
PERFORMANCE ANALYSIS OF

ELECTRONIC COMMERCE MULTIPROCESSOR SERVER

Pierfrancesco Foglia, Roberto Giorgi, Cosimo Antonio Prete
Dipartimento di Ingegneria dell’Informazione

Facolta’ di Ingegneria, Universita’ di Pisa
Via Diotisalvi, 2 – 56126 PISA (Italy)

{foglia,giorgi,prete}@iet.unipi.it

Abstract
In this paper, the performance of an Electronic
Commerce server, i.e. a system running Electronic
Commerce applications, is evaluated in the case of
shared-bus multiprocessor architecture. In particular, we
focused on the memory subsystem design. We have
analyzed the common case of a system using the MESI
coherence protocol, for maintaining coherency among the
processor private caches. We have evaluated the miss
ratio and the bus traffic of such a system by varying cache
size, number of ways, scheduling policy and number of
processors, highlighting the relations with different types
of data sharing generated by the application or the
kernel. We found that passive sharing and false sharing
are the major sources of coherence overhead, in the case
of relatively large caches (over 1M-byte size). False
sharing is mainly due to kernel data, and can be
eliminated by using appropriate data structure design
techniques. A scheduling technique, like cache-affinity
can reduce passive sharing, but it is not effective in every
load conditions. Thus, a special coherence protocol could
be a better solution to completely eliminate passive
sharing overhead and boost performance.

1. Introduction

Among the recent developments of the Internet, there
is the integration of traditional commerce procedures: new
terms have come up, like EBI (Electronic Business over
the Internet) and E-Commerce (Electronic Commerce)
[35], [2], [17]. Whilst, the industry has caught up the
development of related hardware and software products,
the academics focused on a deeper analysis of the new
scenario. For example, how to cope with the problem of
an adequate design of the system in order to achieve the
desired performance.

To answer this kind of questions, we need to
characterize better the typical architecture of Electronic
Commerce applications. The common case is for three-

tiered systems [15], [4], [6]: on tier one, the user machine
runs a client program, typically a web-browser and Java
applets; the client sends its requests to the server and
receives the results to be shown to the end-user. Tier two
includes a web-server that satisfies the application
specific requests and takes care of the load balancing. On
tier three, the service processes furnish standard services,
such as DB-Management, credit-card information, catalog
information, shipping information, user information, site
activity log and son on. Tier two and three elements can
be merged onto a single platform, or they can be
distributed on several computers. The single-computer
solution has the advantage of a lower cost and a
simplified management. The distributed solution has
flexibility, scalability, and fault-tolerance. In both cases,
the systems can be based on multiprocessor architecture
[26].

In the following, we shall consider an E-Commerce
server based on shared-bus shared-memory
multiprocessor, and in particular, we shall focus on the
core architecture related problems, rather then on
software, network, and I/O related issues.

The design issues of a multiprocessor system are
scalability and speedup. These goals can be achieved by
using cache memories, in order to hide the memory
latency, and reduce the bus traffic (the main causes that
limit speed up and scalability). Unfortunately, multiple
cache memories introduce the coherence problem [19],
[29], [30]. The coherence protocol has a great influence
on the performance. Indeed, to guarantee cache
coherence, the protocol needs a certain number of bus
transactions (known as coherence overhead) that add up
to the basic bus traffic of cache-based uniprocessors.
Thus, a design issue is also the minimization of the
coherence overhead

In this paper, we shall analyze the memory hierarchy
behavior and the bus coherence overhead of a
multiprocessor used as E-Commerce server. In our
evaluation, tier two is constituted by the Apache daemon
[22], which handles HTTP requests, tier three is

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 1

constituted by a SQL server, namely PostgreSQL [36],
which handles TPC-D [33], and by several Unix utilities
which both access file system and interface the various
programs running on the system. The methodology relies
on trace-driven simulation, by means of the “Trace
Factory” environment [9], [20].

The analysis starts from a reference case, and explores
different architectural choices as for cache, number of
processors, and scheduling algorithm. The scheduling
algorithm plays an essential role in such systems in order
to obtain the load balancing among the available
processors. The consequent process migration generates
passive sharing: private data blocks of a process can
become resident in multiple caches and generate useless
coherence-related overhead, which in turn may limit
system performance [21], [10].

The results we obtained show that in these systems
large caches and cache affinity improve the performance,
in spite of the coherence-related overhead caused by large
cache. Anyway, due to both false sharing and passive
sharing overhead, MESI is not optimal for E-Commerce
server. An accurate design of kernel structures is
suggested to reduce false sharing. Special coherence
protocols [10] can eliminate passive sharing overhead.

2. Performance Considerations

We considered a shared-bus, shared-memory
multiprocessor architecture. The shared-bus interconnects
the processor elements and the shared-memory. The
design issues are speed up and system scalability. It is
well known that the shared bus is the performance
bottleneck, in this kind of systems. To overcome the bus
limitations, and thus achieving the design goals, we need
to carefully design the memory subsystem.

These systems usually include large cache memories
that contribute in both hiding memory latency and
reducing the traffic on the processor interconnection
network [12], but they cause the coherence problem [19],
[29], [30]. Two or more processors may store a copy of
the same memory block in their private caches. When one
of them performs a write operation on a location within
that block, a coherence protocol is required in order to
guarantee that each subsequent read operation by any
processor may get the updated value. The protocol
activity involves a certain number of bus transactions to
keep the copies coherent, which add up to the basic bus
traffic of cache-based uniprocessors, thus limiting the
system scalability.

