
EVALUATING OPTIMIZATIONS

FOR MULTIPROCESSORS E-COMMERCE SERVER

RUNNING TPC-W WORKLOAD

Pierfrancesco Foglia, Roberto Giorgi, Cosimo Antonio Prete
Dipartimento di Ingegneria dell’Informazione

Facolta’ di Ingegneria,
 Universita’ di Pisa

Via Diotisalvi, 2 – 56126 PISA (Italy)
{foglia,giorgi,prete}@iet.unipi.it

Abstract
In this paper, the performance of an Electronic
Commerce server, i.e. a system running Electronic
Commerce applications is evaluated in the case of
shared-bus multiprocessor architecture. In particular, we
focused on the memory subsystem design and the analysis
of coherence related overhead when the running
software is setup as specified in the TPC-W benchmark.
Our aim is to individuate main factors that limit
performance in such system, and the main optimization
that can be done to speed-up the execution of E-
Commerce workload on SMP architecture.
Our results show that: i) we need an accurate redesign of
kernel data structure for large cache size; ii) cache
affinity is useful in reducing cold and replacement miss,
but it is not effective in every load-conditions; iii) passive
sharing, i.e. the sharing induced by process migration, is
a cause of performance degradation. A Write-Update
protocol that correctly treats passive sharing (namely
PSCR) permits two beneficial effects: increases
performance in every situation and increases system
scalability (up to 20 processor are permitted in our
configuration)

1. Introduction

Many have thougthed the three-tiered architecture to
best suite the typical architecture of E-Commerce systems
[14], [3], [38], [36], [2], [16]. On tier one, the user machine
runs a client program, typically a web-browser and/or Java
applets; the client sends its requests to the server and
receives the results to be shown to the end-user. Tier two
includes a web-server that satisfies application specific
requests, takes care of the load balancing and delivers
standard services such as transaction management and
site activity log. Tier three contains data and their
managers, typically DBMS systems, to furnish credit-card

information, catalog information, shipping information,
user information and so on. Tier two and three elements
can be merged onto a single platform, or they can be
distributed on several computers (clustered solution [22]).

In the following, we shall consider an E-Commerce
server based on shared-bus shared-memory
multiprocessor, and in particular, we shall focus on the
core architecture related problems, rather than on
software, network, and I/O related issues.

When dealing with E-Commerce server based on
shared-bus shared-memory multiprocessor systems,
design issues are scalability and speedup, due to the high
variability of the load in these systems. These goals can
be achieved by using cache memories, in order to hide the
memory latency, and reduce the bus traffic (the main
causes that limit speed up and scalability). Unfortunately,
multiple cache memories introduce the coherence problem
[18], [27], [28]. The coherence protocol has a great
influence on the performance. Indeed, to guarantee cache
coherence, the protocol needs a certain number of bus
transactions (known as coherence overhead) that add up
to the basic bus traffic of cache-based uniprocessors.
Thus, a design issue is also the minimization of the
coherence overhead. A typical solution adopted in
commercial system for the coherence problem is the MESI
protocol. This protocol might not be performance effective
for shared-bus architecture, and in particular when
process migration is allowed to maintain the load balance.

In this paper, we shall analyze hardware and software
optimizations to improve the performance of a
multiprocessor used as E-Commerce server. In our
evaluation, the workload has been setup as specified in
the TPC-W benchmark [33]. TPC-W simulates the
activities of a business-oriented transactional web server.
In our implementation, we used as component the Apache
daemon [21], [5] several Unix utilities which both access
file system and interface the various programs running on

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

the system, and a SQL server, namely PostgreSQL [37],
[34]. The methodology relies on trace-driven simulation,
by means of the “Trace Factory” environment [8], [19].

In the base case evaluation, we considered the MESI
protocol since it is a widely employed solution. MESI is a
Write Invalidate protocol [25], and it is used in most of the
actual high-performance microprocessors, like the AMD
K5 and K6, the PowerPC series, the SUN UltraSparc II, the
SGI R10000, the Intel Pentium, Pentium Pro, Pentium II,
Pentium III and Merced. MESI coherence overhead (that is
the transactions needed to enforce coherence) is due to
and invalidate transactions and Invalidation Misses.

We wish to relate that overhead with the kind of data
sharing, in order to detect the causes for the coherence
overhead. Three different types of data sharing can be
observed: i) true sharing, which occurs when the same
cached data item is referenced by processes running on
different processors; ii) false sharing [30], which occurs
when several processes running on different processors
reference different data items belonging to the same
memory block; iii) passive [28], [20] or process-migration
[1] sharing, which occurs when a memory block, though
belonging to a private area of a process, is replicated in
more than one cache as a consequence of the migration of
the owner process. Whilst true sharing is unavoidable, the
other two forms of sharing are useless. The relevant
overhead they produce can be reduced [29], [23], [17], [4],
[12], [30] and possibly avoided [9].

