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Abstract—The AXIOM project aims at providing an envi-
ronment for Cyber-Physical Systems. Smart Video Surveillance
targets public environments, involving real-time face detection
in crowds. Smart Home Living targets home environments and
access control. These applications are used as experimental use-
cases for the AXIOM platform, currently based on the Xilinx
Zynq-7000 SoCs. We have integrated the Xilinx Vivado HLS tool
for the FPGA support within the OmpSs programming model,
to enable OpenMP-like programming in the FPGA. This paper
presents the programming environment, and the evaluation of the
most computationally expensive parts of the target applications.

Index Terms—IoT, OmpSs programming model, video surveil-
lance, smart home, FPGA.

I. INTRODUCTION

The AXIOM project aims to build a powerful node for IoT
infrastructure. In the context of the project, we have selected
two IoT application scenarios: Smart Video Surveillance and
Smart Home Living. Those are being used to validate the
Xilinx Zynq platforms as a good basis upon which we can
build the services for IoT.

IoT nodes should have low-power characteristics, yet offer
some performance level, to support local computations. In the
Smart Video scenario, the node is able to detect the presence of
faces in video streams, and send them to a server for additional
checks, while in the Smart Home Living scenario, the node
is able to detect a human voice in an audio stream and also
to send it to a server for further actions to be taken. Usually,
these tasks cannot be supported only by a small Symmetric
Multi-Processor (SMP) chip, but we are experimenting with
chips that also incorporate FPGAs, in particular those of the
Xilinx Zynq-7000 family.

AXIOM IoT programming environment is based on the
task-parallel OmpSs Programming Model. In the same way
we use OmpSs [1] to leverage existing accelerated kernels in
CUDA and OpenCL, we are developing the OmpSs@FPGA
version. This flavor of OmpSs is able to generate IP cores
for the FPGA fabric at compile time and execute them as
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if they were kernels running on an accelerator. With our
OmpSs@FPGA infrastructure, kernels (function code anno-
tated as FPGA tasks) are compiled automatically by using the
FPGA tools available for High-Level Synthesis (HLS) for the
target FPGA chip. Then, the OmpSs runtime automatically
schedules work to be done to run on those IP cores. Data
transfers to and from the IP cores are also automatically
generated from the runtime system significantly simplifying
the programmability.

This paper presents the following contributions:

• Description of the fully working OmpSs@FPGA ecosys-
tem

• Porting of real scenarios to the full working environment
• Evaluation of the results of the project selected applica-

tions when executed using the full working environment
and the FPGA resources compared against the traditional
approach

In order to present this results we use OmpSs@FPGA that,
to the best of our knowledge, is the first complete environment
to achieve directive-based, OpenMP-like, parallel execution on
FPGAs.

II. THE AXIOM HARDWARE

The current AXIOM platform is a Zynq SoC of the Xil-
inx Zynq-7000 family. It features a dual-core ARM Cortex
A9 processor, tightly coupled with the FPGA fabric. Some
Zynq SoC boards have 4 transceivers, allowing to set small
cluster systems through the low-cost but scalable high-speed
interconnect infrastructure, originally presented in [2].

Computing resources in the AXIOM platform include the
two ARM Cortex A9 cores, and the challenging FPGA fabric.
We have defined a basic infrastructure for the FPGA fabric,
containing the means to transfer data from the host SDRAM
memory to the IP cores present in the FPGA. Figure 1 shows
the block diagram and the connections among these elements.

As shown in Section III, the ARM Cortex A9 cores are
used to run the Linux operating system, and the control side
of the applications. The computation part of the applications
is spawned as tasks on the IP cores programmed in the FPGA.

In this paper we evaluate the results of the two AXIOM
project selected applications. As one of the goals of the project
is to execute the applications in a sensor-attached board, the
cluster capabilities of the system [3] are not used.
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Fig. 1. The AXIOM compute node, including the APU cores, the system
SDRAM, and the basic infrastructure for computing in the FPGA logic.

III. THE AXIOM SOFTWARE

During the development of the AXIOM project, we have
defined the structure of our compilation toolchain (see Fig-
ure 2). The source code of the input OmpSs applications is
analyzed by the Mercurium compiler [4], [5]. According to the
OmpSs directives, the code is split into two parts. The source
code controlling the execution goes to the host side (left). It is
transformed to include calls to the Nanos++ runtime system
to spawn the tasks that will invoke the IP cores in the FPGA.
This code is compiled to binary using the GCC compiler for
the ARM cores.