In our evaluations, we have considered the MESI
protocol. MESI is a Write Invalidate protocol [28], and it
is used in most of the actual high-performance
microprocessors, like the AMD K5 and K6, the PowerPC
series, the SUN UltraSparc II, the SGI R10000, the Intel
Pentium, Pentium Pro, Pentium II and Merced. Each

implementation actually differs for some details, that is
several flavors of MESI do exist.

We considered the implementation of MESI in the
Pentium Pro and Pentium II processors [23]. That
implementation can be summarized as follows. The
protocol has four states: Modified, when the cache block
holds the only updated copy that is not identical to
memory block; Exclusive, when the cache block holds the
only valid copy that is identical to the memory block;
Shared, when the cache block holds a valid copy that is
identical to the memory block, and might be also present
in other caches; Invalid, when the cache block holds no
valid information. Four different kinds of bus transaction
are used: read-block (to fetch a block), read-and-
invalidate-block (to fetch a block and invalidate any
copies in other caches), read-and-invalidate-for-0-bytes
(to invalidate any copies in other caches), and update-
block (to write back dirty copies when they need to be
destroyed for replacement). The fetched block can either
come from another cache, or from main memory. As for
the state transitions, in case of hit upon a read operation
there is no state change, whilst in case of miss the new
copy is loaded in the Shared or in the Exclusive state,
depending on whether or not, respectively, other copies
exist in the other caches. In case of write operation on a
Shared copy, a-read-and-invalidate-for-0-bytes
transaction is issued on the bus, in order to invalidate all
remote copies. The local copy is then turned into the
Modified state. In case of write operations involving
copies in Exclusive or Modified state, the state is changed
into Modified. In case of miss upon a write operation, a
read-and-invalidate-block transaction is issued to load the
copy and invalidate any other copy. The local copy is
turned in the Modified state. The remote invalidations
used to obtain coherency have as a drawback the need to
reload the copy, if it is again used by the remote
processor, thus generating a miss (Invalidation Miss).
Therefore, MESI coherence overhead (that is the
transactions needed to enforce coherence) is due to and
read-and-invalidate-for-0-bytes transactions and
Invalidation Misses.

We also wish to relate that overhead with the kind of
data sharing, in order to detect the causes for the
coherence overhead. Three different types of data sharing
can be observed: i) active sharing, which occurs when the
same cached data item is referenced by processes running
on different processors; ii) false sharing [32], which
occurs when several processors reference different data
items belonging to the same memory block; iii) passive
[30], [21] or process-migration [1] sharing, which occurs
when a memory block, though belonging to a private area
of a process, is replicated in more than one cache as a
consequence of the migration of the owner process.
Whilst active sharing is unavoidable, the other two forms
of sharing are useless. The relevant overhead they

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 2

produce can be reduced [31], [25], [18], and possibly
avoided [10].

3. E-Commerce workload

The typical software architecture of E-commerce
applications is based on a three-tiered architecture (Figure
1), which enhances the scalability and simplifies the
design. According to this model, the user (or client, tier
one) sends its requests by means of a web-browser or a
Java applet. A daemon (tier two) waits for a user request,
and sends the request to a child process, which handles
the incoming request either by sending a file, in the case
of a file request, or by cooperating with some service
processes (tier three). Then, the daemon continues its
execution and waits for new requests, while the child
completes its dialog with tier three, and eventually sends
back the results to the end user. We have utilized the
Apache server [22] as tier two, which is currently the
most popular HTTP daemon [5]. We have configured that
server, so that it spawns a minimum of 2 idle processes, a
maximum of 10 idle processes. The number of requests
that a child processes before dying is limited to 100.
Besides file transferring activity, the server might be
required to use other standard applications, typically a
DBMS (Data Base Management System), for carrying out
a search [3], or accessing other accounting, shipping, or
logging information. Our workload thus includes DBMS
activity, which in our case is managed by PostgreSQL

[36]. In order to obtain a general behavior not depending
on a specific implementation of an E-Commerce system,
the queries to the DBMS are carried out as specified by
the TPC-D [33] benchmark.

PostgreSQL consists of a front-end process that
accepts SQL queries, and a backend that creates processes
to satisfy the queries. TPC-D simulates an application for
a wholesale supplier that manages, sells and distributes a
product worldwide. TPC-D data are organized in several
tables; the most important are ‘line-item’, ‘order’, ‘part’,
‘customer’, and ‘supplier’. The simulated company buys
part (stored in ‘part’ table) from suppliers (stored in
‘supplier’ table), and sells them to the customer (stored in
‘customer’ table). TPC-D includes 17 read-only queries,
and 2 update queries. We have populated the database up
to a size of 400M bytes, by using the specific generator
program distributed with the TPC-D code (dbgen). This
size corresponds to 600,000 entries for the ‘line-item’
table and 15,000 entries for the customer table. As for
other database options, we have used standard B-Tree and
sequential indices.

For completing the preparation of our E-commerce
workload, we considered some glue-processes that can be
generated by shell scripts, or used as service processes. In
a typical situation, various requests may be running, thus
requiring the support of different system commands and
ordinary applications. To this end, Unix utilities (ls, awk,
cp, gzip, and rm) have been added to the workload.

