
OS Effects on Memory Hierarchy of a SMP Multiprocessor

Running a DBMS Workload

Pierfrancesco Foglia, Cosimo Antonio Prete

Dipartimento di Ingegneria dell’Informazione
Università di Pisa

Pisa, Italy
{ foglia, prete} @iet.unipi.it

Roberto Giorgi

Dipartimento di Ingegneria dell’Informazione
Università di Siena

Siena, Italy
giorgi@acm.org

Abstract
In this work, we characterized the impact of operating

system activities like process migration on a shared-bus
shared-memory multiprocessor running typical DBMS
workload.

Our workload has been set-up utilizing the TPC-D
benchmark on the PostgreSQL DBMS. Analysis has been
performed via trace driven simulation enhanced technique
which includes most important operating system activities
and analyzes the sharing overhead in detail.

We evaluated a basic four-processor and a high-end
sixteen-processor machine, implementing MESI and other
coherence protocols that deal with migration of processes
and data. Our results show that even in the four-processor
case operating system effects may not be neglected. In
fact, different coherence protocols can more effectively
reduce the effects of process migration.

The consequences on performance become more
important in high-end machines (16 or more processors).
In this case, even little sharing, as we found in DBMS
applications can become crucial for system performance.
Better speed up may be achieved adopting several
alternatives including redesign of kernel data structure.
Cache affinity is somewhat useful in reducing migration
effect, but it is not effective in every load conditions.

Keywords: Shared-Bus Multiprocessors, DBMS, Cache
Memory, Coherence Protocol, Sharing Analysis, Sharing
Overhead.

1 Introduction
Shared-bus shared-memory multiprocessors (basically
Symmetric Multi Processor, or SMP, architectures) are
becoming more and more widespread since they are a
simple and quite cheap solution to speed up complex
workloads demanding for high performance like, just to
give some examples, databases, file servers and
application servers [19]. In shared bus architectures,
processors access the shared memory through a shared

bus. This bus is the bottleneck of the system, since it can
easily reach a saturation condition, thus limiting the
performance and the scalability of the machine.
The classical solution to overcome this problem is the use
of per-processor cache memories [13]. Cache memories
introduce the coherency problem and the need for
adopting adequate coherence protocols [22], [23].
Coherence protocols generate a certain number of bus
transactions, thus accounting for a non-negligible
overhead in the system (coherence overhead). The traffic
induced by the coherence overhead adds up to the basic
bus traffic, necessary to access the main memory [9].
Coherence overhead may have a negative effect on the
performance as shown in the literature [4], [22], [24], [9]
and different optimizations have been proposed, both at
compile time, such as the redesign of shared data structure
[33] and at the architectural level, as the adoption of
adequate coherence protocols [32] [9].
An important case of these systems include databases
[19]. Due to their increasing importance, the behavior of
these workloads has been extensively analyzed for the
aspects concerning processor architecture [30], [31] and
the memory system [26], [29]. However, as of our
knowledge, there are no studies that include operating
system effects on memory performance of these
workloads. Operating system activity, in shared bus
shared memory multiprocessor, mainly acts in two way
[34], [35]: shared kernel data structures generates
coherence overhead; process migration, needed to achieve
load balancing in such systems, increases the number of
cold/conflict miss and generates also coherence overhead,
known as passive sharing overhead [9].
In this work we compare memory hierarchy behavior and
justify performance issue of SMP architectures based on
MESI and other coherence protocols.
Our methodology relies on trace driven simulation (by
means of the “Trace Factory” environment [8]) and on
specific tools for the analysis of coherence overhead [6].
In our evaluation the database server activity is
reproduced through a workload made of applications like



the PostgreSQL [28] DBMS, which handles some of the
TPC-D [25] queries, and several Unix utilities, which both
access file system and interface the various programs
running on the system.
The analysis starts from a reference case, and explores
different architectural choices for cache, coherence
protocols and number of processors. The scheduling
algorithm has been varied, considering both a random and
a cache affinity policy [17].
Our results show that even in the four-processor case OS
effects may not be neglected. In fact, in consequence of
migration, AMSD outperforms MESI, while in
consequence of migration and of the absence of
invalidation misses, most of which are due to kernel
activity, PSCR appears to be the optimal solution. The
effects on performance become more important in high-
end machines (16 or more processors). Indeed, in that
case, when adopting miss reduction techniques like the
increase of block size, the percentage of bus occupancy
due to kernel activity may be quantified in almost 30%. In
this case, better speed up may be achieved adopting
redesign of kernel data structure. Cache affinity is
somewhat useful in reducing migration effect, but it is not
effective in every load conditions.