2. E-Commerce Server and Workload Setup

We considered general cases of workloads suited for a
multiprocessor, and not depending on the specific E-
Commerce system. To this end, we setup the experiments
as specified by the TPC-W benchmark [33], which
specifies how to simulate the activities of a business-
oriented transactional web server and exercises the
breadth of system component associated with such
environments. The TPC-W benchmark is particularly well
suited to our evaluation since it does not specify the exact
software architecture, nor the hardware architecture used
to distribute the workload.

The application portrayed by the benchmark is a retail
store with customer browse and order scenario. Customer
visit the company web site, the store-front, to look at
products, find information, place an order, or request the
status of an existing order. The majority of the visitor
activity is to browse the site. Some percentage of all visits
result in submitting a new order.

The activity of a site client is described through 13
possible web interactions specified by the benchmark.
Each web interaction describes both the web page content
and the values to submit in case of forms. These values

are generally the inputs of queries invocated through the
CGI model. A static diagram specifies the activations of
next web interactions. The effective path followed by the
client on that diagram is specified through probabilities
defined in the benchmark.

TPC-W specifies that a certain number of entities
(denominated Emulated Browser or EB) dynamically
produce typical client activities for the server. Each
activity generates a certain number of web interactions,
and consequently, the exchange of a certain number of
web objects. The number and the type of these exchanges
are benchmark implementation specific.

In our experiment, 20 EB clients run on several
workstations, connected to the simulated server via a
LAN. In the benchmark, this number and the number of
entries of ITEM tables define the dimension and the initial
population of the DB. That population varies during the
execution of the benchmark. In our case, the number of
entries in ITEM tables is about 100K. This corresponds to
a dimension of 80 MB for the ITEM table and a total
dimension for the DB of 200MB.

3. Methodology

The methodology used in our analysis is based both
on trace-driven simulation [24], [19], [35], and on the
simulation of the three kernel activities that most affect
performance: system calls, process scheduling, and
virtual-to-physical address translation. We used the
Trace Factory environment [8]. The approach used in this
environment is to produce a process trace (a sequence of
user memory references, system-call positions and
synchronization events in case of multiprocess programs)
for each process belonging to the workload by means of a
modified version of Tangolite [10]. Then, the environment
models the execution of workloads by combining multiple
process-traces, generating the references of system calls,
and by simulating process scheduling, and virtual-to-
physical memory address translation. Trace Factory
furnishes the references to a memory-hierarchy simulator
[19].

Table 1. Statistics of source traces for some UNIX
utilities (32-byte block size)

APPLICATION DISTINCT BLOCKS CODE (%) DATA READ DATA WRITE

AWK 9876 76.23 14.94 8.83
CP 5432 77.21 13.91 8.88

GZIP 7123 82.32 14.91 2.77
RM 2655 86.18 11.71 2.11

LS -AR 5860 80.23 13.98 5.79

Process management is modeled by simulating a scheduler
that dynamically assigns a ready process to a processor.
The process scheduling is driven by time-slice for
uniprocess applications, whilst it is driven by time-slice

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

and synchronization events for multiprocess applications.
Virtual-to-physical address translation is modeled by
mapping sequential virtual pages into non-sequential
physical pages.

Table 2. Statistics of multiprocess application source
traces (Apache and SQL) and workload (EC-Server), in

case of 32-byte block size.
DATA (%) SHARED DATA (%)WORKLOAD NUMBE

R OF
TASK

DISTINCT
BLOCKS

CODE
(%) READ WRITE

SHARED
BLOCKS ACCESSES WRITE

Apache 13 34311 73.84 19.18 6.99 1105 1.84 0.6
SQL 8 24141 71.94 18.17 9.89 5838 2.70 0.79

EC-Server 26 112183 75.49 17.12 7.39 6101 1.68 0.54

Table 3. Numerical values of timing parameters for the
multiprocessor simulator (timings are in clock cycles).

TIMING
CLASS PARAMETER

32 BYTES 128 BYTES

CPU READ/WRITE CYCLE 2 2

BUS INVALIDATE TRANSACTION 5 5

WRITE TRANSACTION 5 5

MEMORY-TO-CACHE READ -BLOCK TRANSACTION 68 80

MEMORY-TO-CACHE READ-AND-INVALIDATE-
BLOCK TRANSACTION

68 80

CACHE-TO-CACHE READ-BLOCK TRANSACTION 12 24

CACHE-TO-CACHE READ-AND-INVALIDATE BLOCK
TRANSACTION

12 24

UPDATE-BLOCK TRANSACTION 6 18

The ‘EC-Server’ workload is constituted of 13
processes spawned by the Apache daemon, 8 by
PostgreSQL, and 5 processes are Unix utilities. Table 1 (for
the uniprocess applications) and Table 2 (for the
multiprocess ones) contain some statistics of the process
traces used to generate the workload for a 32-Byte block
size.