The code annotated as OmpSs tasks for the FPGA is also
automatically converted to IP cores and to a bitstream (right
side of Figure 2). After offloading the code into separate files,
Mercurium automatically invokes the Xilinx Vivado HLS tool
to generate HDL code, which is later synthesized with Xilinx
Vivado.

The bitstream generated is used to configure the Zynq FPGA
of the target board. The board runs Linux, and it incorporates
the Xilinx FPGA driver. When executing the binary file, the
Nanos++ runtime uses the specially designed DMA library to
implement the data transfers to and from the FPGA, and to
run the IP cores with the accelerated kernels. As the kernels
are annotated as tasks, their execution also follows the correct
ordering according to the task data-flow graph computed at
runtime. The data necessary for the tasks (and the output data
generated if it is the case) is also automatically transferred
to/from the FPGA accelerators to the SMP cores simplifying
this error-prone task.

Fig. 2. The AXIOM toolchain.

IV. PROGRAMMING THE FPGAS

In the AXIOM project, the compiler toolchain runs on Intel
x86 64 hosts. The reason is that Xilinx Vivado tools only
run on this architecture. The set of tools needed to compile
applications are:
• OmpSs Mercurium compiler, Intel version
• OmpSs Nanos++ runtime system, ARM version for link-

ing
• Extrae instrumentation library, ARM version for linking
• The Xilinx board support package (BSP), for the target

board
• Vivado HLS Design Suite (versions ranging from 2015.4

to 2017.1), from Xilinx
• ARM cross compiler, targeting Zynq-7000 boards, from

the Xilinx SDK
Additionally, for the Zynq-7000 boards we provide (ARM

versions to run on the board):
• OmpSs Mercurium compiler
• OmpSs Nanos++ runtime system
• Extrae instrumentation library
• libxdma library, supporting data transfers and execution

of IPs on the FPGA
• Linux kernel xdma module, compatible with the latest

Xilinx 4.6 Linux kernels
Programs written for the AXIOM environment spawn tasks

on a set of functions, that the compilation flow will convert
to IP cores to run on the FPGA. The Mercurium compiler
does so while taking care of setting up the proper parameter
interface between the A9 processors and the FPGA.

A tutorial sample application is shown in Figure 3.

# i n c l u d e <s t d i o . h>
# i n c l u d e <s t d l i b . h>

#pragma omp target device ( f pga ) copy_deps onto ( 0 , 1 )
#pragma omp task depend (in : v a [ 0 ;N] , v b [ 0 ;N] ) \

depend (out : v c [ 0 ;N] )
vo id v e c t o r m u l t i p l y ( f l o a t ∗v a , f l o a t ∗v b ,

f l o a t ∗v c )
{

i n t i ;
f o r ( i =0 ; i < N; i ++)

v c [ i ] = v a [ i ] ∗ v b [ i ] ;
}

i n t main ( i n t a rgc , c h a r ∗a rgv [ ] )
{

/ / A l l o c a t e and i n i t i a l i z e v e c t o r s
/ / A and B , t h e s o u r c e o f t h e d a t a
/ / C t o r e c e i v e t h e r e s u l t o f t h e v e c t o r p r o d u c t

/ / Compute t h e v e c t o r p r o d u c t
v e c t o r m u l t i p l y (A, B , C ) ;

#pragma omp taskwait

r e t u r n 0 ;
}

Fig. 3. Vector multiply OmpSs code targeting the FPGA.

Source code is automatically transformed by the Mercurium
compiler into two separate files. The code that runs in the
Cortex A9 cores as an SMP application with calls to the
Nanos++ runtime system, and the FPGA code to be compiled
by the Xilinx Vivado HLS compiler onto the bitstream. Setting
up this interface between the A9 cores and the FPGA is an
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error-prone task for a programmer. Instead, this is the type of
transformation that a compiler can make automatically, based
on the OmpSs directives. HLS pragma directives are parsed
by the Mercurium compiler, and transparently passed through
towards Vivado HLS compiler.

After that, the Nanos++ runtime will spawn a task to the
FPGA whenever the annotated function is called. This task will
follow the proper runtime order with respect to the remaining
tasks (SMP or FPGA) thanks to the dependences annotated in
the pragmas being executed in parallel whenever the runtime
detect the possibility (due to the availability of both the tasks
and the hardware resources).

