WebMIPS: A New Web-Based M | PS Simulation Envir onment
for Computer Architecture Education

Irina Branovic, Roberto Giorgi, Enrico Martinelli
University of Siena, Italy
{ branovic,giorgi,enrico} @dii.unisi.it

Abstract

We have implemented a MIPS simulation
environment called WebMIPS. Our simulator is
accessible from the Web and has been
successfully used in introductory computer
architecture course at Faculty of Information
Engineering in Sena, Italy. The advantages of
the Web approach are immediate access to the
simulator, without installation, and a possible
centralized monitoring of students activity.
WebMIPS is capable of uploading and
assembling the MIPS code provided by user,
simulating a five-stage pipeline step by step or
completely, and displaying the values of all
registers, input and output data of all pipeline
elements.

1. Introduction

The study of computer architecture is a
challenging field because of the high complexity
involved in any computer system. To ease this
complexity, different tools have been developed
allowing architectures to be simulated and modified.
This approach is beneficial to students approaching
computer architecture for the first time, because it
allows them to see the execution of actual assembly
programs in the architecture. One important step is
that the student makes use of simulation tools to
understand concepts otherwise difficult to
comprehend. Our experience, started with JCachesim
cache simulator [1], indicates that Web-based lab
exercising is effective, sometimes even more
interesting than traditional teaching to our students.
We are not aone in trying to make computer
architecture education more interesting to students, as
can be seen in [5], where the authors used animation
for this purpose.

An extensive survey of computer architecture
simulators is given in [8]. For computer architecture
education, especially interesting is the category of
intermediate-level simulators, targeted at students that
have some background in computer architecture and
need a simulator that covers the principles in more
detail, but are not ready for the simulator that

captures all the features of the current state-of-the-art
in computer research. The simulators in this category
attempt to illustrate and teach two general principles:
the instruction set architecture and the micro-
architecture.

In many universities, MIPS architecture is
studied because it is a RISC architecture that makes
understanding abstract concepts of computer design
easier. Another advantage of MIPS ISA is that it is
used in textbooks [2], [3], which represent areference
material for teaching computer architecture in many
universities, which is also the case for our faculty.
There are three widely used MIPS architecture
simulators: SPIM, WinDLX and MIPSIim.

SPIM [4] is an assembly language simulator for
the MIPS (R2000/R3000) processor that has both a
simple terminal interface and a visual, window-based
interface. It implements amost entire MIPS
assembler-extended instruction set (detailed SPIM
description can be found in [3] with more
documentation available online [4]). SPIM was
extensively used in our teaching, however it lacks
pipeline modeling.

WinDLX [9] and MIPSIm [10] are pipeline
simulators developed at the Vienna Institute of
Technology and were described by authors in [11].
WinDLX models the pipeline of the MIPS-like DLX
architecture described in [2]. It allows for displaying
and modifying all of the information relevant to the
CPU (pipeline, regigers, 1/O, memory),
enabling/disabling pipeline forwarding, changing
memory size MIPSim [10] models the MIPS
architecture asin [3], with the possibility of changing
memory content, but without hazard detection and
forwarding unitsin the pipeline.

We have decided to make a five stage MIPS
pipeine simulator capable of displaying the status of
amost all hardware units (more than 25) in the MIPS
pipdine model, as wel as hazard detection and
forwarding in the pipeline Instead of improving
MIPSim, which aso would have been a valid
aternative for our goal, we decided to create a
completely new simulator that can be executed from
the Web browser window. Our simulator, called
WebMIPS, eases the process of learning assembly
coding, mastering pipeline, control, and datapath
design. However, its major advantage is the
immediate accessibility to students, without any prior
installing, and the possibility of monitoring ther
activity over the Web.

93

94

The name WebMIPS indicates that the simulator
is designed for Web use, and indeed it is written in
ASP language [7] and can be started by opening a
simulator Web page [6]. Another advantage of the
Web based service is that the user are not required to
have any special operating system for accessing this
software.