Trace Factory includes a multiprocessor simulator,
which characterizes a shared-bus multiprocessor in terms
of CPU, cache and bus parameters. The simulated
processors are MIPS-R10000 ones; paging relays on 4-
KByte page size (the default size of MIPS R10000 [26]).
Each processor uses a write buffer thus implementing a
relaxed model of memory consistency, in particular the
processor consistency [7], [39]. Finally, the bus
parameters are the number of CPU clock cycles for each
kind of transaction: write, invalidation, update-block,
memory-to-cache read-block, and cache-to-cache read-
block. The bus supports transaction splitting.

The simulator classifies the coherence overhead by
analyzing the access patterns to shared data (true, false e
passive sharing [20]). The type of access pattern to the
cache block determines the type of the invalidation-miss.
The classification is based on an existing algorithm [11],

extended to the case of passive sharing, finite size caches,
and process migration.

4. Simulation Results

We considered the following multiprocessor
configurations: a 4-processor machine and several other
“high-end” architectures (8, 12, 16 processors). Each
processor has a private cache, whose size has been varied
between 128 KBytes and 2 MBytes, whilst for block size
we considered 32, 64, 128 and 256 Bytes. We considered a
128 bit shared bus. For the scheduling policy two
solutions have been analyzed: random and cache-affinity
[31]; scheduler time-slice is equivalent to about 200,000
references. The bus timing relative to these case studies
are reported in Table 3.

Global System Power

0

0.5

1

1.5

2

2.5

3

3.5

4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size / Number of Ways

Figure 1. Global System Power (GSP) versus cache
size (128K Bytes, 256K Bytes, 512K Bytes, 1M Bytes, 2M
Bytes) and number of ways (1, 2, 4), for a 4-processor
system, random scheduling policy, and 32-Byte block
size.

4.1. Initial Analysis

In our initial analysis, we considered a 4-processor
system having a 32-Byte cache block size, when cache
capacity and associativity are varied. The system adopts
MESI protocol, and thus has the following bus
transactions: read-block , read-and-invalidate,
invalidate, and update transactions.. Therefore, the main
part of traffic is due to classical misses (sum of cold,
conflict, and capacity misses [39]) and coherence traffic,
constituted of misses due to the invalidation of actual
shared copies and invalidate transactions.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Bus Utilization (%)

0

10

20

30

40

50

60

70

80

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size / Number of Ways

Figure 2. Bus Utilization (in percentage) versus cache
size (128K Bytes, 256K Bytes, 512K Bytes, 1M Bytes, 2M
Bytes) and number of ways (1, 2, 4), for a 4-processor
system, random scheduling policy, and 32-Byte block
size. The less the bus utilization, the more system
power can be gained by adding new processors in the
system.

Miss Rate (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size / Number of Ways

Other Miss (Kernel & User)

Invalidation Miss (Kernel & User)

Figure 3. Breakdown of miss rate versus cache size
(128K Bytes, 256K Bytes, 512K Bytes, 1M Bytes, 2M
Bytes) and number of ways (1, 2, 4), for a 4-processor
system, random scheduling policy, and 32-Byte block
size. Miss Rate decreases with the cache size, mainly
because of Other Miss. "Other Miss" includes cold
miss, capacity miss, and conflict miss.

The GSP graph (Figure 1) shows, as expected, that we
can obtain a more powerful machine by increasing the
cache size. The larger are the caches, the more scalable is
the machine. Indeed, we can define the scalability of a
multiprocessor system up to N processors as the number
N of processors that causes the GSP to drop by more than
0.5 when the processors are increased from N to N+1 (we
verified that this definition is equivalent to the definition
of ‘critical point’ in [9].) By using this definition, we
calculated that the machine we are considering is scalable

up to 4 processors in the case of 128-KByte direct access
cache, and up to 9 processors in the case of 2-MByte 4-
way cache. The higher scalability is essentially due to
lower bus utilization when adopting larger caches (Figure
2). The reduction of bus traffic with the cache size and
associativity is due to the lower miss rate, and in particular
to the lower ‘other-miss’ rate (including cold, conflict and
capacity misses) (Figure 3).

Invalidation Miss (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size / Number of Ways

False Sharing (Kernel)

True Sharing (Kernel)

True & False Sharing (User)

Figure 4. Breakdown of invalidation miss rate versus
cache size (128K Bytes, 256K Bytes, 512K Bytes, 1M
Bytes, 2M Bytes) and number of ways (1, 2, 4), for a 4-
processor system, random scheduling policy, and 32-
Byte block size

Number of Coherence Transactions per 100 Memory References

0

0.02

0.04

0.06

0.08

0.1

0.12

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size / Number of Ways

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Figure 5. Number of coherence transactions (invalidate
transactions) versus cache size (128K Bytes, 256K
Bytes, 512K Bytes, 1M Bytes, 2M Bytes) and number of
ways (1, 2, 4), for a 4-processor system, random
scheduling policy, and 32-Byte block size.

At this point, it is clear how the reduction of miss rate
plays an essential role to determine system performance.
We can reduce the traditional misses (the ‘other-misses’)
by using classical techniques [39], [6] (in particular
modifying cache associativity, cache size, and cache block
size,) or by using program restructuring techniques [13],

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

[32], [15]). On the other hand, the effects of these
techniques on invalidation misses may be more
unpredictable: we know we can intervene on them by
using an appropriate coherence protocol. In our case
study, invalidation misses do not decrease (Figure 4 and,
more in detail, Figure 5) with the cache size. We observe,
on the contrary, a slight decrease.

Coherence overhead (invalidation misses and
coherence transaction) increases with the cache size and
associativity (Figures 4 and 5,) and it weighs, in
percentage, more and more on the performance. In this
case, most of the coherence overhead (Figure 5) is due to
false sharing generated in the kernel. True sharing is
present in the kernel, whilst it is limited in the application
user area. Passive sharing increases as the cache capacity
is increased, since the average lifetime of a cache copies
increases as well (Figure 5).

Global System Power

0

1

2

3

4

5

6

12
8K

/4

12
8K

/8

25
6K

/4

25
6K

/8

51
2K

/4

51
2K

/8

1M
/4

1M
/8

2M
/4

2M
/8

Cache Size / Number of Processors

Figure 6. Global System Power versus cache size (128K
Bytes, 256K Bytes, 512K Bytes, 1M Bytes, 2M Bytes), in
case of 4 and 8 processors, random scheduling policy,
32-Byte block size and two-way set associative cache.
The GSP increase is higher in the 8-processor case as
the cache size increases. This is due to the higher bus
saturation in the 8-processor case: in this situation,
advanced techniques for reducing bus utilization and
miss rate are crucial.

4.2. Scaling Up the Architecture

Let us consider the 8-processor configuration. We
have seen that this configuration is near the scalability
limit of the machine. We considered only the case of a 2-
way set associative cache for the sake of simplicity. After
several experiments we found that an optimal block size for
the system is 128 byte. The system is working with the
bus almost in full saturation (Figure 7.) The GSP can be
increased, and the bus utilization reduced, by using larger
caches (Figure 6) and higher associativity.

We observe a miss rate increase (Figure 8) and an
increase in the number of invalidations (Figure 9). The

miss increase is due both to the increased invalidation
miss rate, in turn due to the higher parallelism of the
system (causing a higher probability that a shared block is
used by a higher number of processors,) and to the higher
‘other miss’ rate caused by the higher number of context-
switch misses (the misses generated when reloading the
working set of a newly scheduled process) related to the
higher number of migrating processes.

Bus Utilization

0

10

20

30

40

50

60

70

80

90

100

12
8K

/4

12
8K

/8

25
6K

/4

25
6K

/8

51
2K

/4

51
2K

/8

1M
/4

1M
/8

2M
/4

2M
/8

Cache Size / Number of Processor

Figure 7. Bus Utilization versus cache size (128K Bytes,
256K Bytes, 512K Bytes, 1M Bytes, 2M Bytes), in case of
4 and 8 processors, random scheduling policy, 32-Byte
block size, and two-way set associative cache.

Miss Rate (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

12
8K

/4

12
8K

/8

25
6K

/4

25
6K

/8

51
2K

/4

51
2K

/8

1M
/4

1M
/8

2M
/4

2M
/8

Cache Size / Number of Ways / Number of Processors

Other Miss (Kernel & User)

Invalidation Miss (Kernel & User)

Figure 8. Breakdown of miss rate versus cache sizes
(128 K Bytes, 256K Bytes, 512K Bytes, 1M Bytes, 2M
Bytes) in case of 4 and 8 processors, random
scheduling policy, 32-Byte block size, and two-way
set associative caches. Both Invalidation and other
misses increases on the 8-processor configuration.
The higher migration causes the ‘other miss’ rate
increase. Invalidation misses increase due to the
higher parallelism of the machine: the probability that
a certain shared block is used by more processors
increases.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

The invalidation miss increase (Figure 9) is essentially
due to the kernel activity, and in particular to the false
sharing. Consequently, we notice that a special effort is
needed to organize kernel data structures. This could be
easily accomplished since the kernel is a completely
known part of the system at design time. False sharing can
be eliminated either by using special coherence protocols
[29], or by properly allocating the involved shared data
structures [12] or by means of data restructuring through
profiling information [12], [30].

Invalidation Miss (%)

0

0.05

0.1

0.15

0.2

0.25

12
8K

/4

12
8K

/8

25
6K

/4

25
6K

/8

51
2K

/4

51
2K

/8

1M
/4

1M
/8

2M
/4

2M
/8

Cache Size / Number of Processors

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)

Figure 9. Breakdown of Invalidation miss rate versus
cache sizes (128K Bytes, 256K Bytes, 512K Bytes, 1M
Bytes, 2M Bytes) in case of 4 and 8 processors,
random scheduling policy, 32-Byte block size for two-
way cache.

Number of Coherence Transactions per 100 Memory References

0.00

0.02

0.04

0.06

0.08

0.10

0.12

12
8K

/4

12
8K

/8

25
6K

/4

25
6K

/8

51
2K

/4

51
2K

/8

1M
/4

1M
/8

2M
/4

2M
/8

Cache Size / Number of Processors

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Figure 10. Number of coherence transactions
(invalidate transactions) versus cache size (128K
Bytes, 256K Bytes, 512K Bytes, 1M Bytes, 2M Bytes), in
case of 4 and 8 processors, random scheduling policy,
32-Byte block size and two-way set associative cache.
Each component of this overhead increases in the 8-
processor configuration.

Also coherence transactions increase (Figure 10),
essentially due to the increased passive sharing. As in the

4-processor case, passive sharing becomes more
significant with larger caches. Thus, the larger caches
adopted in current systems enhance the passive sharing
overhead.

Global System Power

0

2

4

6

8

10

12

14

16

8/Random 8/Affinity 12/Random 12/Affinity 16/Random 16/Affinity
Number of Processor / Scheduling Algorithm

MESI

AMSD

PSCR

Figure 11. Global System Power versus number of
processor (8, 12, 16) and scheduling algorithm
(random, affinity). Data assume 2-MByte cache size.
Cache is a 2-way set associative with 128-Byte block
size.

Bus Utilization (%)

0

10

20

30

40

50

60

70

80

90

100

8/Random 8/Affinity 12/Random 12/Affinity 16/Random 16/Affinity

Number of Processors / Scheduling Algorithm

MESI

AMSD

PSCR

Figure 12. Bus utilization versus number of processor
(8, 12, 16) and scheduling algorithm (random, affinity).
The cache has 128-Byte block size, 2-MByte cache size,
and it is 2-way set associative.

Thus, we can increase the performance of the 8-
processor system by intervening on several aspects: i) on
the ‘other misses’, ii) on the kernel false sharing, iii) by
limiting the effects of process migration. We can intervene
on the point i) and ii) by increasing the block size. As for
the effects on performance caused by the process
migration we can modify both on the scheduling policy
and the coherence protocol. In the following we analyze
how we can increase the system scalability by intervening
on the coherence protocol.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

As we observe little sharing in the user area, we can
avoid to use a specific coherence protocol for the true and
false sharing, and we can reduce kernel false sharing by
using data restructuring techniques for kernel data [40]
[30]. Considering that process migration may be
unavoidable since it allows for a load balancing among
processors, and that process migration becomes more
significant as the number of processors increases and
larger caches are used, it appears convenient to use
coherence protocols that help reduce passive sharing. For
this reasons, we considered two coherence protocols that
reduce or eliminate passive sharing. The first is based on
Write-Update technique and the second on a Write-
Invalidate technique. They are respectively, PSCR [9] and
AMSD (Adaptive Migratory Sharing Detection) [23], [4].

Miss Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

8/
R

an
do

m
/M

E
S

I

8/
R

an
do

m
/A

M
S

D

8/
R

an
do

m
/P

S
C

R

8/
A

ffi
ni

ty
/M

E
S

I

8/
A

ffi
ni

ty
/A

M
S

D

8/
A

ffi
ni

ty
/P

S
C

R

12
/R

an
do

m
/M

E
S

I

12
/R

an
do

m
/A

M
S

D

12
/R

an
do

m
/P

S
C

R

12
/A

ffi
ni

ty
/M

E
S

I

12
/A

ffi
ni

ty
/A

M
S

D

12
/A

ffi
ni

ty
/P

S
C

R

16
/R

an
do

m
/M

E
S

I

16
/R

an
do

m
/A

M
S

D

16
/R

an
do

m
/P

S
C

R

16
/A

ffi
ni

ty
/M

E
S

I

16
/A

ffi
ni

ty
/A

M
S

D

16
/A

ffi
ni

ty
/P

S
C

R

Number of CPU / Scheduling Algorithm / Coherence Protocol

Other Miss

Invalidation Miss

Figure 13. Miss Rate versus number of processor (8,
12, 16) and scheduling algorithm (random, affinity). The
cache has 128-Byte block size, 2MByte cache size, and
it is 2-way set associative.

To locate scalability limits, our analysis has been
conducted by varying both scheduling policy and the
number of processors. As can be observed (Figure 11) as
the number of processors increases, the performance
difference among protocols becomes more evident. In
particular, the choice of MESI protocol appears the most
penalizing. This is due to the non-selective invalidation
technique of MESI.

