 
In this Section, we characterize select benchmarks with 
particular emphasis on the memory behavior. 
In Table 7, static and dynamic figures for standard 
cryptography algorithms (dh, dssign, dsverify, 
rsa, elg) and their ECC equivalent (ec-dh, ec-
sign, ec-verify, ec-elg) are reported. We 
considered operations involving same level of security 
by choosing an appropriate key length, as discussed in 
Introduction (see Table 1): 1024 bits for standard 
public-key cryptography, 192 bits for prime field based 
ECC, and 163 bits for binary field based ECC. 
In our characterization, we also included the 
MiBench/Security suite, in order to provide a direct 
comparison with a widely known benchmark suite in 
our experimental setup. In Table 8, we report the same 
figures for MiBench/Security. 
Using ECC does not involve a higher number of 
dinamically executed instructions (fourth column, 
Table 7), compared with the same figure for standard 
cryptography. For elg (ElGamal), we should consider 
the sum of elge and elgd compared with ec-elg. 
RSA case is discussed below. The number of memory 
operations is percentually higher for binary-field ECC 
algorithms than in standard cryptography (Figure 3). In 
particular, the number of load operations is always 
percentually higher. This may mean that a particular 
care has to be taken for the memory subsystem, when 
considering the implementation of binary-field ECC 
algorithms. This is particularly true for mobile systems 

such as PDA or wireless phones, where memory could 
be not very fast and caches have a small size due to 
power constraints. 
In case of prime-field ECC, the percentage of memory 
operations (and loads) is more similar to standard 
cryptography methods (Figure 3). 
For all ECC methods, the number of load operations is 
more similar to complex private-key encryption 
schemes such as rj (Rijndael, also adopted as AES, 
Advanced Encryption Standard). 

The number of memory references is higher in standard 
cryptography than in binary-field ECC (last two 
columns, Table 7), but a further analysis is needed to 
see if they really contribute to the total execution time. 
In fact, in Figure 4 – on the left – where we selected 24 
cycles for memory latency and 1Kb for Level-1 
Instruction Cache and 1Kb for Level-1 Data Cache, it 
appears that binary-field ECC algorithms take a longer 
time to execute than their corresponding standard 
version. In that graph, we also show the contribution 
due to memory stall (upper portion of bars). In case of 
prime-field, again the figures are mostly similar to 
standard cryptography case: anyway, the total execution 
time increases much over the standard cryptography 
case when longer keys are used. 
This means that, even if ECC use a lower number of 
memory operations, the working set is larger or the 
locality of instruction and data accesses is somewhat 
worse than in standard cryptography. 

Both latter problems can be overcome through the use 
of larger caches. Therefore, we considered a more 
detailed analysis of the caches. As our goal is to 
analyze this situation in the case of mobile systems, we 
setup typical configurations of Xscale processor, with 
only Level-1 Instruction+Data split caches and no 
Level-2 cache. In Figure 5, we report the misses per 
1000 instructions for all the considered algorithms and 
for cache sizes from 256-bytes through 32K-bytes. The 
Misses-Per-Instruction (MPI) metric is useful as it 
provides a figure that is directly proportional to the CPI 
(Cycles Per Instruction) contribution due to memory 
stall [Kessler91]. The cache size range is appropriate 
for our case as the working set size is rather small (as 
typical in embedded systems applications [Guthaus01]). 
For a 32K-bytes cache size the MPI approaches zero. 
To analyze further the reasons of the higher stall time 
of Figure 4, we also report in Figure 6 a detail of the 
Data and Instruction MPI in the case of 1-Kbyte caches. 
This confirms again that the situations with a higher 
total execution time in Figure 4 are closely related to 
the higher MPI either for instruction or data caches. 
In the case of RSA algorithm, MPI is lower than ECC 
encryption/decryption schemes for Instruction cache but 
higher for Data cache. This indicates that RSA uses 



  

code that is more optimized and makes more extensive 
use of larger or more complex data structures. 
From Figures 4 and 5, we can conclude that: I) even if 
the total number of instructions and memory references 
is lower for ECC algorithms compared with standard 
methods, both Instruction and Data locality matters to 
ECC performance and appropriate caches should be 
adopted in order to keep the total execution time at 
acceptable levels; for example, in the case of ec-dh 
algorithm with 163 bit key-length on the binary field 
more than 75% of the execution time is due to memory 
stall. To reduce the execution time, we should have at 
least 16K-bytes of instruction cache and 2K-bytes of 
data cache available for this applications. II) If the 
constraints of our system design require a slower 
(lower-power) main memory, the stall time due to 
memory access could be even higher (Figure 4, right 

portion, where main memory latency is 96 cycles). 
Another interesting comparison is between ECC 
methods working on 163 bits and those working on 571 
bits (for binary field; in the case of prime field this 
numbers are respectively 192 and 521, see Table 1). As 
we can see (Figures 4, 5, 6), the importance of memory 
stall and thus the importance of appropriate caches is 
more relevant in the case of binary field rather than in 
the case of prime field. 
For MiBench/Security, we observe that private-key 
algorithms (bf and rj) have a much higher number of 
data misses (Figure 6, 1Kbyte cache size), while the 
public-key based pgp.enc nicely compares with same 
values as the standard cryptography benchmarks that 
we selected. For Instruction misses, the private-key 
algorithms compare more directly with ECC algorithms 
rather than with standard public-key methods. 