TIER 2: TP MONITOR AND

APPLICATION PROCESSES

TIER 3: SERVICE PROCESSES AND

LEGACY APPLICATIONS

INTERNET

TIER 1: CLIENTS

(VIEWERS)

WEB

BROWSER

JAVA APPLETS

APPLICATION

PROCESSES

SERVICE

PROCESSES

TP MONITOR

DBMS

ODBMS

OTHERS

Figure 1. Typical architecture of E-Commerce application. Tier one is constituted of a client program, typically a web-
browser running Java applets. Tier two is a Transaction Processing server, which includes a Transaction Processing
Monitor (TP Monitor) that enables requests, spawns child application processes, and takes care of the load balance. In
tier three, the service processes furnish standard services (database or other legacy applications). DBMS stands for Data
Base Management System, ODBMS stands for Object-oriented Data Base Management System.

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 3

4. Performance analysis

4.1. Methodology

The methodology used in our analysis is based both on
trace-driven simulation [27], [20], [34], and on the
simulation of the three kernel activities that most affect
performance: system calls, process scheduling, and
virtual-to-physical address translation [8]. In the first
phase, we produce a source trace (a sequence of user
memory references, system-call positions and
synchronization events in case of multiprocess programs)
for each application belonging to the workload by means
of a modified version of Tangolite [11]. In the second
one, Trace Factory simulates the execution of complex
workloads by combining multiple source traces,
generating the references of system calls, and by
simulating process scheduling, and virtual-to-physical
translation. Trace Factory furnishes the references (target
trace) to a memory-hierarchy simulator [20], by using an
on-demand policy. Indeed, Trace Factory produces a new
reference whenever the simulator requests one, so that the
timing behavior imposed by the memory subsystem
conditions the reference production [9].

Process management is modeled by simulating a
scheduler that dynamically assigns a ready process to a
processor. The process scheduling is driven by time-slice
for uniprocess applications, whilst it is driven by time-
slice and synchronization events for multiprocess
applications. Virtual-to-physical address translation is
modeled by mapping sequential virtual pages into non-
sequential physical pages.

To detect sharing patterns, and evaluate the source of
overhead, we have extended an existing classification
algorithm [13], by adding the evaluation of passive
sharing, and extending its validity to the case of finite-size
caches. Our algorithm performs on-line analysis of data
access patterns, whilst the original version of this
algorithm relied on off-line analysis.

Table 1. Statistics of source traces for some UNIX utilities (32-byte
block size and 5,000,000 references per application)

APPLICATION Distinct blocks Code (%) Data Read Data Write
AWK (BEG) 9876 76.23 14.94 8.83
AWK (MID) 8129 76.13 14.88 8.99

CP 5432 77.21 13.91 8.88
GZIP 7123 82.32 14.91 2.77
RM 2655 86.18 11.71 2.11

LS -AR 5860 80.23 13.98 5.79
LS -LTR (BEG) 5715 78.53 14.68 6.79
LS -LTR (MID) 5091 78.22 14.18 7.60

Table 2. Statistics of multiprocess application source traces (Apache
and TPC-D), in case of 32-byte block size and 5,000,000 references
per process.

DATA (%) SHARED DATA (%)WORKLOAD NUMBER
OF

PROCESSES

Distinct
BLOCKS

CODE
(%) READ WRITE

SHARED
BLOCKS Accesses WRITE

Apache 13 188534 75.15 18.24 6.61 1105 1.52 0.49
TPC-D 5 15467 71.95 18.17 9.88 5838 2.70 0.79

The E-server workload is constituted of 26 processes,
13 of which are spawned by the Apache daemon, 5 by
PostgreSQL (corresponding to the first 5 queries of the
TPC-D benchmark), and 8 processes are Unix utilities.
Table 1 (for the uniprocess applications) and Table 2 (for
the multiprocess ones) contain some statistics of the
source traces used to generate the workload. To take into
account that some requests may be using the same
program at different times, we traced some commands in
shifted execution sections: initial (beg) and middle (mid).
Table 3 summarizes also the statistics of the target
workload used in our evaluation (E-Server). Data are
related to 100 requests to the web-server (of static pages),
that produce 140 millions of references.

Table 3. Statistics of workload (E-Server), in case of 32-byte block
size and 5,000,000 references per process.

DATA (%) SHARED DATA (%)WORKLOAD NUMBER
OF

PROCESSES

Distinct
BLOCKS

CODE
(%) READ WRITE

SHARED
BLOCKS Accesses WRITE

E-Server 26 461810 75.49 17.12 7.39 6101 1.68 0.54

4.2. Simulation results

We considered two basic configurations: a 4-processor
machine and an “high-end” 16-processor one. Each
processor has a private cache whose size has been varied
between 32K bytes and 2M bytes, whilst for block size
we considered 32 bytes. The simulated processors are
MIPS-R10000 ones; paging relays on 4-Kbyte page size;
the bus supports transaction splitting, and we adopt
processor-consistency memory model [7]. As base case
study, a machine with 128-bit shared bus is considered.
For the scheduling policy two solutions have been
analyzed: random and cache-affinity; scheduler time-slice
is equivalent to 200,000 references. The bus timings of
base case study are summarized in Table 4.

Table 4. Numerical values of timing parameters for the
multiprocessor simulator (times are in clock cycles) in the case of 32-
byte block size.