WebMIPS does not support the complete MIPS
instruction set; the user that wants to write assembly
programs on its own must consult the list of
supported ingructions in order to simulate the code.
Since our intention was not implementing a whole
assembler, the simulator supports only the basic set of
instructions, which were studied during the
introductory computer architecture course.

The user can load (copy/paste) MIPS assembly
file or use one of the “load-and-play” (built-in)
assembly examples to follow its execution in
simulator. WebMIPS is not a rea assembler;
however, it is able to recognize if there are errors in
the provided code, and to display the line with the
error. The smulator is aso able of displaying the
program execution step-by-step or all at once. In step-
by-step mode the user can follow advancing of
instructions in each stage of the pipeling, and by
clicking on the congtituting elements of the pipeline
can see the corresponding values, input and output
signals in every clock cycde WebMIPS has
forwarding always enabled, resolves pipeline hazards
and displays the contents of hazard detection and
forwarding unitsin the pipeline.

2. Detailed description of WebMIPS
simulator

2.1 General structure

WebMIPS is a Web application and it is
executed on remote servers in multiuser mode (users
can execute different code at the same time). To
avoid blocking of the system in case of infinite loops,
erroneous references to memory and other common
programming errors, we limited the execution of each
uploaded program to 1000 clock cycles. On the
server, all amulation parameters can be configured.

When trying to execute unsupported assembly
instructions, an eror is displayed and WebMIPS
indicates the corresponding line number. In standard
assembly language the use of directives .text and
.globl is allowed, and in this case the first instruction
to be executed corresponds to the .globl label. The
end of execution is not specified by syscall 10,
instead in WebMIPS the execution stops at the last
codeline.

2.2 L oading of the code

To offer the possibility of loading proprietary
code to the users, we made an ASP page section,
whereit is possible to program in MIPS assembly and
to verify whether the code is correct. By clicking on
the button “L oad/Reload Program” in the upper part
of the WebMIPS browser window (Figure 1), the
MIPS assembler is activated.

/Z) WebMIPS - MIPS CPU PIPLINED SIMULATION On Line - Microsoft Internet Explorer _(Of x|
Ele Edt Vew Favaries ook Help |
D search o Favories @ Media) | Iv L[5 - &
B ‘L\nks
OPTIONS:
v Refrash Layout
LoadfRelaod Pragram ' oata patn A
¥ centrol Path Layout in New Window
Systern Resat
LAYOUT: =
ToFsh, m
HAZARD: w1
—+ DETECTION OR Flush
y T — i
i = |
Address 0 0 L+ +
Hype Instruction m ConTROL
i 40000040 —| U M unIT
Addi $a0, $0,6 3 I~
-
2 0 4 5 B it
001000 00000 00100 0000000000010 we
oF RS RT IMVEDIATE H
INSTRUCTION [N EX STAGE £ 4';‘
Addrass 0 4 . =
type Instruct — 2
N Resd Dats
Jal 18 Read M
3 4 Register 1 U DATA
00011 000000000000A00000NN000100 ?“d.) s MEMGRY
egister
o ADORESS INSTRUCION g T
REGISTERS =7
ADDRESS A — Lg—+iDDRESS
Wirite
Address 08 Register
Ftype Instiuction =¥ po DATE WALLE Read Data m T m T
Add $s0, $v0, $0 Data [U
0 2 0 1 0 S I _l e ¥ | wrarren
0000 000D 00000 A00D 00D 100000 L stan e AL WALLE
op RS RT RD SHAMT FUNCT EXTENSION) | e > fconTRaL _
1 f— " UNIT MEmREas
T — u L
Address 0 x 12 Tocin T ¥
Fype Instruction: =
Jag FORWARDING (#—————
2 = UNIT
000010 00000400000000000000010110
o ADDRESS =
‘&) Dane [| | meemet V)

Figure 1. WebM | PS window during execution. Note the L oad/Reload Program button in the upper part.

Thewirescan be hidden to have an easier reading of the CPU units.