V. APPLICATION SCENARIOS

The AXIOM platform hardware and software developed for
the Cyber Physical Systems (CPS) paradigm is evaluated by
means of two real-world use case scenarios: a Smart Video
Surveillance (SVS) scenario, and a Smart Home Living (SHL)
scenario.

Several resource intensive kernels of these scenarios have
been parallelized using the OmpSs programming model.

A. Kernel from the SVS scenario

The SVS application was developed with the aim of demon-
strating the validity of the AXIOM platform for implementing
a state-of-the-art IoT edge computing architecture [6]. This
application exploits advanced computer vision and video pro-
cessing techniques for analyzing in real time all faces appear-
ing on streams broadcast from CCTV surveillance cameras.
By relying on the edge computing paradigm, it is possible to
perform latency-oriented kernels, such as face detection and
demographics estimation, close to the surveillance cameras
directly on the low-power Xilinx Zynq SoC. On the other hand,
resource intensive computations, such as face identification
and template matching over databases populated with millions
of subjects, are offloaded to a remote cloud data center, which
is usually powered by hundreds of high-end discrete GPU and
FPGA nodes.

Although it is currently possible to implement both face
detection and demographic estimation using a combination
of several CNNs, we found that it is still not possible to
reasonably solve the problem of low-power real-time accurate
face localization in HD images using pruned CNNs. Variations
of region proposal networks, including Faster R-CNN, SSD
or YOLO, still require devices featuring a large number of
ALU or DSP units in order to beat traditional methods based
on image descriptors tuned for the particular problem of face
detection. As such, these methods are still uncompetitive if the
whole accuracy/power/latency trade-off is considered [7].

Therefore, the SVS application relies on a cascade of
boosted ensembles with LBP features [8] for locating faces and
thus quickly discard image regions without faces. Local Binary
Pattern (LBP) is a technique often used in Computer Vision,
for image classification. Once faces have been located, they
are used as an input to three different CNNs for performing
the age, gender and ethnicity estimation. Convolutional Neural
Network (CNN) is a feed-forward artificial neural network,

used in Machine Learning environments. Both LBP cascade
evaluation and the matrix multiply kernels (required for in-
ferring the CNNs) were automatically parallelized using HLS
and OmpSs pragma annotations.

B. Kernel from the SHL scenario

The application developed for the SHL scenario receives
multimedia streams broadcast from devices, which are at-
tached to the smart home local network. Then it decodes
audio and video streams, and analyzes raw data using machine
learning algorithms to gather information. The main tasks
implemented on the SHL application are the identification of
end users to grant or deny access to the home premises, and
the interaction with the smart home system. User identification
is performed by two biometric methods: speaker identification,
which identifies users by analyzing acoustic features; and iris
recognition, which recognizes users by analyzing the unique
patterns found in the iris.

In order to allow a natural interaction between end-users and
their homes, it is required that the identification phase does not
interrupt the end-user actuation flow. The main objective is to
avoid providing a slow feedback to end users. This challenge
implies that the SHL application must deal with strict timing
constraints to avoid unresponsiveness. In order to guarantee
this requirement, the SHL application was profiled with the
aim of substantially accelerating it.

The original code of the SHL application was developed in
sequential C and C++.

Application profiling identified the acoustic feature extrac-
tor module and the anisotropic smoothing module as the most
time consuming parts of the application.

The anisotropic smoothing operation is an image denoising
technique that is aimed to preserve the edges of images while
smoothing regions of uniform intensity. This type of filtering
is usually used as a preprocessing stage of segmentation
algorithms. Anisotropic smoothing is a very time consuming
operation, required for the segmentation steps of iris recog-
nition pipeline. To accelerate the execution of this module,
the above mentioned algorithm was exhaustively analyzed
to precisely determine the data flow and its corresponding
dependences. Finally, it was annotated with OmpSs directives.