AMSD has beneficial effects on passive sharing
although it does not eliminate it completely. The benefits
on passive sharing are due the little reduction of total
misses (Figure 13) and to a decrease of coherence
transactions (Figure 14.) The reduction of coherence
transaction is due to the behavior of AMSD. When
AMSD detects a block that has to be treated exclusively
for a long time interval, it invalidates the copy locally

during the handling of a remote miss, thus avoiding a
necessarily consequent bus transaction.

PSCR is based on an update of a effectively shared
copy, thus avoiding invalidation misses. By using the
write-update technique, the number of coherence
transactions result higher compared to other protocols
(Figure 14.) On the other side, the total number of misses
produces a more consistent bus utilization reduction
(Figure 12.) Moreover, the cost of the coherence overhead
is somewhat limited by the lower cost of the coherence
maintaining write operations (cfr. Table 3.) The use of
write operation is also more advantageous since that
operation can be performed asynchronously, without a
direct processor delay. Finally, the write cost is
independent from the block size.

Coherence Transaction per 100 Memory References

0

0.02

0.04

0.06

0.08

0.1

0.12

8/
R

an
do

m
/M

E
S

I

8/
R

an
do

m
/A

M
S

D

8/
R

an
do

m
/P

S
C

R

8/
A

ffi
ni

ty
/M

E
S

I

8/
A

ffi
ni

ty
/A

M
S

D

8/
A

ffi
ni

ty
/P

S
C

R

12
/R

an
do

m
/M

E
S

I

12
/R

an
do

m
/A

M
S

D

12
/R

an
do

m
/P

S
C

R

12
/A

ffi
ni

ty
/M

E
S

I

12
/A

ffi
ni

ty
/A

M
S

D

12
/A

ffi
ni

ty
/P

S
C

R

16
/R

an
do

m
/M

E
S

I

16
/R

an
do

m
/A

M
S

D

16
/R

an
do

m
/P

S
C

R

16
/A

ffi
ni

ty
/M

E
S

I

16
/A

ffi
ni

ty
/A

M
S

D

16
/A

ffi
ni

ty
/P

S
C

R

Number of CPU / Scheduling Algorithm / Coherence Protocol

False Sharing (Kernel)

True Sharing (Kernel)

True & False Sharing (User)

Passive Sharing (User)

0.52 0.52 0.53 0.53 0.53 0.53

Figure 14. Coherence Transactions versus number of
processor (8, 12, 16) and scheduling algorithm
(random, affinity). The cache has 128-Byte block size, 2-
MByte cache size, and it is 2-way set associative.

Let us now analyze the scalability offered by the
various protocols. As observed previously, the system is
in saturation when the GSP does not increase of a minimal
quantity as the number of processors is increased. In our
case, when switching from 8 to 12 processor (or from 12 to
16) the threshold beyond which the system is in saturation
corresponds to a GSP increase of 2 (Figure 11.) Based on
these considerations, we can conclude that the system
adopting the MESI protocol (in case of random scheduling
policy) is already at the saturation threshold when
switching from 8 to 12 processors. The system is in full
saturation when switching from 12 to 16 processors with
both scheduling policies.

As for AMSD, the situation is a slightly better when
switching from 8 to 12 processor, whilst we observe again
full saturation when switching from 12 to 16 processors
(with both scheduling policies).

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

PSCR is never in saturation in the shown configuration,
thus justifying its adoption when higher performance
(GSP) is needed. We also observe that in configurations
with a lower number of processors, the choice of a
different protocol is less critical. When the performance is
pushed to the limits (and consequently the system works
near saturation) the designer should take advantage of
more optimization techniques like smart coherence
protocols.

The combination of all analyzed techniques (adequate
block size, cache affinity, and PSCR) allows us to push
system scalability up to 20 processors with a
corresponding GSP of about 16.

5. Conclusion

In this paper, we analyzed some techniques that
improve the performance of a shared-bus multiprocessor
used as an Electronic Commerce server system. In
particular, we have analyzed the memory subsystem,
whose performance depends heavily on the miss rate and
bus traffic induced on the shared-bus.

Our workload has been set up by considering software
components like an HTTP server (Apache), PostgreSQL
DB-server, and typical UNIX shell commands, according
to the specification of the TPC-W benchmark.

As the number of processor increases, the goal of
reducing coherence overhead and bus traffic becomes
essential, in order to achieve good performance. In this
case, we can use classical techniques to reduce the ‘other-
miss’ rate, but it is crucial also to reduce coherence
overhead. In case of false sharing, coherence overhead
can be reduced by means of static restructuring
techniques. In case of passive sharing, a specific
coherence protocol has to be preferred. The adoption of
PSCR allows us to extend the multiprocessor scalability at
least up to 20 processors for the experiments that we
carried out.