Not al options of the rea assembly were
implemented, since our goal was to demonstrate the
execution of base instructions explained during our
computer architecture course. However, amost all
MIPS ingructions can be written by combining the
implemented instructions. We included a set of
simple assembly programs with the scope of
demonstrating its execution in MIPS pipeline.

MEMOEY AND REGISTERS:

Instruction [ata

hid & m oy bemary Registers

.o |Reg.1d/[Deevall Binary Walue (22 bit)

u] 000000000008 0000000a000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
000000000008 0000000a000000000
00000000000000000000000000000
0000000000 00a0C0o000a000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
000000000003 00000000000000000
00000000000000000000000000000
00000000000000000000000000000
0000000000 00a0C0o000a000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
000000000008 0000000a000000000
00000000000000000000000000000
0000000000 00a0C0o000a000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000

u]
u]
u]
il
u]
u]
u]
u]
0
u]
u]
u]
u]
u]
u]
0
u]
u]
u]
u]
u]
0
u]
u]
u]
u]
u]
u]

00000000000000000000000000000
EAEEN 0000000000000000000000000000C
EEma 0000000000000000000000000000C

4996 00000000000000000004001110000
Figure 2: Register sduring execution.

The functioning of our simulator can be easly
understood by using some of the simple built-in
(called “load-and-play”) programs. The simulator
keeps track of the code in execution and it can be
easily modified in any moment by clicking on the
“Load/Reload Program” button.

MEMOEY AND REGISTERS:

Address 0 x 8
R-type Instruction:

Add $s0, $v0, $0

o 2 o 1a o ¥
oo ooolo ooo0oo 10000 Qo000 looooo
op ES ET ED SHAMT FUHCT

Address 0= 12
J-type Instruction:

J 88
2 2
Q00010 Q000000 0000000000000010110
op ADDEESS

Address 0« 16
I-type Instruction:

Addi $as, $0,12

g 0 1 12
Q01000 Qoooo aoool Q0000000001100
ap EZ ET IWJEDIATE

INSTRUCTION N Ex STAGE
Address 0= 20
R-type Instruction:

Sub $sp, $sp, $as
a

1] 29 1 209 4
oo 11101 00001 11101 00000 100010
op ES ET ED SHAMT FUHCT

Address 0 x 24
I-type Instruction:

Sw Sra, 0($sp)

43 29 31 a
101011 11101 11111 Q00000oaoo000a00
orp E3 ET IIEDIATE

INSTRUCTION IN IF STAGE
Address 0« 28
I-type Instruction:

Sw $fp, 4($sp)

| 43 20 30 4

Figure 3: Instruction memory in the middle of
execution.

95

96

2.2 Program execution

In order to allow users to follow program

execution, the left part of the browser window is
dedicated to information regarding register file, data
and ingtruction memory. Instruction memory displays
the mnemonic, memory address, type, binary
trandation, symbolic representation, field values and
current position in the pipeline for every instruction
in execution (Figures 2, 3).
The page displaying data memory can visuaize
single words, a word interval, or the whole memory
contents. The register page demonstrates the binary
content of 32 MIPS registers, which can be identified
either by register number or their symbolic identifier.

The central part of the browser page is dedicated
to five-stage MIPS pipeline. Since the major scope of
the simulator was to facilitate understanding of
pipeline principles, a user can click on any desired
element of the pipeline (for example, ALU, hazard
detection unit, or even a smple multiplexer) to show
its input and output data A good feature of
WebMIPS is the possibility of tracking every
instruction in each pipeline element by simply
looking at the central graphical screen. Additionally,
displaying of control/data wires can be turned on/off
using a corresponding check-box.

Once loaded, a program can be executed in two
modes. step-by-step or completely. In step-by-step
mode, after each clicking of the *Step-by-Step
Execution” the pipeline stages are updated and the
user can see the changes in memory and detailed
pipdine logic. After the execution has completed, the
total number of clock cycles is calculated and
displayed in the left-hand menu. Complete execution
of the program should be is used only for verifying
the correctness of the assembly code.