2 Coherence Protocols and
Coherence Overhead
The main coherence protocol classes are Write-Update
(WU) and Write-Invalidate (WI) [22]. WU protocol
updates the remote copies on each write involving a
shared copy. Whereas, a WI protocol invalidates remote
copies in order to avoid updating them.
In our evaluation, we considered three different coherence
protocol: MESI, AMSD and PSCR.
The MESI protocol is the most widely adopted protocol,
so it is a reference point for our evaluations. We did not
evaluate a pure WU protocol, like Dragon, since it is
known from the literature [16] that a pure WI protocol
outperforms a pure WU protocol when we adopted a
scheduling which permits process migration. For this
reason, we considered a selective invalidation protocol,
which has a WU strategy for the truly shared data (PSCR).
We also considered a protocol specifically designed to
treat the data migration (AMSD), since process migration
involves also data migration.
MESI is a Write Invalidate MOESI class protocol [21],

based on Goodman’s Write-Once 4-state protocol [11].
The protocol has four states: Modified, when the cache
block is the only modified copy with respect to main
memory; Exclusive, when the cache block holds the only
valid copy that is identical to the block in main memory;
Shared, when the cache block holds a valid copy that is
identical to the block in main memory and may be
present in other caches; Invalid, when the cache block

holds no valid information. It is implemented in most of
the commercial high-performance microprocessor like
AMD series, the PowerPC series, the SUN UltraSparc II,
SGI R10000, Intel Pentium series.
AMSD is a protocol using Adaptive Migratory Sharing
Detection [3], [18]. Migratory sharing is characterized by
the exclusive use of data for a long time interval.
Typically, the control over these data migrates from one
process to another [12]. The protocol identifies migratory-
shared data dynamically in order to reduce the cost of
moving them. The implementation is an extension of a
common MESI protocol. When AMSD detects a block
that has to be treated exclusively for a long time interval,
it invalidates the copy locally during the handling of a
remote miss, thus avoiding a necessary consequent
coherence transaction.
PSCR (Passive Shared Copy Removal) [9] adopts a
invalidation scheme for the private data, and a WU
scheme for the actively shared data. A cached copy
belonging to a process private area is invalidated locally
as soon as another processor fetches such block. The
selective invalidation mechanism allows PSCR to gain the
benefits of an update mechanism in shared bus
architectures.
Coherency maintaining involves a number of operations.
Some of them are overhead that adds up to the basic bus
traffic, which is necessary to access the main memory. For
WU protocols, this overhead is made of write
transactions, while for WI protocols we have to consider
invalidation requests and invalidation misses.
In order to evaluate the impact of OS on performance, we
analyzed in detail the sources for the overhead and,
therefore, we classified the coherence transactions based
on the following scheme. Three different sources may be
observed: i) active sharing [24], which occurs when the
same cached data item is referenced by different processes
concurrently running on different processors; ii) false
sharing [24], which occurs when several processors
reference always separately different data items belonging
to the same memory block separately; iii) passive [16] or
process-migration [1] sharing, which occurs when a
memory block, though belonging to a private area of a
process, is replicated in more than one cache as a
consequence of the migration of the owner process.
Whilst active sharing generates unavoidable overhead, the
other two sharing overhead can be eliminated or
decreased.
The coherence overhead is classified by means of an
extension of an existing algorithm [14] to the case of
passive sharing, finite size caches, and process migration.
This algorithm [6] is based on the analysis of access
patterns to data.



3 Methodology and Workload
The methodology that we used is based on trace-driven
simulation [20], [15], [27] and on the simulation of the
three kernel activities that most affect performance:
system calls, process scheduling, and virtual-to-physical
address translation. Memory references include both user
and kernel references, and they are produced "on-
demand” [8].

The approach used is to produce a source trace (a
sequence of memory references, system-call positions and
synchronization events in case of multithreaded programs)
by means of a tracing tool (a modified version of
Tangolite [10]). Trace Factory then models the execution
of complex workloads by combining multiple source
traces and simulating system calls (which could also
involve I/O activity), process scheduling and virtual-to-
physical address translation. Finally, Trace Factory
produces the references (target trace) furnished as input to
a memory-hierarchy simulator [15]. Trace Factory
generates references according to an on-demand policy: it
produces a new reference when the simulator requests
one, so that the timing behavior imposed by the memory
subsystem conditions the reference production [7].
Process management is modeled by simulating a
scheduler that dynamically assigns a ready process to a
processor. The process scheduling is driven by time-slice
for uniprocess applications, whilst it is driven by time-
slice plus synchronization events for multiprocessor
applications. Virtual-to-physical address translation is
modeled by mapping sequential virtual pages into non-
sequential physical pages. An evaluation of this
methodology has been carried out in [8].

Table 1. Statistics of source traces for some Unix commands
(64-byte block size 10,000,000 references per process).