VI. EVALUATION

A. Kernel from the SVS scenario

The cascade evaluation algorithm scans all the image per-
forming the evaluation of LBP features with a 48×48 sliding
window all over the x and y dimensions of the input image.
This cascade of boosted ensembles is evaluated until the
accumulated score exceeds the corresponding face detection
threshold. In our baseline, the sequential implementation of
the evaluation of LBP features is divided into two feature loop
partitions for performance reasons. The first one (94 stages)
finishes its processing as soon as the threshold is not met
(break statement), and the second evaluation loop (1000-94
stages) processes all the remaining features until the end. This
split strategy ensures that the first loop is usually the most time
consuming part of the code. The reason of this behavior is due
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to the fact the most discriminant LBP features are stored in
the first 94 stages, which yield the early rejection of non-face
regions.

Based on previous analysis not shown in the paper, we
decided to only accelerate in hardware the first above men-
tioned loop due to the resource limitations of our platform.
This is easily accomplished with our Nanos++ runtime as
it can correctly orchestrate the execution of the task that
implements the second loop based on the results of the task
that implements the first one, even if every one of them is
executed in a different resource (the FPGA and the SMP
respectively).

All the experiments have been done in a Zynq-7000 (Zed-
board) with a 7020 device at 200Mhz using a 680x383
image with 40 faces. OmpSs@FPGA has been used for rapid
prototyping of several versions of the first loop partition of the
cascade. OmpSs@FPGA also allows exploiting heterogeneous
parallel execution of tasks that are specified fpga with those
specified smp. However, in the experiments shown in this sec-
tion we have forced a serialization of the FPGA task execution
to measure the speedup achieved only in the acceleration of
the first loop using the OmpSs@FPGA ecosystem. This is
achieved annotating the function with the first loop partition
using target device(fpga), and calling taskwait
immediately after each function call. Therefore, even more
improvements are expected when exploiting the task-based
parallelism of the code.

We have implemented several versions of the first loop
partition that fully utilize all the FPGA resources available in
the board. Note that Vivado HLS suffers from optimization
difficulties when a loop has a break statement, which is
a key software optimization. Our proposals explore those
optimization issues to help the HLS compiler to exploit the
FPGA resources.

Figure 4 shows the execution time for the second loop
partition (constant time on an ARM core), and for nine variants
of four different configurations of the first loop partition
running on the FPGA (x-axis):

1) Seq. w/ Early Rejection. Sequential execution on an
ARM core, as the baseline.

2) {3, 4, 6, 12}+Early Rejection. The first loop partition is
split into a first group (1G in the figure) of iterations
with n ∈ {3, 4, 6, 12} iterations without early rejection
(break), and the remaining iterations with early rejec-
tion.

3) {3, 4, 6}+blocking. The first loop partition is split into
a first group as before with n ∈ {3, 4, 6}, and the
remaining iterations are organized in blocks of {3, 4, 6}
iterations, with only early rejection between blocks. In
addition, the blocks of loops are only applied to those
sliding windows that have not been rejected in the first
level.

4) Blocking. All iterations are organized in one group of
blocks of 4 iterations. There is only early rejection
between blocks.

The rapid prototyping done with OmpSs@FPGA allows to
evaluate several versions in a short period of time. In the
case of the non-blocked version, the bigger the first group,

the worse the performance, since those number of iterations
are always performed, as there is no early rejection. On the
other hand, the remaining iterations with early rejection are
not optimized by the HLS compiler, and thus it slowdowns
the kernel.

The best performance is obtained by the {3, 4}+blocking
configurations, reaching a 1.67× speedup for the 4+blocking
case when compared to the sequential version. This imple-
mentation allows Vivado HLS to perform pipelining and loop
unroll (annotated with Vivado HLS pragmas in the implemen-
tation) to fully exploit the resources of the target FPGA in both
groups of the first partition. In contrast, both the blocking and
the early rejection configurations yield serious optimization
problems to the HLS compilers, thus significantly degrading
performance.

Fig. 4. OmpSs@FPGA Software/Hardware Co-design.

B. Kernel from the SHL scenario

The algorithm implemented on the anisotropic smoothing
module consists of a loop with m iterations in which all image
pixels are read and written several times. In all the iterations,
the algorithm applies a stencil computation on each pixel,
using the neighboring pixels.

This module processes a set of regions of interest (ROIs)
of the input video frames defined by the iris recognition
algorithm. In the implemented SLH application, the maximum
area of these ROIs is 260x260 pixels. This limited size enables
to develop an OmpSs@FPGA accelerator in which all the
pixels of the ROI are saved in FPGA block RAM resources.
In order to implement an FPGA accelerator for this module,
a code refactoring has been done to meet the constraints
introduced by the Vivado HLS compiler. The two main actions
in this process have been to adapt the maximum size of the
images to be processed in the accelerator, to fit the BRAM
blocks in the FPGA, and use static (instead of dynamic)
allocation of the variables involved.