2.3 Analyzing pipeline data hazard and
forwarding

In the implementation, branch decision is in the
Decode stage of the pipeline to save one cycle. Data
hazards created in this way are detected in hazard
detection unit, and resolved via forwarding unit,
which are shown in graphic representation of the
pipeline. Among “load-and-play” programs user can
find a simple four-operation calculator; the loading of
this example is shown in Figure 4. We will use this
simple example to illustrate the functioning of hazard
detection and forwarding in the pipeline. The top of
the left-hand menu lists the pipeline stages in stall
during the execution of the program (Figure 5).

Load-and-Flay
Examples

Simple Caloulatar
Memory Referenees

. 2) Data Hazard Example
FEpHSEERBH R Sta Exarnple #
Compute the factorial of n (Rl

The number nis initisllu loaded in

regizter $a0, while the result

will be in $s0

OB]

main:

addi $a0, $0, 5

lial fact

add §s0, $vd, §zero
i last

Fack:

addi $as, £0, 12
sub fsp, §=p, §as
sw o §ra, 0(§=p)

sw §fp, a(fsp)

2w S0, 8fzp)
add $fp, $sp. fzero

bre $a0, fzerc, Ric
addi $v0, $zern, 1
i end

Ric:

addi $as, §0, 1
sub fa0, $20, $as

ial fact
lw §t0, 2($fp)
mul $el, $v0, $0

end:

v 3fp, 4(§sp)
le dra, 0($zp)
addi fz2p, $2p, 12
ir *ra

last:

[+]

[EEE]

Figure 4: A simple calculator program
(among built-in examples) loaded.

Instruction

Mernary

INSTREUCTION M Ex STAGE

Address 0 x 12
I-type Instruction:

Addi $t0, $0, 1
g 0 2 1
001000 00000 01000 0000000000000001
op RS ET DMMEDIATE

INSTRUCTION IMIF STAGE

Address 0x 16
I-type Instruction:

Beq $s0, $t0, 48

Figure5: Thetop of the memory window
displaysa stagein stall.

Instruction : .[i'a’ta
Meriary 3 hemaony

Re g'i.-_:te s

Address O x 12
I-type Instruction:

Addi $t0, $0, 1
a 1] a 1
001000 oooog 0lo00 QO0oooQaaaaooo01
ap ES ET IWMWEDIATE

Address 0% 16
I-type Instruction:

Beq $s0, $t0, 48
4 E] 16 12
000100 01000 Loaao 000000aa00001 100
op ES ET IWMMEDIATE

Figure 6: Stall passed through the pipeline.

In=truction [rata

Memory femony Registers

Figure 7: When the execution finishes, the top of
the memory window shows
the total number of clock cycles.

The pipeline with data hazard resolved is
displayed on Figure 6. When the execution of the
program finishes, the smulator displays total number
of cycles (Figure 7). By clicking on the hazard
detection and forwarding units in the pipeline a user
can see the corresponding signals and follow the
propagation of the stall through the pipeline (Figure
8).

Conclusions

We have implemented a Web-based MIPS
pipeine smulator caled WebMIPS. Our simulator is
publicly accessible and it displays execution in the
Web browser window, and is capable of detecting
and resolving hazards in the pipeline. The WebMIPS
software was used in introductory computer
architecture course at University of Siena, Italy as an
auxiliary resource for explaining pipeline principles.

We received a good feedback from our students,
who also appreciated its availability from any client
computer (independently from the ingtalled operating
system), the possibility of executing on any Internet-
enabled PC without prior ingallation, and its ease of
use. Further plans for WebMIPS devel opment include
extending the supported ingruction set to include all
MIPS (R2000/R3000) instructions.

Acknowledgements

We are particularly grateful to the students:
Mirko Casini, Riccardo Donati, Alem Gracic, Luca
Peruzzi for the initial implementation and the testing
of WebMips.