DATA (%)APPLICATION
DISTINCT
BLOCKS

CODE
(%) READ WRITE

awk (beg) 4963 76.76 14.76 8.48
awk (mid) 3832 76.59 14.48 8.93
Cp 2615 77.53 13.87 8.60
Gzip 3518 82.84 14.88 2.28
Rm 1314 86.39 11.51 2.10
Ls –aR 2911 80.62 13.84 5.54
Ls -ltR (beg) 2798 78.77 14.58 6.65
Ls -ltR (mid) 2436 78.42 14.07 7.51

Table 2. Statistics of multiprocess application source trace
(PostgreSQL TPC-D queries, 180,000,000 references) and

target trace (DB, 280,000,000 references) in case of 64-byte
block size.

DATA(%)
SHAREDDATA

(%)
WORK-
LOAD

NO.OF

PRO-
CESSES

DISTINCT

BLOCKS

CODE

(%)
READ WRITE

SHARED

BLOCKS
ACCESS

WRI

TE

TPC-D 18 139906 72.82 17.07 10.12 7806 2.27 0.67
DB 26 179862 74.59 16.26 9.15 7806 1.76 0.53

The workload considered in our evaluation includes
DB activity reproduced by means of an SQL server,
namely PostgreSQL [28], which handles TPC-D [25]
queries and some Unix utilities. These utilities can both
access file system and interface the various programs
running on the system.

PostgreSQL is a public domain DBMS, which relies
on server-client paradigm. It consists of a front-end
process that accepts SQL queries, and a back-end that
forks processes, which manage the queries. A description
of PostgreSQL memory and synchronization management
scheme can be found in [26]. TPC-D is a benchmark for
DSS developed by the Transaction Processing
Performance Council. It simulates an application for a
wholesale supplier that manages sells and distributes a
product worldwide. The data is organized in several tables
and TPC-D includes 17 read-only queries and 2 update
queries. Following TPC-D specifications, we populate via
the dbgen program the database with a scale factor of 0.1.
Most of the queries are complex, and perform different
operations on database tables.

For completing our workload, we considered some
glue-processes that can be generated by shell scripts. To
this end, Unix utilities (ls, awk, cp, gzip, and rm)
have been added to the workload. In a typical situation,
various requests may be running, requiring the support of
different system commands and other applications. To
take into account that requests may be using the same
program at different times, we traced some commands in
shifted execution sections: initial (beg) and middle (mid).
Table 1 contains some statistics of the uniprocess traces
used to generate the combined workloads. Table 2
contains statistics of multiprocess source trace and target
trace i.e. the workload used in the simulation (DB).

4 Results
Performance of a machine executing a workload depends
on the execution time of the programs constituting the
workload. Execution time of a program depends on the
processor waiting time that, in turn, depends on the time
necessary to complete a bus operation and on the waiting
time before obtaining bus access (bus latency). The bus
latency depends on bus traffic and the kind of traffic. The
time for completing a bus operation depends on the cost
of read block transactions (Table 3), essentially due to the
misses. Miss and coherence transactions affect the bus
latency. Therefore, as performance metrics to compare the
several system configurations, we considered the “miss
rate”, which includes the invalidation miss rate and the
classical misses (sum of cold and replacement misses),
and the “number of coherence transaction per 100
memory references”, which includes either write-
transactions or invalidations depending on the protocol.
The rest of traffic is due update transactions. Update



transactions are only a negligible part of bus-traffic (lower
than 8% of read-block transactions) and thus they do not
influence greatly our analysis.
In terms of global performance we used the following
single figure, which expresses the computational power
delivered by the machine: the Global System Power
(GSP) as done in previous studies [2], [15], [8]. The GSP
represents the number of the processors of an ideal
machine that does not have delay in accessing memory:

GSP = ΣUcpu

where
Ucpu = (Tcpu-Tdelay)/Tcpu

Tcpu is the time needed to execute the workload, and Tdelay

is the total CPU delay time due to waiting for memory
operation completion. We believe that this metric provide
a better measurement than execution time, since we do not
execute a single program, in our simulations, but a
combination of portions of programs. In this condition,
GSP gives the necessary comparability when the
performance evaluation requires varying the number of
processors and other system parameters.
The simulated system consists of N processors, which are
interconnected to a single 128-bit shared bus for accessing
shared memory. The following coherence schemes have
been considered: AMSD, MESI, and PSCR. As for the
number of processors, two configurations have been
considered: a basic machine with 4 processors and a high-
performance machine with 16 processors. The scheduling
policy can be: random and cache-affinity; scheduler time
slice is 200,000 references. Cache size has been varied
between 512K and 2M, while for block size we tried 64
bytes and 128 bytes. The simulated processors are MIPS-
R10000-like; paging relays on 4-KByte-page size; the bus
logic supports transaction splitting, and processor-
consistency memory model [5]. The simulation time
analyzed corresponds to 280,000,000 references. The base
case study timings and parameter values for the simulator
are summarized in Table 3.