CLASS PARAMETER TIMING

CPU READ/WRITE CYCLE 2
BUS READ–AND-INVALIDATE –OF-0 BYTES TRANSACTION 5

MEMORY-TO-CACHE READ-BLOCK TRANSACTION 68
MEMORY-TO-CACHE READ-AND-INVALIDATE -BLOCK TRANSACTION 68

CACHE-TO-CACHE READ-BLOCK TRANSACTION 12
CACHE-TO-CACHE READ-AND-INVALIDATE BLOCK TRANSACTION 12

UPDATE-BLOCK TRANSACTION 6

There are two issues in the design of a multiprocessor
system: the minimization of execution time and the
minimization of the bus traffic to achieve a better system
scalability. To achieve these goals, the designers can
optimize the memory subsystem. The miss ratio
influences the waiting time of the processor, and
therefore, the execution time. The bus traffic affects both
the time required to serve the miss, and thus again the
waiting time of the processor, and the multiprocessor

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 4

system scalability. Thus, we wish to analyze the miss
ratio and bus traffic, and quantify the sources of
coherence overhead.

As discussed above, in the case of MESI protocol, bus
traffic has the following components: read-block (we
assumed that read-and-invalidate block transactions have
the same cost of read-block transactions), read–and-
invalidate-of-0-bytes, and update transactions. Update
transactions are only a negligible part of the bus-traffic
(very low for large cache size and, however, lower than
10% of read-block transactions for small cache sizes), and
then they do not influence the performance greatly.
Therefore, the main part of traffic is due to classical
misses (sum of cold, conflict and capacity misses [12])
and coherence traffic, constituted of misses due to the
invalidation of actual shared copies and read-and-
invalidate-of-0-bytes transactions

4.2.1 Miss rate analysis. Figure 2 shows the miss rate
when cache size and number of ways are varied. As
expected, the number of invalidation misses (i.e. true and
false sharing miss, both due to kernel and user) increases
with larger cache sizes. Nevertheless, the total miss rate
decreases significantly as the cache size is increased up to
2M bytes and with more ways. For cache size above
512K bytes the difference of miss ratio between 2 and 4
ways becomes negligible. Invalidation misses are
basically due to the kernel (because of the low usage of
user shared data), and false sharing is the main source of
this overhead (Figure 3).

Cache Size / Number of Ways

0

0,2

0,4

0,6

0,8

1

1,2

1,4

32
K

/1

32
K

/2

32
K

/4

64
K

/1

64
K

/2

64
K

/4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Other Miss

Invalidation MissMiss Rate (%)

Figure 2. Breakdown of miss rate versus cache size (32K bytes, 64K
bytes, 128K bytes, 256K bytes, 512K bytes, 1M bytes, 2M bytes) and
number of ways (1, 2, 4), for a 4-processor system, and a random
scheduling policy. "Other Miss" includes cold miss, capacity miss,
and replacement miss. Miss rate decreases, whilst invalidation miss
portion (i.e. the sum of false sharing misses and true sharing misses)
increases with large cache size and higher associativity.

False sharing appears when data used in exclusive way by
different processes become physically shared. This
happens with improper data alignment, when different
data objects are placed into the same block. False sharing
can be eliminated either by using special coherence
protocols [31], or by properly allocating the involved

shared data structures [14]. This latter solution seems
more suitable for our case study, since the detected false
sharing is mainly due to kernel, which is a completely
known part of the system at design time.

Cache Size / Number of Ways

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

32
K

/1

32
K

/2

32
K

/4

64
K

/1

64
K

/2

64
K

/4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

False Sharing (Kernel)

True Sharing (Kernel)

True & False Sharing (User)Miss Rate (%)

Figure 3. Breakdown of invalidation miss rate versus cache size
(32K bytes, 64K bytes, 128K bytes, 256K bytes, 512K bytes, 1M
bytes, 2M bytes) and number of ways (1, 2, 4), for a 4-processor
system, and random scheduling policy. Invalidation misses are
basically due to the kernel, and false sharing is the main source of
those misses.

Invalidation miss rate is significant for large cache
sizes, while is negligible for small cache sizes. Therefore,
in systems with large caches (512K bytes or larger), the
performance depends on the coherence overhead. For
cache sizes above 256K bytes, our results indicate that the
kernel of an E-commerce server should be designed as
specified above in order to avoid false sharing effects. For
cache sizes below 128K bytes would be more important
to use design techniques which could enhance the locality
of the running applications in order to minimize
traditional misses [16].

Cache Size / Number of Ways / Number of Processors

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

25
6K

/1
/4

25
6K

/2
/4

25
6K

/4
/4

25
6K

/1
/1

6

25
6K

/2
/1

6

25
6K

/4
/1

6

51
2K

/1
/4

51
2K

/2
/4

51
2K

/4
/4

51
2K

/1
/1

6

51
2K

/2
/1

6

51
2K

/4
/1

6

1M
/1

/4

1M
/2

/4

1M
/4

/4

1M
/1

/1
6

1M
/2

/1
6

1M
/4

/1
6

Other Miss (Kernel & User)
False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)Miss Rate (%)

Figure 4. Breakdown of miss rate versus cache sizes (64K bytes,
256K bytes, 512K bytes, 1M bytes), number of ways (1, 2, 4) and
number of processors (4, 16), in the case of random scheduling
policy. The number of Invalidation misses, and particularly, false
sharing misses increases on the “high end” (16-processor)
configuration.