A WebMIPS - MIPS CPU PIPLINED SIMULATION On Line - Mi... [=)01/[5]
FORWARDING UNIT

The forwarding unit solves some ofthe problems caused hy data hazards. There
are two cases when this unit modifies the pipeline behavior:

iy ifthe instruction in MEM stage writes into some register {in such case
EX_MEM_Regwrite = 1) and the result from EX stage is the value to he written
back.

iy ifthe instruction in WB stage srites into some register {in such case
MEM_WWEB_RegWiite = 1) and the result from MEM stage is the value tobe written
back.

hen one of the possible four cases happens, then the forwarding unit enahles
the corresponding MU and data is forwearded.

Ctrl hillX 4 =00 EX/WMEN.Register RD = 18

Ctrl WX 3 =00 FOR'WARDING EX/MENM.Regifitite = 1
IDJEX.Register RD =0 THIT W EMAWE. Register RD = 17
IDJEX.Register RT =3 b ERAAWE. R e giifrite = 1

Close This Window

2 WebMIPS - MIPS CPU PIPLINED SIMULATION On [=)[51/(X]
HAZARD DETCTION UNIT

This unit detects hazard conditions and produces control signals
accordingly. Inthe case of Tw' instrucion (IDIEX. RegisterRT =
IF/ID.RegisterRs or IDIEX RegisterRT = IFAD RenisterRt and
IDVEX MemRead = 1) a 'nop' must be inserted in the pipeline.

Stall=1
Read Regists:razli; st
By DETTIOH UHIT
Read Register2 = 16 IVEX. MemRead =0

IVEX RegisterRT = &

Close Thiz windaow

Figure 8: Details on forwarding and hazard
detection in the pipeline can be seen by clicking on
the corresponding unit.

97

98

References

(1]

(2]

(3]

[4]
(5]

I. Branovic, R. Giorgi, A. Prete, Web-based
training on computer architecture; The case of
JCachesim, Proceedings of the Workshop on
Computer Architecture Education, pp. 56-60,
May 2002, Anchorage, Alaska.

J. L. Hennessy and D. A. Patterson, Computer
Architecture — A Quantitative Approach, 3rd
edition, Morgan Kaufmann Publishers, 2002.

D. A. Patterson and J. L. Hennessy, Computer
Organization and Design: The
Hardware/Software Interface, 2" edition,
Morgan Kaufmann Publishers, 1997.

SPIM simulator Home Page,
http://cs.wisc.edu/~larus/spim.html

M. Brorsson, Mipsit - A Simulation and
Development Environment Using Animation for
Computer Architecture Education, Proceedings
of the Workshop on Computer Architecture
Education, pp. 65-72, May 2002. Anchorage,
Alaska.

(6]
(7]
(8]

(9]

WebMIPS Home Page,
http://www.dii.unisi.it/~giorgi/WEBMIPS/

C. Payne, Teach Yourself ASP.NET in 21 days,
2nd edition, SAMS, 2003.

W. Yurcik, G. S. Wolffe, M. A. Holiday, A
Survey of Simulators used in Computer
Organization/Architecture Courses, Proceedings
of Summer Conference on Computer
Smulation, pp. 524-529, Orlando, Florida, July
2001.

WinDLX Simulator
ftp://ftp.mkp.com/pub/dix/

Download Page,

[10] MIPSIim Simulator Download Page,

http://mouse.visivie.tuwien.ac.at/léhre/rechnerarc
hitekturen/downl oad/Simulatoren/

[11] H. Grinbacher, M. Khosravipour, WinDLX and

MIPSim Pipeine Simulators for Teaching
Computer Architecture, Proceedings of IEEE
Symposium and Workshop on Engineering of
Computer Based Sysems, pp. 412-417,
Friedrichshafen. Germany, March 1996.

	P95:
	Numbers:
	Numbx:
	C:
	L:
	R: 93

	P96:
	Numbers:
	Numbx:
	C:
	L: 94
	R:

	P97:
	Numbers:
	Numbx:
	C:
	L:
	R: 95

	P98:
	Numbers:
	Numbx:
	C:
	L: 96
	R:

	P99:
	Numbers:
	Numbx:
	C:
	L:
	R: 97

	P100:
	Numbers:
	Numbx:
	C:
	L: 98
	R:

