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Abstract
In this work, by using dynamic analysis techniques, we
analyze how a workload can be accelerated in the case of
a shared-bus shared-memory multiprocessor. It is well
known that, in this kind of systems, the bus is the critical
element that can limit the scalability of the machine.
Nevertheless, many factors that influence bus utilization
have not been yet investigated for this kind of workload, in
particular the effects of thread migration. The operating
system effects are also considered in our evaluation.
We analyzed a basic four-processor and a high-end
sixteen-processor machine, implementing three different
coherence protocols (including MESI and another solution
from the literature). We show that even in the four-
processor case, the overhead induced by the sharing of
private data, as a consequence of process migration,
namely passive sharing, cannot be neglected. Indeed, the
analysis shows that a protocol based on a selective
strategy for dealing with private and shared data has a
better performance than protocols either relying on the
detection of migratory access-pattern or purely using a
Write-Invalidate strategy, like MESI.

We varied the architectural parameters to show how
passive sharing and other coherence overhead are
influenced by different cache choices. Then, we considered
the sixteen-processor case, where the effects on
performance are more evident.

We also end up that performance can take advantage
of large caches and cache affinity scheduling. However,
even with affinity scheduling, a selective protocol delivers
better performance.

1 Introduction
Symmetric Multi Processor (SMP) architectures are
becoming more and more widespread since they are a
simple and quite cheap solution to speed up complex
workloads demanding for high performance like, just to
give some examples, E-business, Web-servers, and DSS
workloads [19]. In these system architectures, processors

access the shared memory through a shared bus. This bus
is the bottleneck of the system, since it can easily reach a
saturation condition, thus limiting the performance and the
scalability of the machine.

The classical solution to overcome this problem is the
use of per-processor cache memories [13]. Cache
memories introduce the coherency problem and the need
for adopting adequate coherence protocols [22], [23].
Coherence protocols generate a certain number of bus
transactions and local operations that produce global
actions, thus accounting for a non-negligible overhead in
the system (coherence overhead). The traffic induced by
the coherence overhead adds up to the basic bus traffic,
which is necessary to access the main memory [9].

Coherence overhead can be further classified in the
following categories: True Sharing [24] overhead is the
coherence overhead originated by processors updating the
same shared word. In this condition, the system needs to
provide each reading processor with the word most current
value and the consequent coherence actions are
unavoidable. False Sharing overhead [4], [24] is the
overhead caused by multiple processors accessing different
words within the same cache block. Passive Sharing [23],
[16], [9] or process-migration [1] sharing overhead is the
coherence overhead generated by private data as a
consequence of process migration. These types of
overhead may have a negative effect on the performance
has shown in the literature [4], [22], [24], [9].

The performance analysis of the multiprocessor
memory-subsystem has to account for that overhead. In
this phase we can use dynamic analysis techniques. From
static analysis we can detect False Sharing and adopt the
necessary optimizations [24], but we cannot conclude
anything about passive sharing, since the migration of
private data is due to the process migration, that is a run-
time event. We would like also to quantify the entity of
false and true sharing, which again depends on run-time
conditions and are highly influenced by architectural
parameters.



As for possible dynamic analysis techniques: we
observe that we cannot use the typical counters that are
already present in many recent processors, since they
provide information regarding private caches. Hardware
tools for analyzing shared data are yet to come [19], so that
this type of analysis should be performed through
execution driven, or trace-driven simulation, that includes
specific tools for analyzing the sharing behavior.

In this paper, we utilize trace driven simulation (by
means of the “Trace Factory” environment [8]) and
specific tools for the analysis of coherence overhead [6], to
analyze memory hierarchy behavior and justify
performance issues of a DSS (Decision Support System)
workload in a shared-bus shared-memory multiprocessor
server. In our evaluation the DSS server activity is
reproduced through a workload made of applications like
the PostgreSQL [28] DBMS, which handles some of the
TPC-D [25] queries, and several Unix utilities, which both
access file system and interface the various programs
running on the system.

The analysis starts from a reference case, and explores
different architectural choices for cache, coherence
protocols and number of processors. The scheduling
algorithm has been varied, considering both a random and
a cache affinity policy [17].