 

Table 7. Public-key benchmark statistics (cache size 32 kB, memory latency 24). 

Instruction count Dynamic executable size 
(bytes) Benchmark name 

Source lines 
(application 

+app_library) static 
(application+app_library) 

dynamic 

Static 
executable 
size (bytes) text data 

Loads dynamic Stores dynamic 

dh.1024 47/8365 147/20226 165,901,894 1,040,077 126,976 131,072 54,590,385 22,853,261 
ec-dh.b163 90/10821 332/30884 71,136,495 1,099,417 176,128 167,936 26,788,056 12,093,928 
ec-dh.p192 86/9356 289/21217 78,703,796 1,059,432 147,456 163,840 28,603,873 11,253,834 
dssign,1024 203/8522 653/20773 95,408,044 1,196,890 167,936 159,744 36,231,691 16,861,891 
dsverify.1024 123/8522 419/20773 101,343,319 1,195,925 155,648 155,648 38,170,154 17,675,779 
ec-sign.b163 133/10978 468/31431 80,758,444 1,100,817 176,128 163,840 32,241,048 15,417,012 
ec-sign.p192 144/9513 418/24701 84,280,446 1,100,689 155,648 172,032 33,277,790 15,433,828 
ec-verify.b163 143/10978 524/31431 92,130,376 1,253,511 200,704 176,128 36,574,617 17,283,606 
ec-verify.p192 153/9513 472/25369 92,351,655 1,253,303 192,512 188,416 36,120,344 16,563,182 

rsae.1024 73/8365 273/20226 6,445,027 1,045,101 135,168 147,456 2,013,733 848,857 
rsad.1024 113/8479 448/20942 55,064,462 1,046,308 159,744 151,552 18,525,278 7,624,237 
elge.1024 95/8365 366/20226 58,287,669 1,045,748 143,360 151,552 19,157,821 7,996,009 
elgd.1024 88/8365 327/20226 384,535,577 1,043,366 135,168 143,360 127,736,147 53,274,033 

ec-elg.b163 96/10821 367/30884 220,968,247 1,099,563 155,648 184,320 84,206,061 28,097,746 
ec-elg.p192 94/9356 316/21217 129,476,585 1,059,594 143,360 176,128 38,263,497 17,293,027 

 

Table 8. MIBENCH/SECURITY: Benchmark statistics (cache size 32 kB, memory latency 24). 

Instruction count Dynamic executable size 
(bytes) Benchmark name Source lines 

static dynamic 

Static 
executable 
size (bytes) text data 

Loads dynamic Stores dynamic 

bf 2,302 7,749 52,412,141 968,691 56,244 102,400 19,971,657 17,391,240 
rj 1,773 12,134 30,737,771 998,449 81,920 126,976 13,441,929 4,179,454 

sha 269 793 13,540,983 955,216 69.632 106,496 2,281,656 1,236,606 
pgp 34,858 73,244 39,106,462 1,451,988 217,088 450,560 8,609,025 4,690,129 
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Figure 3. Dynamic instruction class profile for our benchmarks and MIBENCH/SECURITY. 
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Figure 4. Variation of the total execution time with memory latency (1K-byte Data + 1K-byte Instruction cache). 
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Figure 5. Instruction and data cache misses per 1000 instructions. 
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Figure 6. Instruction and data cache misses per 1000 instructions (L1 cache 1+1 KB) 

and comparison with MiBench. 
 



  

6. Related Work 
There is an intensive research ongoing in improving 
the efficiency of elliptic curve operations, as well as 
their performance analysis. A workload 
characterization of some public-key and private-key 
algorithms, including their elliptic-curve equivalents 
for binary polynomial fields is found in [Fiskiran02]. 
They characterize operations in Diffie-Hellman, digital 
signature, and El Gamal elliptic curve methods, and 
demonstrate that all these algorithms can be 
implemented efficiently with a very simple processor. 
[Hankerson00] presents an extensive and careful study 
of the software implementation of NIST-recommended 
elliptic curves over binary fields. In [Gupta02], the 
authors give the first estimate of performance 
improvements that can be expected by adding ECC 
support in SSL protocol.  
In [Guthaus01], a set of freely available to researchers, 
commercially representative benchmarks for embedded 
systems, called MiBench, is compared with SPEC2000 
benchmarks, which characterizes a workload for 
general-purpose computers. The common 
characteristics of security applications are low cache 
miss rate, more than 50% integer ALU operations, and 
low level of parallelism. In [Milenkovic03], MiBench 
suite and SimpleScalar simulator for ARM target are 
used for a performance evaluation of typical cache 
design issues for embedded systems.  

7. Conclusions 
The main contributions of our paper are: i) setup of 
kernel benchmark set for studying elliptic curve and 
standard public-key methods and ii) studying the 
impact of memory hierarchy in mobile systems. 
We found that using ECC does not involve a higher 
number of dinamically executed instructions. Even if 
ECC uses a lower number of memory operations, the 
working set is larger or the locality of instruction and 
data accesses is worse than in standard cryptography. 
Instruction and Data locality matters to ECC 
performance and appropriate caches should be adopted 
in order to keep total execution time at acceptable 
levels. The importance of memory stall and thus the 
importance of appropriate caches is more relevant in 
the case of binary field than in the case of prime field. 
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