

Memory Performance of Public-Key Cryptography Methods
in Mobile Environments

I. Branovic, R. Giorgi, E. Martinelli
University of Siena

Via Roma 56 - Siena, Italy

{branovic,giorgi,martinelli}@dii.unisi.it

Abstract
As an increasing number of Internet hosts are

wireless, handheld devices with small memory and
strict CPU-latency constraints, the performance of
cryptography methods has become critical for high
transaction throughput. Elliptic Curve Cryptography
(ECC) is emerging as an attractive public-key system
for constrained environments, because of the small key
sizes and computational efficiency, while preserving
the same security level as the standard methods. The
memory performance of ECC algorithms was scarcely
investigated.
We have developed a set of kernel benchmarks to
examine performance of standard and corresponding
elliptic curve public-key methods. In this paper, we
characterize the operations and their memory impact
on performance in Diffie-Hellman key exchange,
digital signature algorithm, ElGamal, and RSA public-
key cryptosystem, as well as elliptic curve Diffie-
Hellman key exchange, elliptic curve digital signature
algorithm and elliptic curve El-Gamal algorithm.
We modeled a typical mobile device based on the Intel
XScale architecture, which utilizes an ARM processor
core and studied the benchmark set on that target.
Different possible variations for the memory hierarchy
of such basic architecture were considered. We
compared our benchmarks with MiBench/Security,
another widely accepted benchmark set, in order to
provide a reference for our evaluation.

1. Introduction
Cryptography algorithms are split into two

categories: private-key (symmetric) and public-key
(asymmetric). Internet security protocols (e.g. SSL,
IPSec) employ a public-key cryptosystem to exchange
private keys and then use faster private-key algorithms
to ensure confidentiality of streaming data. In private-
key algorithms, communicating parties share a
common private key, which is used to transform the
original message into a ciphered message. The
ciphered message is communicated to another side, and
the original message is decrypted by using the same
private key. Public-key systems, on the other side, do
not require exchange of keys. The public key, known to

all, can be used for encrypting messages. However, the
resulting ciphertext can only be decrypted using the
receiver's private key.
Due to expected advances in cryptanalysis and
increases in available computing power, both private
and public key sizes must grow over time to offer
acceptable security. Table 1 [NIST00], [Blake03] shows
expected key-size growth for various private and
public-key cryptosystems: Elliptic Curve Cryptography
has attracted attention due to the reduced key size at
equivalent levels.

Table 1. Equivalent key size for some
cryptosystems.

Public key
ECC key length

Prime field Binary field

RSA key length
for approximate

equivalent security

private key
length for

approximate
equivalent
security

192 163 1024 80
224 233 2048 112
256 283 3072 128
384 408 7680 192
521 571 15360 256

Because of its favourable characteristics, elliptic curve
cryptography has been incorporated into two important
public-key cryptography standards, FIPS 186-2
[NIST00] and IEEE-P1363 [IEEE1363-00]. These
standards specify how to use elliptic curves over prime
fields GF(p) and binary fields GF(2m); recommended
curves have well-studied properties that make them
resistant to known attacks. We study elliptic curve
analogs of following algorithms for recommended
curves in both types of fields:

• Diffie-Hellman key algorithm, used for secure
exchange of private keys [Diffie76]

• Digital signature algorithm, used for ensuring
authenticity of data [NIST00]

• El-Gamal algorithm, used for encrypting data
[ElGamal85].

We compared elliptic curve versions of public-key
algorithms with corresponding standard versions. We
also included RSA public-key algorithm [RSA02], since
it is a de-facto standard in this area.
The rest of the paper is organized as follows: in Section
2, we give information necessary for understanding
public-key cryptography methods, as well as principles

of ECC. Section 3 gives details on bechmarks used,
Section 4 outlines the methodology, while in Section 5
we present a workload characterization of public-key
methods with special emphasis on memory
perfomance. Section 6 presents related work in this
area, and Section 7 concludes.

2. Public-Key Algorithms
In a public-key cryptosystem, the private key is

always linked mathematically to the public key.
Therefore, it is always possible to attack a public-key
system by deriving the private key from the public key.
The defense against this is to make the problem of
deriving private key as difficult as possible.

2.1. Standard Public-Key Methods
Diffie-Hellman key exchange is used to establish a

shared key between two parties over a public channel.
Although it is the oldest proposal for eliminating the
transfer of secret keys in cryptography, it is still
generally considered to be one of the most secure and
practical public-key schemes. The security of Diffie-
Hellman relays on difficulty of calculating discrete
logarithms (given an element α in a finite field Fp and
another element y in the same field, find an integer x
such that