Our results show that in these systems larger caches
and cache affinity improve the performance. Anyway, a
coherence protocol, namely PSCR [16], which adopts a
selective invalidation strategy based on the type of data
(private or shared) achieves better performance than a pure
Write-Invalidate protocols (like MESI) or other protocol
specifically designed to deal with the migration of data
(rather than process migration), like the protocol of
Stenstrom and Cox [18], [3], in the following tagged as
AMSD (Adaptive Migratory Sharing Detection) protocol.

2 Coherence Overhead
The main coherence protocol classes are Write-Update
(WU) and Write-Invalidate (WI) [22]. WU protocol
updates the remote copies on each write involving a shared
copy. Whereas, a WI protocol invalidates remote copies in
order to avoid updating them.

In our simulations, we implemented three different
coherence protocol: MESI, AMSD and PSCR [9]. MESI is
a Write Invalidate MOESI class protocol [21], based on
Goodman’s Write-Once 4-state protocol [11]. The protocol
has four states: Modified, when the cache block is the only
modified copy with respect to system memory; Exclusive,
when the cache block holds the only valid copy that is
identical to the block in main memory; Shared, when the
cache block holds a valid copy that is identical to the block
in main memory and at least in one other cache; Invalid,
when the cache block holds no valid information. It is
implemented in most of the commercial high-performance
microprocessor like AMD K5 and K6, the PowerPC series,
the SUN UltraSparc II, SGI R10000, Intel Pentium,
Pentium Pro, Pentium II, III and IA-64.

AMSD is a protocol using Adaptive Migratory Sharing
Detection [3], [18]. Migratory sharing is characterized by
the exclusive use of data for a long time interval.
Typically, the control over these data migrates from one
process to another [12]. The protocol identifies migratory-
shared data dynamically in order to reduce the cost of
moving them. The implementation is an extension of a
common MESI protocol.

PSCR (Passive Shared Copy Removal) [9] adopts a
selective invalidation scheme for the private data, and a
WU scheme for the actively shared data. A cached copy
belonging to a process private area is invalidated locally as
soon as another processor fetches the same block. The
selective invalidation mechanism allows PSCR to gain the
benefits of an update mechanism in shared bus
architectures.
The MESI protocol is the most widely adopted protocol, so
it is a reference point for our evaluations. We did not
evaluate a pure WU protocol, like Dragon, since it is
known from the literature that a pure WI protocol
outperforms a pure WU protocol when we adopted a
scheduling which permits process migration. For this
reason, we considered a selective invalidation protocol,
which has a WU strategy for the truly shared data (PSCR).
Moreover, we considered a protocol specifically designed
to treat the data migration (AMSD), since process
migration involves also data migration.

Coherency maintaining involves a number of
operations. Some of them are overhead that adds up to the
basic bus traffic, which is necessary to access the main
memory. For WU protocols, this overhead is made of write
transactions, while for WI protocols we have to consider
the invalidation requests and the invalidation misses.

Three different sources of sharing overhead may be
observed: i) active sharing [24], which occurs when the
same cached data item is referenced by different processes
concurrently running on different processors; ii) false
sharing [24], which occurs when several processors
reference always separately different data items belonging
to the same memory block separately; iii) passive [22][16]
or process-migration [1] sharing, which occurs when a
memory block, though belonging to a private area of a
process, is replicated in more than one cache as a
consequence of the migration of the owner process. Whilst
active sharing generates unavoidable overhead, the other
two sharing overhead can be eliminated or decreased.

In order to classify the coherence overhead generated
by the applications running on multiprocessors, we have
extended an existing algorithm [14] to the case of passive
sharing. We also improved the algorithm in order to
manage the case of finite size caches, and the case of
process migration. This algorithm [6] is based on the
analysis of access patterns to shared data. Our pattern
sensitive classification extends previous definitions
including sharing patterns on private data. This kind of
pattern is a non-obvious consequence of the process
migration.



3 Methodology and Workload
Description

The methodology that we used is based on trace-driven
simulation [20], [15], [27] and on the simulation of the
three kernel activities that most affect performance: system
calls, process scheduling, and virtual-to-physical address
translation. Memory references include both user and
kernel references, and they are produced "on-demand” [8].