Table 3. Numerical values of some input parameters for the
multiprocessor simulator (times are in clock cycles)

Class Parameter Timings

CPU Read cycle 2
Write cycle 2

Cache Cache size (Bytes) 512K, 1M, 2M
Block size (Bytes) 64, 128
Associativity (Number of Ways) 1, 2, 4

Bus Write transaction (PSCR) 5
Write for invalidate transaction
(AMSD, MESI)

5

Invalidate transaction (AMSD) 5
Memory-to-cache read-block
transaction

72 (block size 64 bytes), 80 (block size 128 bytes)

Cache-to-cache read-block transaction 16 (block size 64 bytes), 24 (block size 128 bytes)
Update-block transaction 10 (block size 64 bytes), 18 (block size 128 bytes)

In Figures 1 and 2 we analyze the sources of overhead in
the DB workload. In our reference case, we considered a
4-processor machine with 128-bit bus, 64-byte block size
and we varied cache size (from 512K to 2M byte) and
cache associativity (1, 2, 4).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

51
2K

/1
/A

M
S

D

51
2K

/1
/M

E
S

I

51
2K

/1
/P

S
C

R

51
2K

/2
/A

M
S

D

51
2K

/2
/M

E
S

I

51
2K

/2
/P

S
C

R

51
2K

/4
/A

M
S

D

51
2K

/4
/M

E
S

I

51
2K

/4
/P

S
C

R

1M
/1

/A
M

S
D

1M
/1

M
E

S
I

1M
/1

/P
S

C
R

1M
/2

/A
M

S
D

1M
/2

/M
E

S
I

1M
/2

/P
S

C
R

1M
/4

/A
M

S
D

1M
/4

/M
E

S
I

1M
/4

/P
S

C
R

2M
/1

/A
M

S
D

2M
/1

/M
E

S
I

2M
/1

/P
S

C
R

2M
/2

/A
M

S
D

2M
/2

/M
E

S
I

2M
/2

/P
S

C
R

2M
/4

/A
M

S
D

2M
/4

/M
E

S
I

2M
/4

/P
S

C
R

Cache Size / Number of Ways / Coherence Protocol

M
is

s
R

at
e

(%
)

True Sharing Miss (User) False Sharing Miss (User) True Sharing Miss (Kernel)
False Sharing Miss (Kernel) Other Miss (Kernel and User)

Figure 1. Breakdown of miss rate versus cache size (512 K,
1M, 2M bytes), number of ways (1, 2, 4) and coherence
protocol (AMSD, MESI, PSCR). Miss Rate assumes 4

processors, a random scheduler and 64-byte block. Other Miss
includes cold, capacity and replacement miss. Invalidation

misses (i.e. the sum of false sharing and true sharing miss) are
absent in PSCR. Kernel contribution to invalidation misses for

AMSD and MESI is dominant, and it is of false sharing type.
total miss are almost the same in the two protocols..

0

0.1

0.2

0.3

0.4

0.5

0.6

51
2K

/1
/A

M
S

D
5 1

2K
/1

/M
E

S
I

5 1
2K

/1
/P

S
C

R

5 1
2 K

/2
/A

M
S

D
5 1

2 K
/2

/ M
E

S
I

51
2 K

/2
/P

S
C

R

51
2K

/4
/A

M
S

D
51

2K
/4

/M
E

S
I

5 1
2 K

/4
/ P

S
C

R

1M
/1

/A
M

S
D

1 M
/1

M
E

S
I

1M
/1

/P
S

C
R

1 M
/ 2

/ A
M

S
D

1M
/2

/M
E

S
I

1M
/2

/P
S

C
R

1M
/4

/A
M

S
D

1 M
/ 4

/ M
E

S
I

1 M
/ 4

/P
S

C
R

2M
/1

/A
M

S
D

2M
/1

/M
E

S
I

2M
/1

/P
S

C
R

2 M
/ 2

/A
M

S
D

2 M
/2

/ M
E

S
I

2 M
/2

/ P
S

C
R

2 M
/4

/A
M

S
D

2M
/ 4

/M
E

S
I

2M
/4

/P
S

C
R

Cache Size / Number of Ways / Coherence Protocol

N
um

be
r

of
C

oh
er

en
ce

T
ra

ns
ac

tio
ns

pe
r

10
0

M
em

or
y

R
ef

er
en

ce
s

Passive Sharing Transactions True Sharing Transactions (User)
False Sharing Transactions (User) True Sharing Transactions (Kernel)
False Sharing Transactions (Kernel)

Figure 2. Number of coherence transactions versus cache size
(512K, 1M, 2M bytes), number of ways (1, 2, 4), and coherence

protocol (AMSD, MESI, PSCR) Coherence transactions are
write-for-invalidate transactions in MESI, write-for-invalidate

and invalidate transactions in AMSD, write transactions in
PSCR. Data assume 4 processors, 64-byte block size and a

random scheduler. As we increase cache size and associativity,
we have more data sharing, except for MESI. In AMSD, the the

invalidation strategy in case of migratory data causes a
reduction of coherence transactions.

The results of our simulations for the three protocols,
AMSD, MESI, and PSCR, show the contribution of each
kind of sharing both to the Miss-Rate and the Coherence-
Transaction Rate. We obviously differentiated between
kernel and user overhead. In this reference case, we
observe a great amount of cold/conflict/replacement
misses (other misses).

From Figures 1 and 2, we can see that, the
unavoidable overhead due to true sharing weighs
differently depending on the protocol class. All the three



protocols have to face out with this overhead either as
invalidation miss, as is the case for AMSD and MESI,
which are WI class protocols, or as write-update traffic as
is the case for PSCR which is a WU class protocol. Again
from Figures 1 and 2, we wish now to concentrate on the
unnecessary part of the coherence overhead.
False sharing is a great source of overhead for PSCR,
moderately for MESI and not so much for AMSD. On the
other hand PSCR avoids completely the passive sharing,
whilst MESI suffers greatly from it. AMSD can cope with
both false and passive sharing but only in a certain extent,
thus we may expect that it is performing better than
MESI.

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

512K/1 512K/2 512K/4 1M/1 1M/2 1M/4 2M/1 2M/2 2M/4

Cache Size / Number of Ways

G
lo

ba
lS

ys
te

m
P

ow
er

AMSD MESI PSCR

Figure 3. Global System Power versus cache size (512K, 1M,
2M bytes), number of ways (1, 2, 4) and coherence protocol
(AMSD, MESI, PSCR). Data assume 4 processors, 64-byte

block size and a random scheduler. PSCR presents the highest
GSP, whilst MESI the lowest.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

AMSD/4 AMSD/16 MESI/4 MESI/16 PSCR/4 PSCR/16

Coherence Protocol / Number of CPU

M
is

s
R

at
e

(%
)

True Sharing Miss (User) False Sharing Miss (User) True Sharing Miss (Kernel)
False Sharing Miss (Kernel) Other Miss (Kernel and User)

Figure 4. Breakdown of miss rate versus coherence protocol
(AMSD, MESI, PSCR) and number of processors (4,16). Data

assume, a random scheduler, 64-byte block, 1M-cache size
two-way set associative. The higher number of processor

causes more coherence misses (false plus true sharing) and
more ‘other misses’. The differences among protocols are

clearer than in the 4-processor case.

The cost of misses is dominating the performance and
indeed we show in Figure 3 that PSCR is able to achieve
the best performance compared with the other protocols.
The reason is that what PSCR looses in terms of extra

coherence traffic, is then gained as saved misses. AMSD
outperforms MESI. This is basically due to the reduction
of passive sharing overhead (Figure 2) as miss rate is the
same as MESI (Figure 1). In conclusion, the main
difference between AMSD and MESI rely, in this case, on
passive sharing overhead, which is a OS effect, while
between PSCR and the other two protocols on the
invalidation miss. From Figure 3, we can see that the
kernel contribution to these miss is dominant, and
particular the false sharing contribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

AMSD/4 AMSD/16 MESI/4 MESI/16 PSCR/4 PSCR/16

Coherence Protocol / Number of CPU

N
um

be
r

of
C

oh
er

en
ce

T
ra

ns
ac

tio
ns

pe
r

10
0

M
em

or
y

R
ef

er
en

ce
s

Passive Sharing Transactions True Sharing Transactions (User)
False Sharing Transactions (User) True Sharing Transactions (Kernel)
False Sharing Transactions (Kernel)

Figure 5. Number of coherence transactions versus coherence
protocol (AMSD, MESI, PSCR) and number of processors (4,
16). Data assume 64-byte block size, 1M-cache size two-way

set associative and a random scheduler. There is an increment
in the sharing overhead in all of its components. This increment
is more evident in the WI class protocol, also because there is

more passive sharing overhead.

0

2

4

6

8

10

12

14

16

512K/1 512K/2 512K/4 1M/1 1M/2 1M/4 2M/1 2M/2 2M/4

Cache Size / Number of ways

G
lo

ba
lS

ys
te

m
P

ow
er

AMSD MESI PSCR

Figure 6. Global System Power versus cache size (512K, 1M,
2M bytes), number of ways (1, 2, 4) and coherence protocol
(AMSD, MESI, PSCR). Data assume 16 processors, 64-byte

block size and a random scheduler.

However, in this preliminary analysis the performance
differences among protocol are small. This is due to the
not so high bus utilization (below 40% in every
condition), and consequently, the actual cost of
transaction is not so high due to the lower contention.



Thus, we considered a ‘high-end’ 16-processor
configuration. This still represents a relatively economic
solution to enhance the performance. Since in this case the
bus contention is higher, we found a more clear difference
among the various protocols.
In the following, for the sake of clearness, we assume a 1-
Mbyte cache size, a 64-byte block size, and 2-ways. In
Figures 4 and 5, we compare the miss rate and coherence
transactions for the three protocols and for the reference
case and the 16-processor configuration. When switching
to 16 processors, the ‘other miss’ contribution increases
for all protocols (Figure 4). This is mainly due the higher
number of compulsory misses that we have in a machine
with more processors. In AMSD and MESI, the
invalidation misses (both user and kernel) are definitely
higher, again for the higher probability of sharing data due
the increased number of processors. The combined effect
is a stronger difference in the behavior of the two WI
protocols and PSCR.
The two WI protocols also increase noticeably the
coherence transactions (Figure 5). In PSCR this increase
is very limited. The different increase of WI protocols is
mainly due to a passive sharing increase in the high-end
machine. This translates in a significant increase of
processing power (GSP) when we adopt PSCR – more
than 10% against the other protocols (Figure 6).
Finally, we applied two important optimizations to reduce
the classical misses (‘other miss’): i) an increase in the
block size, in order to better exploit the spatial locality
and ii) the use of affinity scheduling [17].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

AMSD/64 AMSD/128 MESI/64 MESI/128 PSCR/64 PSCR/128

Coherence Protocol / Block Size

M
is

s
R

at
e

(%
)

True Sharing Miss (User) False Sharing Miss (User) True Sharing Miss (Kernel)
False Sharing Miss (Kernel) Other Miss (Kernel and User)

Figure 7. Breakdown of miss rate versus coherence protocol
(AMSD, MESI, PSCR) and block size (64 byte, 128 byte). Data
assume 16 processors, a random scheduler, 1M-cache size, and
two ways. There is a reduction r in the other miss component,

and a little reduction in the invalidation miss component.
The increase of block size may also produce an increase
of false sharing. In our experiments (Figure 7 and 8),
when switching from 64 to 128 bytes, we observe a
reduction of ‘other miss’ component’ and a little reduction
of coherence traffic and invalidation miss rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

AMSD/64 AMSD/128 MESI/64 MESI/128 PSCR/64 PSCR/128

Coherence Protocol / Block Size

N
um

be
r

of
C

oh
er

en
ce

T
ra

ns
ac

tio
ns

pe
r

10
0

M
em

or
y

R
ef

er
en

ce
s

Passive Sharing Transactions True Sharing Transactions (User)
False Sharing Transactions (User) True Sharing Transactions (Kernel)
False Sharing Transactions (Kernel)

Figure 8. Number of coherence transactions versus coherence
protocol (AMSD, MESI, PSCR) and block size (64, 128 byte).

Data assume 16 processors, 1M-cache size, two-way set
associative, and a random scheduler. By increasing block size,

both passive sharing and true sharing overhead decrease.

This further advantages PSCR in respect of the other two
considered protocols, as shown in Figure 9. From Figure 7
and 8, and considering the cost of transactions (Table 3),
we can estimate in almost a 30% bus occupancy due to the
kernel activity for both MESI and AMSD, and of this
percentage, at least 80% is due to false sharing
transaction. We can’t increase block size, because the
increased cost of read-block transaction is not
compensated by the reduction of miss (graph not shown),
so to achieve better performance over this point, may be
worthless to act on kernel data structure to reduce false
sharing overhead.

0

2

4

6

8

10

12

14

AMSD/64 AMSD/128 MESI/64 MESI/128 PSCR/64 PSCR/128

Coherence Protocol / Block Size

G
lo

ba
lS

ys
te

m
P

ow
er

Figure 9. Global System Power versus block size size (64, 128
bytes) and coherence protocol (AMSD, MESI, PSCR). Data
assume 16 processors, 1M byte cache size, two ways, and a

random scheduler.
In other experiments not reported here, we used a cache-
affinity scheduling algorithm. We have again a certain
reduction of the classical misses and a slight reduction of
coherence related operations. All the three protocol take a
little advantage from this, and PSCR continues to deliver
the best performance. However, as shown in [9], cache
affinity is not effective in every load conditions.