p

xy α=), while it is relatively easy to

calculate exponentiation.
Digital signature of a document is a cryptographic
means for ensuring the identity of the sender and the
authenticity of data. Digital signature of a document is
information based on both the document and signer’s
private key. The National Institute of Standards and
Technology (NIST) published the Digital Signature
Algorithm (DSA) in the Digital Signature Standard
[NIST00]. This standard requires use of Secure Hash
Algorithm (SHA), specified in the Secure Hash
Standard [NIST95]. The SHA algorithm takes a long
message and produces its 160-bit digest; this method is
known as hashing. Hash function is hard to invert,
which means that given a hash value, it is
computationally extremely difficult to find the original
message. The message digest is then digitally signed
using the private key of the signer; signature can be
verified using the sender’s private key.
RSA cryptosystem [RSA02] is used in the most popular
applications, such as SSL, IPSec, e-commerce systems,
e-mail systems (PGP, S/MIME); it has practically
become the standard for public-key encryption. RSA
encryption is based on the fact that the only way of
finding the private key is equivalent to factoring an
integer, which is computationally impossible if it is
long enough. RSA key sizes that today offer acceptable
level of security are 1024 bits and longer. Public
exponent in common use today is 216 + 1 (65537), since

it improves the efficiency of algorithm.
El-Gamal is a public-key cryptosystem often used as an
alternative to RSA. The encryption algorithm is based
on dicrete logarithm problem, e.g. finding modular
inverses of exponentiations in finite field [ElGamal85].

2.2 Elliptic Curve Methods
Unlike standard public-key methods that operate

over integer fields, the elliptic curve cryptosystems
operate over points on an elliptic curve. The
fundamental operation in RSA and Diffie-Hellman is
modular integer multiplication. However, the core of
elliptic curve arithmetic is an operation called scalar
point multiplication, which computes Q = kP (point P
multiplied by an integer k gives a point Q on the same
elliptic curve). The security of ECC lies in the fact that
given P and Q = kP , it is hard to find k; this problem
has similar difficulty as solving discrete logarithm in
integer fields, although at the time being this operation
seems harder in elliptic curve groups. Consequently,
the same level of security is obtained with smaller key
sizes compared with standard public-key methods
(Table 1). While it is possible to carry out a brute force
approach of computing all multiples of P to find Q, by
choosing to operate over a large field, for instance
binary field GF(2163), k is so large that it becomes
infeasible to determine k this way. The (large) random
integer k is kept as the private key, while the result Q
serves as the corresponding public key.
Elliptic curve can be defined over any field, but for
cryptographic purposes, we are interested in elliptic
curves over finite fields. Finite fields commonly in use
in cryptography are prime and binary fields. In binary
field, elements can be represented by using polynomial
or a normal basis. As it is well-known that polynomial
basis yields more efficient software implementations
[Hankerson00], we used it in developing our
benchmarks. Since not every elliptic curve offers strong
security properties, standards organizations like NIST
have published a set of recommended curves [NIST00].
The use of these curves is also recommended for easier
interoperability between different implementations of a
security protocol. For binary polynomial fields, one
random and one Koblitz curve are recommended for
key sizes of 163, 233, 283, 409, and 571 bits; for prime
fields, for each key size (192, 224, 256, 384, and 521),
one curve is recommended.
In the polynomial representation of binary field, each
field element can be viewed as polynomial whose
coefficients are either 0 or 1. Polynomial addition is
defined as simple component-wise XOR of the two
polynomials. Polynomial multiplication is also
component-wise; the key difference is that
multiplication may produce a product polynomial of

degree that is greater or equal to the field size. In such
a case, the product needs to be reduced by the
irreducible polynomial (usually trinomial or
pentanomial), defined in [NIST00]. Operations on
elliptic curves in binary fields imply using finite field
operations. For example, doubling of point in a binary
field requires ten finite field operations: two
multiplications, one squaring, six additions, and one
field inversion [Menezes01].
The most time-critical operation in prime field is
modular multiplication; among most important
improvements is Montgomery algorithm [Monty85].
The most time-consuming finite field operation is
finding a multiplicative inverse of an element: most
often, the extended Euclidean algorithm, or almost
inverse algorithm are used [Fiskiran02]. Cryptographic
algorithms based on discrete logarithm problem can be
efficiently implemented using elliptic curves.

3. Benchmark description
We set up a series of kernel benchmarks to cover the

cryptographic algorithms mentioned in Section 2. Our
benchmarks were written by using MIRACL C library
procedures for big integer arithmetic [Miracl02]. The
MIRACL library consists of over 100 routines that cover
all aspects of multiprecision arithmetic and offers
procedures for finite-field elliptic curve operations. All
routines have been optimized for speed and efficiency,
while at the same time remaining standard, portable C.
Inside the library, a data type called big for storing
multiprecision integers is defined. It is in the form of a
pointer to a fixed length array of digits, with sign and
length information encoded in a separate 32-bit integer.
Algorithms used to implement arithmetic on the big
data type are taken from [Knuth81]. Montgomery
arithmetic [Monty85] is used by many of the MIRACL
library routines that require extensive modular
arithmetic, such as the highly optimized modular
exponentiation function powmod, and those functions
which implement GF(p) elliptic curve arithmetic.
The benchmarks we setup are listed in Table 4. The use
of elliptic curve cryptography also involves choosing a
finite field, a specific curve on it, and a base point on
the chosen curve. The finite fields and the elliptic
curves used in our benchmarks are chosen according to
NIST standard [NIST00]. Elliptic-curve benchmarks in
graphs and tables have the following notation:

<benchmark>.<b | p><three digit number>

The abbreviation b denotes an elliptic curve over binary
field, while p denotes use of a prime field. Three-digit
number indicates the size of the field; for example,
b163 denotes the use of GF(2163) binary field, while
p384 denotes prime field with binary length of prime p

equal to 384 (also indicated as ||p||). Therefore, the ec-
dh.p192, ec-dh.p224, ec-dh.p256, ec-dh.p384, and ec-
dh.p521 represent results of simulating elliptic curve
Diffie-Hellman key exchange.
NIST curves over a prime field GF(p) are of form:

bxxy +−= 332 where b random1

while the curves over GF(2m) are of the form

bxxxyy ++=+ 232 with b random2.

The elliptic curve methods inside the benchmark use
parameter files, for initializing the curve, setting the
base point on the curve, and setting the irreducible
polynomial for multiplication in binary fields. An
example of the structure of prime fields’ parameter files
p192.txt, p224.txt, p256.txt, p384.txt, p521.txt is given
in Table 3, while Table 4 gives the typical structure of
binary field parameter file. For standard cryptography
benchmarks we use the following notation:

<benchmark>.<key_length>

Table 3. Example of the parameter file
for a prime field GF(p), ||p||=384.

prime p
(dec)

394020061963944792122790401001436138050797392704
654466679482934042457217714968703290472660882589

38001861606973112319
curve term b

(hex)
b3312fa7e23ee7e4988e056be3f82d19181d9c6efe81411203

14088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
base point x
coord. (hex)

aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b985
9f741e082542a385502f25dbf55296c3a545e3872760ab7

base point y
coord. (hex)

3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9
da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f

Table 4. Example of the parameter file
for a binary field GF (2283).

degrees of the irreducible
polynomial terms

283 12 7 5 0

curve coefficient b (hex)
27b680ac8b8596da5a4af8a19a0303fca97fd

7645309fa2a581485af6263e313b79a2f5
elliptic curve base point

coordinate x (hex)
5f939258db7dd90e1934f8c70b0dfec2eed25

b8557eac9c80e2e198f8cdbecd86b12053
elliptic curve base point

coordinate y (hex)
3676854fe24141cb98fe6d4b20d02b4516ff7

02350eddb0826779c813f0df45be8112f4

The following benchmarks are representative of
commonly used public-key methods:

• dh (Diffie-Hellman key exchange). It uses a prime
suitable for Diffie-Hellman; generates two 160-bit
random primes, calculates shared key and writes it
into a file.

• dssign (digital signing). It reads private key from
file, calculates message digest of a file given as
argument, and writes signature into a file.

• dsverify (digital signature verification). It reads
public key and signature from files and verifies it.

1 Prime field operations are defined as integer addition and
multiplication modulo p.
2 In case of binary field, an irreducible polynomial is used when the
degree of multiplication product polynomial is greater than field size.

Table 2. Our public-key benchmark suite.
Benchmark acronym Benchmark name Input set description Input set value

dh.1024 Diffie-Hellman key exchange key length 1024

ec-dh Elliptic curve Diffie-Hellman key exchange elliptic curve parameter file b163.txt

dssign Digitally signing a file file to sign input_small.asc

dsverify Verifying a signature of a file signed file input_small.dss

ec-sign Elliptic curve digitally signing a file elliptic-curve parameter file, file to sign b163.txt, input_small.asc

ec-verify Elliptic curve verifying a signature of a file elliptic-curve parameter file, signed file b163.txt, input_small.dss

rsae.1024 RSA encryption with exponent 65537 public key length, small text file 1024, test.asc

rsad.1024 RSA decryption with exponent 65537 private key, small encrypted text file rsa.key, test.enc

elge ElGamal encryption public key length, small text file 1024, test.asc

elgd ElGamal decryption private key, small encrypted file elg.key, test.enc

ec-elg Elliptic curve El-Gamal key generation,
encryption and decryption

elliptic-curve parameter file, small text file p192.txt, test.asc

• rsae (RSA encryption with exponent 216+1).
Reads public key from a file and encrypts file
passed as argument. Writes ciphered text into a
file.

• rsad (RSA decryption with exponent 216+1). It
reads private key from file, reads ciphered content
from a file passed as argument and writes
decrypted content to a file.

• elge (ElGamal encryption). It reads public key
from a file and encrypts file passed as argument.
Writes ciphered text into a file.

• elgd (ElGamal decryption). It reads private key
from file, reads ciphered content from a file passed
as argument and writes decrypted content to a file.

• ec-dh (elliptic curve Diffie-Hellman). It reads
parameter file for elliptic curve, generates two 16-
bit random primes, calculates shared key and
writes it into a file.

• ec-sign (elliptic curve digital signature). It reads
private key and elliptic curve parameters from
files, calculates message digest of file given as
argument, and writes signature to a file.

• ec-ver (elliptic curve digital signature
verification). It reads public key, elliptic curve
parameters and signature from files and verifies
the signature.

• ec-elg (elliptic curve El-Gamal). It generates
public-private key pair, encrypts the base point on
a curve, and then immediately decrypts it.