The approach used is to produce a source trace (a
sequence of memory references, system-call positions and
synchronization events in case of multithreaded programs)
by means a tracing tool (a modified version of Tangolite
[10]). Trace Factory then models the execution of complex
workloads by combining multiple source traces and
simulating system calls (which could also involve I/O
activity), process scheduling and virtual-to-physical
translation. Finally, Trace Factory produces the references
(target trace) furnished as input to a memory-hierarchy
simulator [15]. Trace Factory generates references
according to an on-demand policy: it produces a new
reference when the simulator requests one, so that the
timing behavior imposed by the memory subsystem
conditions the reference production [7].

Table 1. Statistics of source traces for some Unix commands (64-byte
block size 10,000,000 references per process).

DATA (%)APPLICATION
DISTINCT
BLOCKS

CODE
(%) READ WRITE

awk (beg) 4963 76.76 14.76 8.48
awk (mid) 3832 76.59 14.48 8.93
cp 2615 77.53 13.87 8.60
gzip 3518 82.84 14.88 2.28
rm 1314 86.39 11.51 2.10
ls -aR 2911 80.62 13.84 5.54
ls -ltR (beg) 2798 78.77 14.58 6.65
ls -ltR (mid) 2436 78.42 14.07 7.51

Process management is modeled by simulating a
scheduler that dynamically assigns a ready process to a
processor. The process scheduling is driven by time-slice
for uniprocess applications, whilst it is driven by time-slice
plus synchronization events for multithreaded applications.
Virtual-to-physical address translation is modeled by
mapping sequential virtual pages into non-sequential
physical pages. An evaluation of this methodology has
been carried out in [8].

We considered a DSS workload as a benchmark for our
analysis, as a generic possible case of real workload for
our performance evaluation and example of use of
dynamic analysis. The DSS activity is reproduced by
means of an SQL server, namely PostgreSQL [28], which
handles TPC-D [25] queries and some Unix utilities. These
utilities can both access file system and interface the
various programs running on the system.

PostgreSQL is a public-domain database, which relies
on server-client paradigm. It consists of a front-end
process that accepts SQL queries, and a back-end that
forks processes, which manage the queries. A description

of PostgreSQL memory and synchronization management
scheme can be found in [26]. TPC-D simulates an
application for a wholesale supplier that manages sells and
distributes a product worldwide. The data is organized in
several tables and TPC-D includes 17 read-only queries
and 2 update queries. Most of the queries are complex, and
perform different operations on database tables. We traced
the read-only queries; some queries are considered more
than once in order to reach a high number of processes in
the system, but their execution is time-shifted.

For completing our workload, we considered some
glue-processes that can be generated by shell scripts. To
this end, Unix utilities (ls, awk, cp, gzip, and rm)
have been added to the workload. In a typical situation,
various requests may be running, requiring the support of
different system commands and other applications. To take
into account that requests may be using the same program
at different times, we traced some commands in shifted
execution sections: initial (beg) and middle (mid).

Table 1 contains some statistics of the uniprocess
traces used to generate the combined workloads. Table 2
contains the statistics of the multiprocess source trace and
target trace i.e. the workload used in the simulation (DSS).

Table 2. Statistics of multiprocess application source trace (PostgreSQL
TPC-D queries, 180,000,000 references) and target trace (DSS,

280,000,000 references) in case of 64-byte block size.

DATA(%) SHAREDDATA(%)WORK-
LOAD

NO.OF

PRO-
CESSES

DISTINCT

BLOCKS

CODE

(%)
READ WRITE

SHARED

BLOCKS
ACCESS WRITE

TPC-D 18 139906 72.82 17.07 10.12 7806 2.27 0.67
DSS 26 179862 74.59 16.26 9.15 7806 1.76 0.53

4 Results
Our first goal is to show the results from dynamic analysis
related to our framework for evaluating the performance of
the DSS workload on the shared-bus multiprocessor.

As performance metrics to compare the several
outputs, we considered the “miss rate”, which includes the
invalidation miss rate, and the “number of coherence
transaction per 100 memory references”, which includes
either write-transactions or invalidations depending on the
chosen protocol. The rest of traffic is due to classical
misses (sum of cold and replacement misses) and update
transactions. Update transactions are only a negligible part
of bus-traffic (lower than 8% of read-block transactions in
our simulations) and thus they do not influence greatly our
analysis. Note that read-block transactions are essentially
due to the misses.