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 5

As an issue in multiprocessor design is scalability, we
considered also an “high end”, 16-processor
configuration. The analysis of the miss rate for the 16-
processor machine (Figure 4) confirms the previous
results. We observe an increased contribution of
invalidation misses compared with the 4-processor case,
caused by the presence of more copies of the same block.
This result, in turn, is a consequence of the higher number
of processors (and caches).

Cache Size /Number of Ways / Scheduling

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

25
6K

/1
/R

an
do

m

25
6K

/2
/R

an
do

m

25
6K

/4
/R

an
do

m

25
6K

/1
/A

ffi
ni

ty

25
6K

/2
/A

ffi
ni

ty

25
6K

/4
/A

ffi
ni

ty

51
2K

/1
/R

an
do

m

51
2K

/2
/R

an
do

m

51
2K

/4
/R

an
do

m

51
2K

/1
/A

ffi
ni

ty

51
2K

/2
/A

ffi
ni

ty

51
2K

/4
/A

ffi
ni

ty

1M
/1

/R
an

do
m

1M
/2

/R
an

do
m

1M
/4

/R
an

do
m

1M
/1

/A
ffi

ni
ty

1M
/2

/A
ffi

ni
ty

1M
/4

/A
ffi

ni
ty

Other Miss (Kernel & User)
False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)Miss Rate (%)

Figure 5. Breakdown of miss rate versus cache sizes (256K bytes,
512K bytes, 1M bytes), number of ways (1, 2, 4), and scheduling
policy (random, affinity), for a 4-processor configuration. In case of
affinity scheduler, miss rate decrease is due to the reduction of
"Other Miss".

Figures 5 and 6 investigate the effects of scheduling
policy. Cache affinity mainly causes a reduction of "other
misses".

Cache Size /Number of Ways / Scheduling

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

25
6K

/1
/R

an
do

m

25
6K

/2
/R

an
do

m

25
6K

/4
/R

an
do

m

25
6K

/1
/A

ffi
ni

ty

25
6K

/2
/A

ffi
ni

ty

25
6K

/4
/A

ffi
ni

ty

51
2K

/1
/R

an
do

m

51
2K

/2
/R

an
do

m

51
2K

/4
/R

an
do

m

51
2K

/1
/A

ffi
ni

ty

51
2K

/2
/A

ffi
ni

ty

51
2K

/4
/A

ffi
ni

ty

1M
/1

/R
an

do
m

1M
/2

/R
an

do
m

1M
/4

/R
an

do
m

1M
/1

/a
ffi

ni
ty

1M
/2

/A
ffi

ni
ty

1M
/4

/A
ffi

ni
ty

Other Miss (Kernel & User)
False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)Miss Rate (%)

Figure 6. Breakdown of miss rate versus cache sizes (256K bytes,
512K bytes, 1M bytes), number of ways (1, 2, 4) and scheduling
policy (random, affinity) for the 16-processor configuration.

In the 4-processor case (Figure 5) the benefit is higher,
due to a larger number of processes compared to the
number of processors. Indeed, in this condition, there is a
higher number of ready-to-execute processes, so that we
have a higher probability that a process can execute its
time-slice on the last-used processor, and thus reuse a part
of its working set.

4.2.2 Bus traffic. Misses produce a relevant traffic of
read-block transactions on the bus. Note that every miss
generates a read-block transaction on the bus; thus, the
miss rate in Figures 2, 4, 5, and 6 can be considered as the
number of read-block transactions per 100 memory
references. The most significant part of the rest of bus
traffic is due to read-and–invalidate-of-0-bytes
transactions. Figure 7 and 8 show the breakdown of
coherence transactions when cache size, ways, and
number of processors is varied. In order to allow the
comparison between read-block and read-and-invalidate
of-0-bytes bus-traffic, we used the same metric for the two
quantities: number of bus transactions generated by 100
references.

Cache Size / Number of Ways

0

0,02

0,04

0,06

0,08

0,1

0,12

32
K

/1

32
K

/2

32
K

/4

64
K

/1

64
K

/2

64
K

/4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Figure 7. Number of coherence transactions (read-and-invalidate-of-
0-bytes transactions) versus cache size (32K bytes, 64K bytes, 128K
bytes, 256K bytes, 512K bytes, 1M bytes, 2M bytes) and number of
ways (1, 2, 4), for a 4-processor system and a random scheduling
policy. Passive sharing overhead increases with large cache and
higher associativity, becoming significant in case of cache sizes
larger than 256K bytes

As for the overhead produced by accesses to shared
data, the behavior seen in the previous figures is again
confirmed: kernel related overhead is more consistent
than user-related overhead, and false sharing dominates it.
However, the user accesses also exhibit a noticeable
amount of passive sharing, produced by private data as a
consequence of process migration. That overhead is
visible for cache sizes larger than 128K bytes.
For small cache sizes that overhead is negligible due to
the high replacement activity, which destroys most of the
passive shared copies.

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 6

Cache Size / Number of Ways / Number of Processors

0

0,02

0,04

0,06

0,08

0,1

0,12

25
6K

/1
/4

25
6K

/2
/4

25
6K

/4
/4

25
6K

/1
/1

6

25
6K

/2
/1

6

25
6K

/4
/1

6

51
2K

/1
/4

51
2K

/2
/4

51
2K

/4
/4

51
2K

/1
/1

6

51
2K

/2
/1

6

51
2K

/4
/1

6

1M
/1

/4

1M
/2

/4

1M
/4

/4

1M
/1

/1
6

1M
/2

/1
6

1M
/4

/1
6

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Figure 8. Number of coherence transactions (read-and-invalidate-of-
0-bytes transactions) versus cache size (256K bytes, 512K bytes, 1M
bytes), number of processors (4, 16), and number of ways (1, 2, 4), in
case of a random scheduling policy. There is an increase in each
component of this overhead in the “high end” (16-processor)
configuration.