4. Methodology
The performance evaluation of our public-key

cryptography benchmarks is done using the sim-
outorder simulators from ARM version of the
SimpleScalar toolset [Ss97]. The sim-outorder tool
performs a detailed timing simulation of the modeled
target. Simulation is execution driven, including
execution down any speculative path until the detection
of a fault, TLB miss, or branch misprediction. The
ARM target of the SimpleScalar set supports the ARM7
integer instruction set, with the pipeline and memory

system models for the Intel StrongARM SA-1110 and
XScale SA-2 microprocessors [Austin02]. The
simulated processor configuration is modeled after Intel
ARM Xscale architecture [Intel03], with details of
configuration given in Table 5. The benchmark code
was compiled using arm-linux gcc cross-compiler,
available at SimpleScalar Web site [Ss02].
We compared the performance of our benchmarks with
MiBench/Security benchmarks [Guthaus01] (Table 6),
available at SimpleScalar Web site [Ss02]. MiBench is
a set of commercially representative, freely available
embedded programs. It offers different categories of
real-world embedded applications, among which is the
security category. MiBench security category is
primarily based on private-key methods; the only
public-key application is PGP encryption/decryption,
which uses RSA algorithm for signing messages. Due
to problems in execution of PGP decode on
SimpleScalar-ARM simulator (unimplemented system
calls), we simulated only PGP encoding; we expect that
PGP decode will have similar performance
[Guthaus01]. MiBench is used as a reference point
including cryptography applications for
embedded/mobile environments. To make the
comparison as close as possible, we also used MiBench
input files (small ASCII text files) as input for our
benchmark simulations, where it was applicable. For
reasons of space, we reported only the results for the
first and the last key size in case of elliptic curve
benchmarks (e.g. b163, b571, p192, p521).
When presenting our benchmark statistics (Table 7),
number of source lines includes comments. The library
files actually used in each benchmark are individuated,
and their source lines counted. Static instruction count
is obtained by compiling C source and library files with
–S option, which produces assembly files, and by
counting number of lines in assembly files. Static
executable size is the number of bytes occupied on disk,
while all dynamic instruction counts, loads and stores
are obtained as sim-outorder simulation statistics.

Table 5. Simulated architecture.
Fetch queue (instructions) 4

Branch prediction 8k bimodal, 2k 4-way BTB
Fetch & Decode width 1

Issue width 1 (in order)
ITLB 32-entry, fully associative
DTLB 32-entry, fully associative

Functional units 1 int ALU, 1 int MUL/DIV
Instruction L1 cache 32k-Bytes, 32-way

Data L1 cache 32k-Bytes, 32-way
L1 cache hit latency 1 cycle
L1 cache block size 32 Bytes

L2 cache none
Mini-data cache not modelled

Memory latency (cycles) 24 , 96
Memory bus width (bytes) 4

Table 6. MIBENCH/SECURITY benchmarks.
Benchmark

acronym
Benchmark

name
Input set

description
Input set value

bf.enc Blowfish encrypt file to encrypt input_small.asc
bf.dec Blowfish decrypt file to decrypt output_small.enc
rj.enc Rijndael encrypt file to encrypt input_small.asc
rj.dec Rijndael decrypt file to decrypt output_small.enc
sha SHA file to hash input_small.asc

pgp.enc PGP encode small text file test.asc
pgp.dec PGP decode small text file test.enc

5. Workload Characterization
In this Section, we characterize select benchmarks with
particular emphasis on the memory behavior.
In Table 7, static and dynamic figures for standard
cryptography algorithms (dh, dssign, dsverify,
rsa, elg) and their ECC equivalent (ec-dh, ec-
sign, ec-verify, ec-elg) are reported. We
considered operations involving same level of security
by choosing an appropriate key length, as discussed in
Introduction (see Table 1): 1024 bits for standard
public-key cryptography, 192 bits for prime field based
ECC, and 163 bits for binary field based ECC.
In our characterization, we also included the
MiBench/Security suite, in order to provide a direct
comparison with a widely known benchmark suite in
our experimental setup. In Table 8, we report the same
figures for MiBench/Security.
Using ECC does not involve a higher number of
dinamically executed instructions (fourth column,
Table 7), compared with the same figure for standard
cryptography. For elg (ElGamal), we should consider
the sum of elge and elgd compared with ec-elg.
RSA case is discussed below. The number of memory
operations is percentually higher for binary-field ECC
algorithms than in standard cryptography (Figure 3). In
particular, the number of load operations is always
percentually higher. This may mean that a particular
care has to be taken for the memory subsystem, when
considering the implementation of binary-field ECC
algorithms. This is particularly true for mobile systems

such as PDA or wireless phones, where memory could
be not very fast and caches have a small size due to
power constraints.
In case of prime-field ECC, the percentage of memory
operations (and loads) is more similar to standard
cryptography methods (Figure 3).
For all ECC methods, the number of load operations is
more similar to complex private-key encryption
schemes such as rj (Rijndael, also adopted as AES,
Advanced Encryption Standard).

The number of memory references is higher in standard
cryptography than in binary-field ECC (last two
columns, Table 7), but a further analysis is needed to
see if they really contribute to the total execution time.
In fact, in Figure 4 – on the left – where we selected 24
cycles for memory latency and 1Kb for Level-1
Instruction Cache and 1Kb for Level-1 Data Cache, it
appears that binary-field ECC algorithms take a longer
time to execute than their corresponding standard
version. In that graph, we also show the contribution
due to memory stall (upper portion of bars). In case of
prime-field, again the figures are mostly similar to
standard cryptography case: anyway, the total execution
time increases much over the standard cryptography
case when longer keys are used.
This means that, even if ECC use a lower number of
memory operations, the working set is larger or the
locality of instruction and data accesses is somewhat
worse than in standard cryptography.

Both latter problems can be overcome through the use
of larger caches. Therefore, we considered a more
detailed analysis of the caches. As our goal is to
analyze this situation in the case of mobile systems, we
setup typical configurations of Xscale processor, with
only Level-1 Instruction+Data split caches and no
Level-2 cache. In Figure 5, we report the misses per
1000 instructions for all the considered algorithms and
for cache sizes from 256-bytes through 32K-bytes. The
Misses-Per-Instruction (MPI) metric is useful as it
provides a figure that is directly proportional to the CPI
(Cycles Per Instruction) contribution due to memory
stall [Kessler91]. The cache size range is appropriate
for our case as the working set size is rather small (as
typical in embedded systems applications [Guthaus01]).
For a 32K-bytes cache size the MPI approaches zero.
To analyze further the reasons of the higher stall time
of Figure 4, we also report in Figure 6 a detail of the
Data and Instruction MPI in the case of 1-Kbyte caches.
This confirms again that the situations with a higher
total execution time in Figure 4 are closely related to
the higher MPI either for instruction or data caches.
In the case of RSA algorithm, MPI is lower than ECC
encryption/decryption schemes for Instruction cache but
higher for Data cache. This indicates that RSA uses

code that is more optimized and makes more extensive
use of larger or more complex data structures.
From Figures 4 and 5, we can conclude that: I) even if
the total number of instructions and memory references
is lower for ECC algorithms compared with standard
methods, both Instruction and Data locality matters to
ECC performance and appropriate caches should be
adopted in order to keep the total execution time at
acceptable levels; for example, in the case of ec-dh
algorithm with 163 bit key-length on the binary field
more than 75% of the execution time is due to memory
stall. To reduce the execution time, we should have at
least 16K-bytes of instruction cache and 2K-bytes of
data cache available for this applications. II) If the
constraints of our system design require a slower
(lower-power) main memory, the stall time due to
memory access could be even higher (Figure 4, right

portion, where main memory latency is 96 cycles).
Another interesting comparison is between ECC
methods working on 163 bits and those working on 571
bits (for binary field; in the case of prime field this
numbers are respectively 192 and 521, see Table 1). As
we can see (Figures 4, 5, 6), the importance of memory
stall and thus the importance of appropriate caches is
more relevant in the case of binary field rather than in
the case of prime field.
For MiBench/Security, we observe that private-key
algorithms (bf and rj) have a much higher number of
data misses (Figure 6, 1Kbyte cache size), while the
public-key based pgp.enc nicely compares with same
values as the standard cryptography benchmarks that
we selected. For Instruction misses, the private-key
algorithms compare more directly with ECC algorithms
rather than with standard public-key methods.

Table 7. Public-key benchmark statistics (cache size 32 kB, memory latency 24).

Instruction count Dynamic executable size
(bytes) Benchmark name

Source lines
(application

+app_library) static
(application+app_library)

dynamic

Static
executable
size (bytes) text data

Loads dynamic Stores dynamic

dh.1024 47/8365 147/20226 165,901,894 1,040,077 126,976 131,072 54,590,385 22,853,261
ec-dh.b163 90/10821 332/30884 71,136,495 1,099,417 176,128 167,936 26,788,056 12,093,928
ec-dh.p192 86/9356 289/21217 78,703,796 1,059,432 147,456 163,840 28,603,873 11,253,834
dssign,1024 203/8522 653/20773 95,408,044 1,196,890 167,936 159,744 36,231,691 16,861,891
dsverify.1024 123/8522 419/20773 101,343,319 1,195,925 155,648 155,648 38,170,154 17,675,779
ec-sign.b163 133/10978 468/31431 80,758,444 1,100,817 176,128 163,840 32,241,048 15,417,012
ec-sign.p192 144/9513 418/24701 84,280,446 1,100,689 155,648 172,032 33,277,790 15,433,828
ec-verify.b163 143/10978 524/31431 92,130,376 1,253,511 200,704 176,128 36,574,617 17,283,606
ec-verify.p192 153/9513 472/25369 92,351,655 1,253,303 192,512 188,416 36,120,344 16,563,182

rsae.1024 73/8365 273/20226 6,445,027 1,045,101 135,168 147,456 2,013,733 848,857
rsad.1024 113/8479 448/20942 55,064,462 1,046,308 159,744 151,552 18,525,278 7,624,237
elge.1024 95/8365 366/20226 58,287,669 1,045,748 143,360 151,552 19,157,821 7,996,009
elgd.1024 88/8365 327/20226 384,535,577 1,043,366 135,168 143,360 127,736,147 53,274,033

ec-elg.b163 96/10821 367/30884 220,968,247 1,099,563 155,648 184,320 84,206,061 28,097,746
ec-elg.p192 94/9356 316/21217 129,476,585 1,059,594 143,360 176,128 38,263,497 17,293,027

Table 8. MIBENCH/SECURITY: Benchmark statistics (cache size 32 kB, memory latency 24).