From the evaluations carried out, we can extract useful
suggestions for application developers, kernel and
architecture designers. First of all, when designing E-
Commerce Server systems, the reduction of classical
misses has to be achieved by using techniques that can
enhance the locality of the program, and other traditional
solutions.

Then, kernel designers should take into account false
sharing and thus false sharing misses have to be reduced
by using kernel structure restructuring techniques. This
could be easily achieved, since the kernel is a well-know
part of the system at design time.

As for architectural aspects, in the case of bus-based
multiprocessors, MESI protocol is sufficient for
configurations having a not so high number of processors

(8 in our experiments). If a higher performance is needed,
the increase of number of processor really produces
benefits, if other miss reduction techniques are
considered. In particular, coherence protocols like PSCR
produce performance benefits by eliminating coherence
overhead due to passive sharing, without generating
useless invalidation misses.

6. References

[1] A. Agarwal and A. Gupta, “Memory Reference
Characteristics of Multiprocessor Applications under
Mach”. Proc. ACM Sigmetrics, Santa Fe, NM, pp. 215-225,
May 1998.
[2] J.M. Andreoli, Francois Paculli, and R. Pareschi,
“XPECT: A Framework for Electronic Commerce”, IEEE
Internet Computing, vol. 1, no. 4, pp. 40-48, July–August
1997.
[3] R. Brandau, T. Confrey, A. D’Silva, C.J. Matheus, R.
Weihmayer, “Reinventing GTE with Information

IEEE Computer, vol. 32, no. 3, pp. 50-58,
March 1999.
[4] A. L. Cox and R. J. Fowler, "Adaptive Cache Coherency
for Detecting Migratory Shared Data,'' Proc. 20th Int'l
Symp. on Computer Architecture, San Diego, California,
pp. 98-108, May 1993.
[5], J. Edwards, “The changing Face of Freeware”. IEEE
Computer, vol. 31, no. 10, pp. 11-13, October 1998.
[6], M. J. Flynn, Computer Architecture, Pipelined and
Parallel Processor Design. Jones ad Bartlett Publishers,
1995.
[7] K. Gharachorloo, A. Gupta, and J. Hennessy,
“Performance Evaluation of Memory Consistency Models
for Shared-Memory Multiprocessors”. Proc. of the Fourth
Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, Santa Clara,
California, pp. 245-357, Apr. 1991.
[8] R. Giorgi, C. Prete, G. Prina and L. Ricciardi, “Trace
Factory: a Workload Generation Environment for Trace-
Driven Simulation of Shared-Bus Multiprocessor”. IEEE
Concurrency, vol. 5, no. 4, pp. 54-68, Oct-Dec 1997.
[9] R. Giorgi, C.A. Prete, “PSCR: A Coherence Protocol for
Eliminating Passive Sharing in Shared-Bus Shared-
Memory Multiprocessors”, IEEE Transactions on
Parallel and Distributed Systems, pp. 742-763, vol. 10,
no. 7, July 1999.
[10] S. R. Goldschmidt and J. L. Hennessy, "The Accuracy
of Trace-Driven Simulations of Multiprocessors''. Proc. of
the ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, pp. 146-157, May 1993.
[11] R. L. Hyde and B. D. Fleisch, “An Analysis of
Degenerate Sharing and False Coherence”. Journal of