Passive sharing increases when switching from the 4-
to the 16-processor configuration (Figure 8). As it
happens for false sharing, also passive sharing is a
"useless" sharing. Passive sharing is consequence of
process migration, and it is not caused by accesses to
shared data. Its elimination or reduction, along with the
consequent bus traffic reduction, ends up in beneficial
effects on the system performance. The techniques
currently known that affect passive sharing are based on
coherence protocols, like PSCR [10], and AMSD [25], or
on affinity scheduling algorithms [24].

Cache Size / Number of Ways / Scheduling

0

0,02

0,04

0,06

0,08

0,1

0,12

25
6K

/1
/R

an
do

m

25
6K

/2
/R

an
do

m

25
6K

/4
/R

an
do

m

25
6K

/1
/A

ffi
ni

ty

25
6K

/2
/A

ffi
ni

ty

25
6K

/4
/A

ffi
ni

ty

51
2K

/1
/R

an
do

m

51
2K

/2
/R

an
do

m

51
2K

/4
/R

an
do

m

51
2K

/1
/A

ffi
ni

ty

51
2K

/2
/A

ffi
ni

ty

51
2K

/4
/A

ffi
ni

ty

1M
/1

/R
an

do
m

1M
/2

/R
an

do
m

1M
/4

/R
an

do
m

1M
/1

/A
ffi

ni
ty

1M
/2

/A
ffi

ni
ty

1M
/4

/A
ffi

ni
ty

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Figure 9. Number of coherence transactions (read-and-invalidate-of-
0-bytes transactions) versus cache size (256K bytes, 512K bytes, 1M
bytes), number of ways (1, 2, 4) and scheduling algorithm (random,
affinity). Data assume 4 processors. Cache affinity reduces mainly
passive sharing transactions; this reduction is more effective for
larger cache sizes.

Cache Size / Number of Ways / Scheduling

0

0,02

0,04

0,06

0,08

0,1

0,12

25
6K

/1
/R

an
do

m

25
6K

/2
/R

an
do

m

25
6K

/4
/R

an
do

m

25
6K

/1
/A

ffi
ni

ty

25
6K

/2
/A

ffi
ni

ty

25
6K

/4
/A

ffi
ni

ty

51
2K

/1
/R

an
do

m

51
2K

/2
/R

an
do

m

51
2K

/4
/R

an
do

m

51
2K

/1
/A

ffi
ni

ty

51
2K

/2
/A

ffi
ni

ty

51
2K

/4
/A

ffi
ni

ty

1M
/1

/R
an

do
m

1M
/2

/R
an

do
m

1M
/4

/R
an

do
m

1M
/1

/A
ffi

ni
ty

1M
/2

/A
ffi

ni
ty

1M
/4

/A
ffi

ni
ty

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Figure 10. Number of coherence transactions (read-and-invalidate-
of-0-bytes transactions) versus cache size (256K bytes, 512K bytes,
1M bytes), number of ways (1, 2, 4) and scheduling algorithm
(random, affinity). Data assume 16 processors. In this case, affinity
scheduling produces only a slightly reduction of passive sharing.

A reduction of passive sharing overhead by using
cache affinity can be observed in the case of 4 processors
(Figure 9). But, in the case of 16 processors (Figure 10),
that reduction is negligible. Indeed, since the number of
processors is getting closer to the number of processes,
the affinity scheduling is not always applicable. The
scheduler is forced to allocate the ready processes on an
available processor, which is different by the last-used
one, thus generating a larger number of passive-shared
copies. Anyway, passive sharing is the main part of the
overhead induced by private data, and a consistent part of
the total overhead. Both an affinity scheduling algorithm
and a special coherency protocol may be used together, by
obtaining the better performance in all the load
conditions.

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 7

Cache Size / Number of Ways / Number of Processors

0

2

4

6

8

25
6K

/1
/4

25
6K

/2
/4

25
6K

/4
/4

25
6K

/1
/1

6

25
6K

/2
/1

6

25
6K

/4
/1

6

51
2K

/1
/4

51
2K

/2
/4

51
2K

/4
/4

51
2K

/1
/1

6

51
2K

/2
/1

6

51
2K

/4
/1

6

1M
/1

/4

1M
/2

/4

1M
/4

/4

1M
/1

/1
6

1M
/2

/1
6

1M
/4

/1
6

Random

AffinityGlobal System Power

Figure 11. Global System Power versus cache size (64K bytes, 256K
bytes, 1M bytes), number of ways (1, 2, 4), number of processors (4,
16), and scheduling policy (random, affinity). Global System Power
is the sum of processor utilizations. In all cases, there is an
increment in the utilization, when cache affinity scheduling is used.
This increment is significant for cache size larger than 256K bytes
and in case of 16-processor configuration.