Instruction count Dynamic executable size
(bytes) Benchmark name Source lines

static dynamic

Static
executable
size (bytes) text data

Loads dynamic Stores dynamic

bf 2,302 7,749 52,412,141 968,691 56,244 102,400 19,971,657 17,391,240
rj 1,773 12,134 30,737,771 998,449 81,920 126,976 13,441,929 4,179,454

sha 269 793 13,540,983 955,216 69.632 106,496 2,281,656 1,236,606
pgp 34,858 73,244 39,106,462 1,451,988 217,088 450,560 8,609,025 4,690,129

0%

20%

40%

60%

80%

100%

dh
.1

02
4

ec
-d

h.
b1

63

ec
-d

h.
b5

71

ec
-d

h.
p1

92

ec
-d

h.
p5

21

ds
si

gn
.1

02
4

ds
ve

rif
y.

10
24

ec
-s

ig
n.

b1
63

ec
-s

ig
n.

b5
71

ec
-s

ig
n.

p1
92

ec
-s

ig
n.

p5
21

ec
-v

er
ify

.b
16

3

ec
-v

er
ify

.b
57

1

ec
-v

er
ify

.p
19

2

ec
-v

er
ify

.p
52

1

rs
ae

.1
02

4

rs
ad

.1
02

4

el
ge

.1
02

4

el
gd

.1
02

4

ec
-e

lg
.b

16
3

ec
-e

lg
.b

57
1

ec
-e

lg
.p

19
2

ec
-e

lg
.p

52
1

bf
.e

nc

bf
.d

ec

rj.
en

c

rj.
de

c

sh
a

pg
p.

en
c

int computation

cond branch

uncond branch

store

load

Figure 3. Dynamic instruction class profile for our benchmarks and MIBENCH/SECURITY.

Total Execution Time (billion cycles) - mem. lat. 24

0

1

2

3

4

5

6

dh
.1

02
4

ec
-d

h.
b1

63

ec
-d

h.
b5

71

ec
-d

h.
p1

92

ec
-d

h.
p5

21

ds
si

gn
.1

02
4

ds
ve

rif
y.

10
24

ec
-s

ig
n.

b1
63

ec
-s

ig
n.

b5
71

ec
-s

ig
n.

p1
92

ec
-s

ig
n.

p5
21

ec
-v

er
ify

.b
16

3

ec
-v

er
ify

.b
57

1

ec
-v

er
ify

.p
19

2

ec
-v

er
ify

.p
52

1

rs
ae

.1
02

4

rs
ad

.1
02

4

el
ge

.1
02

4

el
gd

.1
02

4

ec
-e

lg
.b

16
3

ec
-e

lg
.b

57
1

ec
-e

lg
.p

19
2

ec
-e

lg
.p

52
1

bf
.e

nc

bf
.d

ec

rj.
en

c

rj.
de

c

sh
a

pg
p.

en
c

total memory stall time

perfect memory execution time

Total Execution Time (Billion Cycles) - mem. lat. 96

0

2

4

6

8

10

12

14

16

18

dh
.1

02
4

ec
-d

h.
b1

63
ec

-d
h.

b5
71

ec
-d

h.
p1

92

ec
-d

h.
p5

21

ds
si

gn
.1

02
4

ds
ve

ri
fy

.1
02

4
ec

-s
ig

n.
b1

63

ec
-s

ig
n.

b5
71

ec
-s

ig
n.

p1
92

ec
-s

ig
n.

p5
21

ec
-v

er
ify

.b
16

3
ec

-v
er

ify
.b

57
1

ec
-v

er
ify

.p
19

2
ec

-v
er

ify
.p

52
1

rs
ae

.1
02

4
rs

ad
.1

02
4

el
ge

.1
02

4
el

gd
.1

02
4

ec
-e

lg
.b

16
3

ec
-e

lg
.b

57
1

ec
-e

lg
.p

19
2

ec
-e

lg
.p

52
1

bf
.e

nc

bf
.d

ec
rj

.e
nc

rj
.d

ec

sh
a

pg
p.

en
c

total memory stall time

perfect memory execution time

Figure 4. Variation of the total execution time with memory latency (1K-byte Data + 1K-byte Instruction cache).

256 B
512 B

1 kB
2 kB

4 kB
8 kB
16 kB

32 kB

el
gd

dh
.1

02
4

el
ge

ec
-s

ig
n.

p5
21

ec
-e

lg
.p

19
2

ec
-v

er
ify

.p
52

1
ec

-e
lg

.p
52

1
rs

ad
.1

02
4

ec
-d

h.
p5

21
ec

-d
h.

p1
92

rs
ae

.1
02

4
ds

si
gn

ds
ve

rif
y

ec
-s

ig
n.

p1
92

ec
-v

er
ify

.p
19

2
ec

-d
h.

b1
63

ec
-s

ig
n.

b1
63

ec
-s

ig
n.

b5
71

ec
-v

er
ify

.b
16

3
ec

-v
er

ify
.b

57
1

ec
-d

h.
b5

71
ec

-e
lg

.b
16

3
ec

-e
lg

.b
57

1 0

20

40

60

80

100

120

140

160

cache size

Instruction cache misses per 1000 instructions

25
6

B
51

2
B

1
kB

2
kB

4
kB

8
kB

16
 k

B
32

 k
B

rs
ae

.1
02

4

ec
-s

ig
n.

p5
21

ec
-s

ig
n.

p1
92

ec
-d

h.
p5

21 el
gd

ec
-v

er
ify

.p
52

1

ec
-d

h.
p1

92

ec
-e

lg
.p

19
2

ds
si

gn
dh

.1
02

4
ec

-e
lg

.p
52

1
ec

-v
er

ify
.p

19
2

ec
-s

ig
n.

b1
63

rs
ad

.1
02

4
ds

ve
ri

fy
ec

-e
lg

.b
57

1
ec

-e
lg

.b
16

3
ec

-s
ig

n.
b5

71
ec

-d
h.

b1
63

ec
-d

h.
b5

71
ec

-v
er

ify
.b

57
1

ec
-v

er
ify

.b
16

3
el

ge

0
5
10
15
20
25

30
35

40

45

50

cache size

Data cache misses per 1000 instructions

Figure 5. Instruction and data cache misses per 1000 instructions.

Instruction cache misses per 1000 instructions

0

20

40

60

80

100

120

140

dh
.1

02
4

ec
-d

h.
b1

63

ec
-d

h.
b5

71

ec
-d

h.
p1

92

ec
-d

h.
p5

21

ds
si

gn
.1

02
4

ds
ve

rif
y.

10
24

ec
-s

ig
n.

b1
63

ec
-s

ig
n.

b5
71

ec
-s

ig
n.

p1
92

ec
-s

ig
n.

p5
21

ec
-v

er
ify

.b
16

3

ec
-v

er
ify

.b
57

1

ec
-v

er
ify

.p
19

2

ec
-v

er
ify

.p
52

1

rs
ae

.1
02

4

rs
ad

.1
02

4

el
ge

.1
02

4

el
gd

.1
02

4

ec
-e

lg
.b

16
3

ec
-e

lg
.b

57
1

ec
-e

lg
.p

19
2

ec
-e

lg
.p

52
1

bf
.e

nc

bf
.d

ec

rj.
en

c

rj.
de

c

sh
a

pg
p.

en
c

Data cache misses per 1000 instructions

15
7.

79

15
6.

83

45
.6

9

45
.6

8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

dh
.1

02
4

ec
-d

h.
b1

63

ec
-d

h.
b5

71

ec
-d

h.
p1

92

ec
-d

h.
p5

21

ds
si

gn
.1

02
4

ds
ve

rif
y.

10
24

ec
-s

ig
n.

b1
63

ec
-s

ig
n.

b5
71

ec
-s

ig
n.

p1
92

ec
-s

ig
n.

p5
21

ec
-v

er
ify

.b
16

3

ec
-v

er
ify

.b
57

1

ec
-v

er
ify

.p
19

2

ec
-v

er
ify

.p
52

1

rs
ae

.1
02

4

rs
ad

.1
02

4

el
ge

.1
02

4

el
gd

.1
02

4

ec
-e

lg
.b

16
3

ec
-e

lg
.b

57
1

ec
-e

lg
.p

19
2

ec
-e

lg
.p

52
1

bf
.e

nc

bf
.d

ec

rj.
en

c

rj.
de

c

sh
a

pg
p.

en
c

Figure 6. Instruction and data cache misses per 1000 instructions (L1 cache 1+1 KB)

and comparison with MiBench.

6. Related Work
There is an intensive research ongoing in improving
the efficiency of elliptic curve operations, as well as
their performance analysis. A workload
characterization of some public-key and private-key
algorithms, including their elliptic-curve equivalents
for binary polynomial fields is found in [Fiskiran02].
They characterize operations in Diffie-Hellman, digital
signature, and El Gamal elliptic curve methods, and
demonstrate that all these algorithms can be
implemented efficiently with a very simple processor.
[Hankerson00] presents an extensive and careful study
of the software implementation of NIST-recommended
elliptic curves over binary fields. In [Gupta02], the
authors give the first estimate of performance
improvements that can be expected by adding ECC
support in SSL protocol.
In [Guthaus01], a set of freely available to researchers,
commercially representative benchmarks for embedded
systems, called MiBench, is compared with SPEC2000
benchmarks, which characterizes a workload for
general-purpose computers. The common
characteristics of security applications are low cache
miss rate, more than 50% integer ALU operations, and
low level of parallelism. In [Milenkovic03], MiBench
suite and SimpleScalar simulator for ARM target are
used for a performance evaluation of typical cache
design issues for embedded systems.

7. Conclusions
The main contributions of our paper are: i) setup of
kernel benchmark set for studying elliptic curve and
standard public-key methods and ii) studying the
impact of memory hierarchy in mobile systems.
We found that using ECC does not involve a higher
number of dinamically executed instructions. Even if
ECC uses a lower number of memory operations, the
working set is larger or the locality of instruction and
data accesses is worse than in standard cryptography.
Instruction and Data locality matters to ECC
performance and appropriate caches should be adopted
in order to keep total execution time at acceptable
levels. The importance of memory stall and thus the
importance of appropriate caches is more relevant in
the case of binary field than in the case of prime field.

Acknowledgments
This work is supported by Italian Ministry of
Education, University and Research, under
subcontracting of project FIRB “Reconfigurable
platforms for wideband wireless communications”,
protocol RBNE018RFY. We are particularly grateful to
Todd Austin for his help on the initial setup of our
experiments.

References
[Austin02] T. Austin, E. Larson, D. Ernst, “SimpleScalar: An

Infrastructure for Computer System Modelling”, IEEE
Computer , Volume 35, Issue: 2, Feb. 2002, pp. 59–67.

[Blake03] V. Gupta, S. Blake-Wilson, B. Moeller, C. Hawk,
“ECC Cipher Suites for TLS”, Internet draft, June 2003,
http://www.ietf.org/internet-drafts/draft-ietf-tls-ecc-03.txt.

[Diffie76] W. Diffie, M. E. Hellman, “New Directions in
Cryptography”, IEEE Trans. on Information Theory, Vol.
IT-22, Nov. 1976, pp. 644-654.

[ElGamal85] T. ElGamal, “A public key cryptosystem and a
signature scheme based on discrete logarithms”, IEEE
Trans. on Information Theory, Vol. 31, 1985, pp. 469-472.

[Fiskiran02] A. M. Fiskiran, R. B. Lee, “Workload
Characterization of Elliptic Curve Cryptography and other
Network Security Algorithms for Constrained
Environments”, Proc. of 5th IEEE Workshop on Workload
Characterization (WWC-5), Nov. 2002, pp. 127-137.

[Gupta02] V. Gupta, S. Gupta, S. C. Chang, “Performance
Analysis of Elliptic Curve Cryptography for SSL”, WiSe’02,
Atlanta, USA, 2002.

[Guthaus01] M. Guthaus, J. Ringerberg, T. Austin, T.
Mudge, R. Brown, “MiBench: A free, commercially
representative embedded benchmark suite”, Proc. of 4th
Workshop on Workload Characterization, Dec. 2001.

[Hankerson00] D. Hankerson, J. Lopez, A. Menezes,
“Software Implementation of Elliptic Curve Cryptography
over Binary Fields”, Proc. of CHES 2000 Conference,
Springer-Verlag, 2000, pp. 1-24.

[IEEE1363-00] IEEE Standard Specifications for Public-Key
Cryptography, 1363-2000, IEEE Computer Society, Jan.
2000, http://grouper.ieee.org/groups/1363/

[Intel03] Intel Corporation, “The Intel Xscale
Microarchitecture Technical Summary”, ftp://download.
intel.com/design/intelxscale/XscaleDatasheet4.pdf

[Kessler91] R. E. Kessler, “Analysis of Multi-Megabyte
Secondary CPU Cache Memories”, Ph.D. Thesis, Univ. of
Wisconsin, Computer Sciences, Tech. Report 31032, 1991.

[Knuth81] D. E. Knuth, The Art of Computer Programming,
Vol. 2: Seminumerical Algorithms, Addison-Wesley, 1981.

[Menezes01] A. Menezes, Elliptic Curve Public Key Crypto-
systems, Kluwer Academic Publishers, Boston, USA, 2001.

[Milenkovic03] A. Milenkovic, M. Milenkovic, N. Barnes,
“A Performance Evaluation of Memory Hierarchy in
Embedded Systems”, Proc. of 35th SSST, Mar. 2003.

[Miracl02] Miracl big integer library Web site,
http://indigo.ie/~mscott/

[Monty85] P. Montgomery, “Modular Multiplication Without
Trial Division,” Mathematics of Computation, 44, Apr.
1985, pp. 519-521.

[NIST95] NIST, Secure Hash Standard, FIPS pub180-1, 1995.
[NIST00] Digital Signature Standard, National Institute of

Standards and Technology, FIPS pub186-2, Jan. 2000.
[RSA02] RSA Laboratories’ FAQs about Today’s

Cryptography, http://www.rsasecurity.com/rsalabs/faq
[Ss97] D. C. Burger, T. M. Austin, “The SimpleScalar Tool

Set, Version 2.0”, Tech. Report CS-TR-97-1342, University
of Wisconsin-Madison, June 1997.

[Ss02] SimpleScalar LLC, http://www.simplescalar.com