6 Conclusions
We evaluated operating system effects on the memory

hierarchy of a SMP multiprocessor, by considering
several different choices that could improve the overall
performance of the system. We considered different
architectures based on MESI coherence protocol (a pure
WI protocol, widely used in high performance
processors), AMSD (a WI protocol designed to reduce
effects of data migrations) and PSCR (a coherence
protocol using an hybrid strategy: WU for shared data and
WI for private data, designed to reduce the effect of
process migration). The Database workload was setup
using the PostgreSQL DBMS executing queries of the
TPC-D benchmark and typical Unix shell commands.
Our results show that even in the four-processor case OS
effects may not be neglected. In fact, in consequence of
migration, AMSD outperforms MESI, while in
consequence of migration and of the absence of
invalidation misses, most of which are due to kernel
activity, PSCR outperforms all the other protocols. The
effects on performance become more important in high-
end machines (16 or more processors). Indeed, in that
case, when adopting miss reduction techniques like the
increase of block size, the percentage of bus occupancy
due to kernel activity may be quantified in almost 30%. In
this case, better speed up may be achieved adopting
redesign of kernel data structure. Cache affinity is
somewhat useful in reducing migration effects, but it is
not effective in every load conditions. An evaluation of
how these techniques are effective with respect to the
most performing protocol, PSCR, will be the object of
future work.

References
[1] A. Agarwal and A. Gupta, “Memory Reference

Characteristics of Multiprocessor Applications under Mach”.
Proceedings ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, Santa Fe, NM, pp. 215-
225, May 1998.

[2] J. K. Archibald and J. L. Baer, "Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model,'' ACM
Trans. on Comp. Systems, vol. 4, pp. 273-298, Apr. 1986.

[3] A. L. Cox and R. J. Fowler, "Adaptive Cache Coherency for
Detecting Migratory Shared Data,'' Proc. 20th International
Symposium on Computer Architecture, San Diego, California,
pp. 98-108, May 1993.

[4] S. J. Eggers, T. E. Jeremiassen, “Eliminating False Sharing”,
Proc. 1991 International Conference on Parallel Processing,
Aug.1991, pp. I:377-381.

[5] K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance
Evaluation of Memory Consistency Models for Shared-
Memory Multiprocessors”, in Proceedings of the Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, Santa
Clara, California, pp. 245-357, Apr. 1991.

[6] P. Foglia, “An Algorithm for the Classification of Coherence
Related Overhead in Shared-Bus Shared-Memory
Multiprocessors”, IEEE TCCA Newsletter, January 2001.

[7] R. Giorgi, C. Prete, G. Prina, L. Ricciardi, “A Hybrid
Approach to Trace Generation for Performance Evaluation of
Shared-Bus Multiprocessors”. In Proceedings 22nd EuroMicro
International Conference, Prague, pp. 207-241, Sept. 1996.

[8] R. Giorgi, C. Prete, G. Prina and L. Ricciardi, “Trace
Factory: a Workload Generation Environment for Trace-
Driven Simulation of Shared-Bus Multiprocessor”. IEEE
Concurrency, 5(4), pp. 54-68, Oct-Dec 1997.

[9] R. Giorgi and C.A. Prete, “PSCR: A Coherence Protocol for
Eliminating Passive Sharing in Shared-Bus Shared-Memory
Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, pp. 742-763, vol. 10, no. 7, July 1999.

[10] S. R. Goldschmidt and J. L. Hennessy, "The Accuracy of
Trace-Driven Simulations of Multiprocessors''. In
Proceedings ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, pp. 146-157, May 1993.

[11] J.R. Goodman, "Using Cache Memory to Reduce
Processor-Memory Traffic,'' In Proceedings of the. 10th
International Symposium on Computer Architecture,
Stockholm, Sweden, pp. 124-131, June 1983.

[12] A. Gupta and W.-D. Weber, "Cache Invalidation Patterns in
Shared-Memory Multiprocessors,'' IEEE Trans. Computers,
vol. 41, no. 7, pp. 794-810, July 1992.

[13] J. Hennessy and D.A. Petterson, Computer Architecture: a
Quantitative Approach, 2nd edition. Morgan Kaufmann
Publishers, San Francisco, CA, 1996.

[14] R. L. Hyde and B. D. Fleisch, “An Analysis of Degenerate
Sharing and False Coherence”. Journal of Parallel and
Distributed Computing, vol. 34(2), pp. 183-195, May 1996.

[15] C.A. Prete, G. Prina, and L. Ricciardi, “A Trace Driven
Simulator for Performance Evaluation of Cache-Based
Multiprocessor System”. IEEE Transactions on Parallel and
Distributed System, vol. 6 (9), pp. 915-929, September 1995

[16] C. A. Prete, G. Prina, R. Giorgi, and L. Ricciardi, “Some
Considerations About Passive Sharing in Shared-Memory
Multiprocessors”. IEEE TCCA Newsletter, pp. 34-40, Mar.
1997.

[17] M. S. Squillante and D. E. Lazowska, “Using Processor-
Cache Affinity Information in Shared-Memory
Multiprocessor Scheduling”. IEEE Transactions on Parallel
and Distributed System, vol. 4 (2), pp. 131-143, February
1993.