In terms of global performance we used the following
single figure, which expresses the computational power
delivered by the machine: the Global System Power (GSP)
as done in previous studies [2], [15], [8]. The GSP
represents the number of the processors of an ideal
machine that does not have delay in accessing memory:

GSP = ΣUcpu

where
Ucpu = (Tcpu-Tdelay)/Tcpu



Tcpu is the time needed to execute the workload, and Tdelay

is the total CPU delay time due to waiting for memory
operation completion. We believe that this metric provide
a better measurement than execution time, since we do not
execute a single program, in our simulations, but a
combination of portions of programs. In this condition,
GSP gives the necessary comparability when the
performance evaluation requires varying the number of
processors and other system parameters.

The simulated system consists of N processors, which
are interconnected to a single 128-bit shared bus for
accessing shared memory. The following coherence
schemes have been considered: AMSD, MESI, PSCR. As
for the number of processors, two configurations have
been considered: a basic machine with 4 processors and a
high-performance machine with 16 processors. The
scheduling policy can be: random and cache-affinity;
scheduler time slice is 200,000 references. Cache size has
been varied between 512K and 2M, while for block size
we tried 64 bytes and 128 bytes. The simulated processors
are MIPS-R10000-like; paging relays on 4-KByte-page
size; the bus logic supports transaction splitting, and
processor-consistency memory model [5]. The simulation
time analyzed corresponds to 280,000,000 references.
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Figure 1. Breakdown of miss rate versus cache size (512 K, 1M, 2M
bytes), number of ways (1, 2, 4) and coherence protocol (AMSD, MESI,

PSCR). Miss Rate assumes 4 processors, a random scheduler and
64-byte block. Other Miss includes cold miss, capacity miss and

replacement miss. Invalidation misses (i.e. the sum of false sharing and
true sharing miss) are absent in PSCR, due to its write-update behavior;
they are lower in AMSD rather than in MESI; however, due to the other
miss contribution, total miss are almost the same in the two protocols.

Miss rate decreases for all the protocol with cache size and associativity.

In Figures 1 and 2 we analyze the sources of overhead
in the DSS workload. In our reference case, we considered
a 4-processor machine with 128-bit bus, 64-byte block size
and we varied cache size (from 512K to 2M byte) and
cache associativity (1, 2, 4). The results of our simulations
for the three protocols, AMSD, MESI, and PSCR, show
the contribution of each kind of sharing both to the Miss-
Rate and the Coherence-Transaction Rate. We also
differentiated between kernel and user overhead. In this
reference case, we observe a great amount of
cold/conflict/replacement misses (other misses). However,

our analysis concentrate on how to reduce coherence
related overhead rather than classical misses.
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Figure 2. Number of coherence transactions versus cache size (512K ,
1M, 2M bytes), number of ways (1, 2, 4), and coherence protocol

(AMSD, MESI, PSCR) Coherence transactions are write-for-invalidate
transactions in MESI, write-for-invalidate and invalidate transactions in
AMSD, write transactions in PSCR. Data assume 4 processors, 64-byte

block size and a random scheduler. As we increase cache size and
associativity, we have more data sharing, except for MESI. In MESI, the
behavior on private data causes a reduction of coherence transactions.

From Figures 1 and 2, we can see that, the unavoidable
overhead due to true sharing weighs differently depending
on the protocol class. All the three protocols have to face
out with this overhead either as invalidation miss, as is the
case for AMSD and MESI, which are WI class protocols,
or as write-update traffic as is the case for PSCR which is
a WU class protocol. Again from Figures 1 and 2, we wish
now to concentrate on the unnecessary part of the
coherence overhead.

False sharing is a great source of overhead for PSCR,
moderately for MESI and not so much for AMSD. On the
other hand PSCR can avoid completely the passive
sharing, since is designed for that, whilst MESI suffers
greatly from it. AMSD can cope with both false and
passive sharing but only in a certain extent, thus we may
expect that it is performing better than MESI.
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The cost of misses is dominating the performance and
indeed we show in Figure 3 that PSCR is able to achieve
the best performance compared with the other protocols.
The reason is that what PSCR looses in terms of extra
coherence traffic, is then gained as miss saved.