The OmpSs annotations added to the anisotropic smoothing
code define an OmpSs task that includes all the operations
of the anisotropic smoothing algorithm, and sets the FPGA as
the target device for such task. Further low-level optimizations
were explored by annotating the code with HLS directives.
Note that the OmpSs@FPGA environment allows to include
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the HLS directives directly in the original source code, allow-
ing the programmer to have one single unified source code for
programming heterogeneous environments and consequently
simplifying the task significantly.

Table I shows the execution time of the module on the
ZC706 board. We present both the sequential and parallelized
execution times. The obtained speedup when executing the
synthesized code annotated with OmpSs on the FPGA was
8.4×.

TABLE I
EVALUATION OF THE ANISOTROPIC SMOOTHING MODULE.

Input Seq. Exec. OmpSs@FPGA Exec. Speedup
pixels time (s.) time (s.)

260x260 2.11 0.25 8.4x

VII. RELATED WORK

In the last few years CPS domain has gained huge impor-
tance, and as a consequence a lot of work has been done
by both academia and industry. Shi et al. [9] have a general
survey on CPS. In addition, Lee et al. [10] provided a general
framework for using CPS in the manufacturing industry.

AXIOM aims to provide a generic programming model
which can work with its high-speed interconnect subsystem
on multiple platforms together with its full stack of software
as well as proper hardware support. To do so it uses OmpSs,
a forerunner of OpenMP that has been developed at BSC to
experiment with new features and analyze the ones worth of
being introduced in the standard.

In order to integrate heterogeneous execution of the same
applications over processors and FPGA fabric, OmpSs@FPGA
is a key point in the project. To the best of our knowledge
OmpSs@FPGA [11] is the first successful attempt to imple-
ment hardware accelerators and trace them [12] from high-
level directives in a total transparent way. Other tools try
to reduce the FPGA programmability problem by offering
the possibility of generating HDL code from C or C-like
languages like ROCCC [13] or generating systems with an
embedded soft processor connected to the generated hardware
accelerators like LegUp [14] and C2H tool [15]. However,
with the new SMP/FPGA SoCs, new strategies are required
in order to exploit those current heterogeneous and parallel
platforms. Our ecosystem also covers runtime support for
parallel execution of heterogeneous tasks on those SoCs,
unlike other.

VIII. CONCLUSION

This paper shows the implementation results of two real
applications in an embedded heterogeneous system using the
OmpSs@FPGA framework.

OmpSs@FPGA allows the programmers to focus on func-
tionality and performance by alleviating the burden of gener-
ating and managing hardware accelerators and copies. With
this framework, complex applications can be adapted to low-
power embedded systems and fast functionality/performance
explorations can be performed.

As the IoT ecosystem evolves, more functionalities are
demanded from connected systems. Also, new more com-
plex processors that include multi-cores and accelerators are
being introduced. OmpSs@FPGA leverages directive-based
programming to overcome this issues and provide performance
at a reasonable programming effort.
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E. Ayguadé, “Leveraging ompss to exploit hardware accelerators,”
in 26th IEEE International Symposium on Computer Architecture
and High Performance Computing, SBAC-PAD 2014, Paris, France,
October 22-24, 2014, 2014, pp. 112–119. [Online]. Available:
https://doi.org/10.1109/SBAC-PAD.2014.26

[5] Alvarez et al., “The AXIOM software layers,” ELSEVIER Microproces-
sors and Microsys., vol. 47, Part B, pp. 262–277, 2016.

[6] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[7] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware
for machine learning: Challenges and opportunities,” IEEE Custom
Integrated Circuits Conference, 2017.

[8] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 24,
no. 7, pp. 971–987, 2002.

[9] Jianhua Shi, Jiafu Wan, Hehua Yan, Hehua Yan, “A survey of cyber-
physical systems,” in Wireless Communications and Signal Processing
(WCSP), 2011 International Conference on. IEEE, 2011, pp. 1–6.

[10] J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber-Physical Systems
Architecture for Industry 4.0-based Manufacturing Systems,”
Manufacturing Letters, vol. 3, pp. 18 – 23, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S221384631400025X
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