4.2.3 Global System Power. Figure 11 considers the cost
of transactions, by combining the effects on performance
in a single figure, the Global System Power (i.e. the sum
of processor utilization [10]). In this Figure we also
compare the cases of different scheduling policies, and the
4- and 16-processor cases. In the 4-processor case, the
utilization is almost near to the theoretic limit of
processor utilization. The situation is different in the 16-
processor case. In that case, the processor utilization is
low without cache affinity. The situation is better when
affinity scheduling is introduced, even if cache-affinity is
not effective in reducing both the miss-rate and the
coherence overhead (as shown in Figures 6 and 10). This
is a consequence of the higher bus-utilization in the case
of 16 processors compared to the case of 4 processors.
Indeed, when the bus is more loaded, even a small
reduction of its load produces a consistent reduction of
the miss-cost and thus higher processor utilization. We
finally point out that even if cache-affinity improves the
performance, there is still much space for further
performance improvement. This is due to cache affinity
limitation of affecting coherence overhead in all load
conditions.
The results shown in Figure 11, along with those obtained
on coherence transactions (Figure 7 and 8) and on miss
rate (Figures 2 to 6), indicate that we can positively use
caches of sizes up to 2M bytes and cache affinity
scheduling techniques, as we expected. Anyway, there is
still space to improve the performance especially in the
case of the high-end configuration.

5. Conclusions

In this paper, we characterized the cache misses and
the bus traffic induced on the shared-bus of a shared-
memory multiprocessor used as an Electronic Commerce
server machine.

Our workload has been set up by considering an HTTP
server (Apache), TPC-D benchmark queries, PostgreSQL
DB-server, and typical UNIX shell commands. The
analysis has been carried out through trace-driven
simulation and by considering not only user references
but also the most influencing kernel activities.

Results show that, in these systems, large caches and
cache affinity can improve the performance in spite of the
large coherence related overhead. In these type of
applications, passive sharing and false sharing greatly
affects performance. False sharing is mainly due to kernel
data structures. Passive sharing is due to private data of
migrating processes.

To eliminate false sharing we suggest to design the
data structures in an appropriate way, as observed by
others. In this case, we found that this technique can be
applied more successfully for the kernel data. MESI
reduces passive sharing, although it does not avoid the
passive sharing overhead. The use of affinity scheduling
algorithms does not allow avoiding this overhead in all
load conditions. The load can vary a lot in the case of E-
commerce server, so that ad-hoc protocols like PSCR and
AMSD could improve the performance. Both an affinity
scheduling algorithm and a special coherency protocol
may be used together, by obtaining the better performance
in all the load conditions.

6. Acknowledgements

The work described in this paper has been partly
carried out under the financial support of the Italian
“Ministero dell'Università e della Ricerca Scientifica e
Tecnologica” (MURST), in the framework of the
MOSAICO (Design Methodologies and Tools of High
Performance Systems for Distributed Applications)
Project. We thank the precious suggestions of the
anonymous referees, which helped improve the quality of
this paper.

7. References

[1] A. Agarwal and A. Gupta, “Memory Reference
Characteristics of Multiprocessor Applications under
Mach”. Proc. ACM Sigmetrics, Santa Fe, NM, pp. 215-225,
May 1998.

[2] J.M. Andreoli, Francois Pacull, and R. Pareschi, “XPECT: A
Framework for Electronic Commerce”, IEEE Internet
Computing, vol. 1, no. 4, pp. 40-48, July–August 1997.

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 8

[3] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory
System Characterization of Commercial Workloads”. Proc.
of the 25th International Symposium on Computer
Architecture, pp. 3-14, June 1998.

[4] R. Brandau, T. Confrey, A. D’Silva, C.J. Matheus, R.
Weihmayer, “Reinventing GTE with Information
Technology”. IEEE Computer, vol. 32, no. 3, pp. 50-58,
March 1999.

[5] J. Edwards, “The changing Face of Freeware”. IEEE
Computer, vol. 31, no. 10, pp. 11-13, October 1998.

[6] J. Edwards, 3-Tier Client/Server At Work. Wiley Computer
Publishing, New York, N.Y., 1999.

[7] K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance
Evaluation of Memory Consistency Models for Shared-
Memory Multiprocessors”. Proc. of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, California,
pp. 245-357, Apr. 1991.

[8] R. Giorgi, C. Prete, G. Prina, L. Ricciardi, “A Hybrid
Approach to Trace Generation for Performance Evaluation
of Shared-Bus Multiprocessors”. Proc. of the 22nd

EuroMicro International Conference, Prague, pp. 207-214,
Sept. 1996.

[9] R. Giorgi, C. Prete, G. Prina and L. Ricciardi, “Trace
Factory: a Workload Generation Environment for Trace-
Driven Simulation of Shared-Bus Multiprocessor”. IEEE
Concurrency, vol. 5, no. 4, pp. 54-68, Oct-Dec 1997.

[10] R. Giorgi, C.A. Prete, “PSCR: A Coherence Protocol for
Eliminating Passive Sharing in Shared-Bus Shared-Memory
Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, pp. 742-763, vol. 10, no. 7, July 1999.

[11] S. R. Goldschmidt and J. L. Hennessy, "The Accuracy of
Trace-Driven Simulations of Multiprocessors''. Proc. of the
ACM Sigmetrics Conference on Measurement and Modeling
of Computer Systems, pp. 146-157, May 1993.

[12] J. Hennessy and D. A. Petterson, Computer Architecture: a
Quantitative Approach, 2nd edition. Morgan Kaufmann
Publishers, San Francisco, CA, 1996.