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Parallel and Distributed Computing, vol. 34, no. 2, pp.
183-195, May 1996.
[12] T. E. Jeremiassen and S. J. Eggers, “Reducing False
Sharing on Shared Memory Multiprocessors through
Compile Time Data Transformations”, ACM SIGPLAN
Notice, vol. 30, no. 8, pp.179-188, August 1995.
[13] J. Kalamatianos, A. Khalafi, D. Kaeli, W. Meleis,
“Analysis of Temporal-Based Program Behavior for
Improved Instruction Cache Performance”, IEEE
Transactions on Computers, Vol. 48, No. 2, February 1999.
[14] T. Lewis, “The Legacy Maturity Model”. IEEE
Computer, vol. 31, no. 11, pp. 125-128, November 1998.
[15] S. Lorenzini, G. Luculli, C. A. Prete, “A Fast Procedure
Placement Algorithm for Optimal Cache Use”, Proc. of the
MELECON'98, Tel Aviv, Israel, pp 1279-1284, May 1998.
[16] V. Milutinovic , System Support for Electronic
Business on Internet. http://galeb.etf.bg.ac.yu/
~vm/books/2001/ebi.html
[17] C. A. Prete, "A New Solution of Coherence Protocol
for Tightly Coupled Multiprocessor Systems,''
Microprocessing and Microprogramming, vol. 30, no. 1-5,
pp. 207-214, 1990.
[18] C. A. Prete, "RST Cache Memory Design for a Tightly
Coupled Multiprocessor System,'' IEEE Micro , vol. 11, no.
2, pp. 16-19, 40-52, Apr. 1991.
[19] C.A. Prete, G. Prina, and L. Ricciardi, “A Trace Driven
Simulator for Performance Evaluation of Cache-Based
Multiprocessor System”. IEEE Transactions on Parallel
and Distributed Systems, vol. 6, no. 9, pp. 915-929,
September 1995
[20] C. A. Prete, G. Prina, R. Giorgi, and L. Ricciardi, “Some
Considerations About Passive Sharing in Shared-Memory
Multiprocessors”. IEEE TCCA Newsletter, pp. 34-40, Mar.
1997.
[21] D. Robinson and the Apache Group, APACHE – An
HTTP Server, Reference Manual, 1995.
http://www.apache.org .
[22] R. Short, R. Gamache, J. Vert and M. Massa,
“Windows NT Clusters for Availability and Scalability”, In
Proceedings of the 42nd IEEE International Computer
Conference, pp. 8-13, San Jose, CA February 1997.
[23] P. Stenstrom, M. Brorsson, and L. Sandberg, “An
Adaptive Cache Coherence Protocol Optimized for
Migratory Sharing”. Proc. of the 20 th Annual Int’l Symph.
on Computer Architecture. San Diego, CA, May 1993.
[24] C. B. Stunkel, B. Janssens, and W. K. Fuchs,
"Address Tracing for Parallel Machines,'' IEEE Computer,
vol. 24, no. 1, pp. 31-45, Jan. 1991.
[25] P. Sweazey and A. J. Smith, "A Class of Compatible
Cache Consistency Protocols and Their Support by the
IEEE Futurebus''. Proc. of the 13th International
Symposium on Computer Architecture, pp. 414-423, June
1986.

[26], D. Sweetman, See Mips Run. Morgan Kaufmann
Publishers, Inc. San Francisco, CA. 1999.
[27], M. Tomasevic and V. Milutinovic , "The Cache
Coherence Problem in Shared-Memory Multiprocessors –
Hardware Solutions''. IEEE Computer Society Press, Los
Alamitos, CA, April 1993.
[28], M. Tomasevic and V. Milutinovic, "Hardware
Approaches to Cache Coherence in Shared-Memory
Multiprocessors''. IEEE Micro , vol. 14, no. 5, pp. 52-59,
Oct. 1994 and vol. 14, no. 6, 61-66, Dec. 1994.
[29], M. Tomasevic and V. Milutinovic, “The Word-
Invalidate Cache Coherence Protocol”, Microprocessors
and Microsystems, pp. 3-16, vol. 20, Mar. 1996.
[30] J. Torrellas, M. S. Lam, and J.L. Hennessy, “False
Sharing and Spatial Locality in Multiprocessor Caches”.
IEEE Transactions on Computer, vol. 43, no. 6, pp. 651-
663, June 1994.
[31] J. Torrellas, A. Tucker, and A. Gupta, "Evaluating the
Performance of Cache-Affinity Scheduling in Shared-
Memory Multiprocessors,'' Journal of Parallel and
Distributed Computing, vol. 24, no. 2, pp. 139-151, Feb.
1995.
[32], J. Torrellas, R. Daigle. “Optimizing the Instruction
Cache Performance of the Operating System”. IEEE
Transactions on Computers, Vol. 47,No. 12, December
1998.
[33] TPC BENCHMARK W (Web Commerce)
Specification, version 1.0.1. Transaction Processing
Performance Council, February 2000.
[34], P. Trancoso, J. L. Larriba-Pey, Z. Zhang, and J.
Torrellas, “The Memory Performance of DSS Commercial
Workloads in Shared-Memory Multiprocessors”. Proc. of
the 3 rd Intl. Symp. on High Performance Computer
Architecture, Feb 1997.
[35] R. A. Uhlig and T. N. Mudge, "Trace-Driven Memory
Simulation: a survey''. ACM Computing Surveys, pp. 128-
170, June 1997.
[36] D. W. Walker, “Free-Market Computing and the
Global Economic Infrastructure”, IEEE Parallel and
Distributed Technology, Vol. 4, no. 3, pp. 60-62, FALL
1996.
[37] A. Yu and J. Chen, The POSTGRES95 User Manual.
Computer Science Div., Dept of EECS, University of
California at Berkeley, July 1995.
[38] J. Edwards, 3-Tier Client/Server At Work . Wiley
Computer Publishing, New York, N.Y., 1999.
[39] J. Hennessy and D. A. Petterson, Computer
Architecture: a Quantitative Approach, 2nd edition.
Morgan Kaufmann Publishers, San Francisco, CA, 1996.
[40] T. E. Jeremiassen and S. J. Eggers, “Reducing False
Sharing on Shared Memory Multiprocessors through
Compile Time Data Transformations”, ACM SIGPLAN
Notice, vol. 30, no. 8, pp.179-188, August 1995.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