However, in this preliminary analysis the performance
differences among protocol are small. This is due to the
not so high bus utilization in the case of four processors,
and consequently, the dynamic cost of transaction is not so
high due to the lower contention. Thus, we considered a
‘high-end’ 16-processor configuration. This still represents
a relatively economic solution to enhance the performance.
Since in this case the bus contention is higher we found out
a more clear difference among the various protocols.

In the following, for the sake of clearness, we assume a
1-Mbyte cache size, a 64-byte block size, and 2-ways. In
Figures 4 and 5, we compare the miss rate and coherence
transactions for the three protocols and for the reference
case and the 16-processor configuration.
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Figure 5. Number of coherence transactions versus coherence protocol
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64-byte block size, 1M-cache size two-way set associative and a
random scheduler. There is an increment in the sharing overhead in all

of its components. This increment is more evident in the WI class
protocol, also because there is more passive sharing overhead.

When switching to 16 processors, the ‘other miss’
contribution increases for all protocols (Figure 4). This is
mainly due the higher number of compulsory misses that
we have in a machine with more processors. In AMSD and
MESI the invalidation misses are definitely higher, again
for the higher probability of sharing data due the increased
number of processors. The combined effect is a stronger
difference in the behavior of the two WI protocols and
PSCR.
The two WI protocols also increase noticeably the
coherence transactions (Figure 5). In PSCR this increase is
very limited. The different increase is mainly due to a
passive sharing increase in the high-end machine. This
translates in a significant increase of performance when we
adopt PSCR – more than 10% against the other protocols
(Figure 6).
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Finally, we applied two important optimizations to reduce
the classical misses (‘other miss’): i) an increase in the
block size, in order to better exploit the spatial locality and
ii) the use of affinity scheduling [17].
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sharing overhead decrease.

The increase of block size may also produce an increase of
false sharing. In our experiments (Figure 7 and 8), when
switching from 64 to 128 bytes, we observe a noticeable
reduction of ‘other miss’ component’ and a reduction of
coherence traffic and miss rate. This further advantages
PSCR in respect of the other two considered protocols.
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Figure 9. Global System Power versus cache size (512K, 1M, 2M bytes),
number of ways (1, 2, 4) and coherence protocol (AMSD, MESI, PSCR).
Data assume 16 processors, 128-byte block size, and a random scheduler

When we use a cache-affinity scheduling algorithm
(Figure 10 and 11), we have again a certain reduction of
the classical misses and a slight reduction of coherence
related operations. All the three protocol take a little
advantage from this, and PSCR continues to deliver the
best performance (Figure 12).
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Figure 10. Breakdown of miss rate versus coherence protocol (AMSD,
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The affinity scheduling mainly reduces the other miss rate for all the
protocols.
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more evident in WI protocol, due to the reduction of coherence
transactions due to passive sharing.
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6 Conclusions
Dynamic analysis is an indispensable tool to compare

and analyze different architectural options based on
shared-bus shared-memory or symmetric multiprocessors
(SMP).

In this work, by using dynamic analysis we compared
the performance of three different architectures based on
MESI coherence protocol (a pure WI protocol, widely used
in high performance processors), AMSD (a WI protocol
designed to reduce effects of data migrations) and PSCR
(a coherence protocol using an hybrid strategy: WU for
shared data and WI for private data, designed to reduce the
effect of process migration). The representative chosen
benchmark has been a DSS workload. This workload has
been setup by using the PostgreSQL DBMS and by tracing
the execution of queries extracted from the TPC-D
benchmark and typical Unix shell commands.

Through trace-driven simulation and coherence
overhead analysis, we discovered the major reasons why
PSCR outperforms the other protocols. The contribution of
misses resulted more penalizing for the performance (those
misses are higher in the WI protocols, due to the
invalidation misses), when we eliminate the contribution
of passive sharing as PSCR does.

Our results show that PSCR outperforms the other
protocols in all our test cases. The gain of PSCR becomes
more important in high-end machines (16 or more
processors). Indeed, in that case the miss reduction
techniques like affinity or the increase of block size end up
in further advantage for PSCR. This advantage could be
quantified in a 10% in the 16-processor case relatively to
the other evaluated protocols.
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