[13] R. L. Hyde and B. D. Fleisch, “An Analysis of
Degenerate Sharing and False Coherence”. Journal of
Parallel and Distributed Computing, vol. 34, no. 2, pp. 183-
195, May 1996.

[14] T. E. Jeremiassen and S. J. Eggers, “Reducing False
Sharing on Shared Memory Multiprocessors through
Compile Time Data Transformations”, ACM SIGPLAN
Notice, vol. 30, no. 8, pp.179-188, August 1995.

[15] T. Lewis, “The Legacy Maturity Model”. IEEE Computer,
vol. 31, no. 11, pp. 125-128, November 1998.

[16] S. Lorenzini, G. Luculli, C. A. Prete, “A Fast Procedure
Placement Algorithm for Optimal Cache Use”, Proc. of the
MELECON'98, Tel Aviv, Israel, pp 1279-1284, May 1998.

[17] V. Milutinovic, System Support for Electronic Business on
Internet. http://galeb.etf.bg.ac.yu/ ~vm/books/2001/ebi.html

[18] C. A. Prete, "A New Solution of Coherence Protocol
for Tightly Coupled Multiprocessor Systems,''
Microprocessing and Microprogramming, vol. 30, no. 1-5,
pp. 207-214, 1990.

[19] C. A. Prete, "RST Cache Memory Design for a
Tightly Coupled Multiprocessor System,'' IEEE Micro, vol.
11, no. 2, pp. 16-19, 40-52, Apr. 1991.

[20] C.A. Prete, G. Prina, and L. Ricciardi, “A Trace
Driven Simulator for Performance Evaluation of Cache-

Based Multiprocessor System”. IEEE Transactions on
Parallel and Distributed Systems, vol. 6, no. 9, pp. 915-929,
September 1995

[21] C. A. Prete, G. Prina, R. Giorgi, and L. Ricciardi, “Some
Considerations About Passive Sharing in Shared-Memory
Multiprocessors”. IEEE TCCA Newsletter, pp. 34-40, Mar.
1997.

[22] D. Robinson and the Apache Group, APACHE – An HTTP
Server, Reference Manual, 1995. http://www.apache.org.

[23] T. Shanley and Mindshare, Inc., Pentium Pro and Pentium
II System Architecture, 2nd edition, Addison Wesley,
Reading, MA, 1999.

[24] M. S. Squillante and D. E. Lazowska, “Using Processor-
Cache Affinity Information in Shared-Memory
Multiprocessor Scheduling”. IEEE Transactions on Parallel
and Distributed Systems, vol. 4, no. 2, pp. 131-143, Feb.
1993.

[25] P. Stenstrom, M. Brorsson, and L. Sandberg, “An Adaptive
Cache Coherence Protocol Optimezed for Migratory
Sharing”. Proc. of the 20th Annual International Symposium
on Computer Architecture. San Diego, CA, May 1993.

[26] P. Stenstrom, E. Hagersten, D. J. Li Margaret Martonosi
and M. Venugopal, “Trends in Shared Memory
Multiprocessing ”, IEEE Computer, vol. 30, no. 12 pp. 44-
50, Dec. 1997.

[27] C. B. Stunkel, B. Janssens, and W. K. Fuchs, "Address
Tracing for Parallel Machines,'' IEEE Computer, vol. 24, no.
1, pp. 31-45, Jan. 1991.

[28] P. Sweazey and A. J. Smith, "A Class of Compatible Cache
Consistency Protocols and Their Support by the IEEE
Futurebus''. Proc. of the 13th International Symposium on
Computer Architecture, pp. 414-423, June 1986.

[29] M. Tomasevic and V. Milutinovic, "The Cache Coherence
Problem in Shared-Memory Multiprocessors – Hardware
Solutions''. IEEE Computer Society Press, Los Alamitos,
CA, April 1993.

[30] M. Tomasevic and V. Milutinovic, "Hardware Approaches
to Cache Coherence in Shared-Memory Multiprocessors''.
IEEE Micro, vol. 14, no. 5, pp. 52-59, Oct. 1994 and vol. 14,
no. 6, 61-66, Dec. 1994.

[31] M. Tomasevic and V. Milutinovic, “The Word-Invalidate
Cache Coherence Protocol”, Microprocessors and
Microsystems, pp. 3-16, vol. 20, Mar. 1996.

[32] J. Torrellas, M. S. Lam, and J.L. Hennessy, “False Sharing
and Spatial Locality in Multiprocessor Caches”. IEEE
Transactions on Computer, vol. 43, no. 6, pp. 651-663, June
1994.

[33] TPC Benchmark D (Decision Support) Standard
Specification. Transaction Processing Performance Council,
Dec 1995.

[34] R. A. Uhlig and T. N. Mudge, "Trace-Driven Memory
Simulation: a survey''. ACM Computing Surveys, pp. 128-
170, June 1997.

[35] D. W. Walker, “Free-Market Computing and the Global
Economic Infrastructure”, IEEE Parallel and Distributed
Technology, Vol. 4, no. 3, pp. 60-62, FALL 1996.

[36] A. Yu and J. Chen, The POSTGRES95 User Manual.
Computer Science Div., Dept of EECS, University of
California at Berkeley, July 1995.

Proceedings of the 33rd Hawaii International Conference on System Sciences - 2000

0-7695-0493-0/00 $10.00 (c) 2000 IEEE 9