[18] P. Stenstrom, M. Brorsson, and L. Sandberg, “An Adaptive
Cache Coherence Protocol Optimized for Migratory Sharing”.
In Proceedings of the 20th Annual International Symposium
on Computer Architecture. San Diego, CA, May 1993.

[19] P. Stenstrom, E. Hagersten, D. J. Li Margaret Martonosi
and M. Venugopal, “Trends in Shared Memory
Multiprocessing ”, IEEE Computer, Vol. 30, no. 12, pp. 44-
50, Dec. 1997.

[20] C. B. Stunkel, B. Janssens, and W. K. Fuchs, "Address
Tracing for Parallel Machines,'' IEEE Computer, vol. 24, no.
1, pp. 31-45, Jan. 1991.

[21] P. Sweazey and A. J. Smith, "A Class of Compatible Cache
Consistency Protocols and Their Support by the IEEE
Futurebus''. In Proceedings of the 13th International



Symposium on Computer Architecture, pp. 414-423, June
1986.

[22] M. Tomasevic and V. Milutinovic, The Cache Coherence
Problem in Shared-Memory Multiprocessors –Hardware
Solutions. IEEE Computer Society Press, Los Alamitos, CA,
April 1993.

[23] M. Tomasevic and V. Milutinovic, "Hardware Approaches
to Cache Coherence in Shared-Memory Multiprocessors''.
IEEE Micro, vol. 14, no. 5, pp. 52-59, Oct. 1994 and vol. 14,
no. 6, pp. 61-66, Dec. 1994.

[24] J. Torrellas, M. S. Lam, and J.L. Hennessy, “False Sharing
and Spatial Locality in Multiprocessor Caches”. IEEE
Transactions on Computer, vol. 43, n. 6, pp. 651-663, June
1994.

[25] Transaction Processing Performance Council, “TPC
Benchmark D (Decision Support) Standard Specification”.
Dec 1995.

[26] P. Trancoso, J. L. Larriba-Pey, Z. Zhang, and J. Torrellas,
“The Memory Performance of DSS Commercial Workloads
in Shared-Memory Multiprocessors”. In Proceedings of the
3rd International Symposium on High Performance Computer
Architecture, pp. 250-260, Los Alamitos, CA, Feb 1997.

[27] R. A. Uhlig and T. N. Mudge, "Trace-Driven Memory
Simulation: a survey''. ACM Computing Surveys, pp. 128-170,
June 1997.

[28] A. Yu and J. Chen, “The POSTGRES95 User Manual”.
Computer Science Div., Dept. of EECS, University of
California at Berkeley, July 1995.

[29] L. Barroso and K. Gharachorloo and F. Bugnion, "Memory
System Characterization of Commercial Workloads", In
Proceedings of the 25th Annual International Symposium on
Computer Architecture, pp. 3-14, Barcellona, Spain, June
1998.

[30] P. Ranganathan K. Gharachorloo, S. V. Adve and L.
Barroso, "Performance of Database Workloads on Shared-
Memory Systems with Out-of-Order Processors", In
Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 307-318, San Jose, California, 1998

[31] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levy and
S. Parekh, "An Analysis of Database Workload Performance
on Simultaneous Multithreaded Processors", In Proceedings of
the 25th Annual International Symposium on Computer
Architecture, pp. 39-51, Barcelona, Spain, June 1998.

[32] M. Tomasevic and V. Milutinovic, “The Word-Invalidate
Cache Coherence Protocol”, Microprocessors and
Microsystems, pp. 3-16, vol. 20, Mar. 1996.

[33] T. E. Jeremiassen, S. J. Eggers, “Reducing False Sharing on
Shared Memory Multiprocessors through Compile Time Data
Transformations”, ACM SIGPLAN Notices, 30 (8), pp. 179-
188, August 1995.

[34] J. Chapin, S. A. Herrod, M. Rosemblum, A. Gupta,
“Memory System Performance of Unix on CC-NUMA
Multiprocessors”, in Proc. ACM
SIGMETRICS/PERFORMANCE ’95, May 1995.

[35] J. Torrellas, A. Gupta, J. Hennessy, “Characterizing the
caching and Synchronization Performance of a Multiprocessor
Operating System”, in Proc. Of the 5th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 1992.

Pierfrancesco Foglia received the degree in
Computer Engineering and the Ph.D. degree in
Computer Engineering both from the
University of Pisa. At present, he is a research
assistant in the Department of Information
Engineering of the University of Pisa. His
research interests include computer
architecture, coherence protocols, high
performance servers and infrastructure for E-
Commerce. He is member of the IEEE
Computer Society and ACM.

Cosimo Antonio Prete is full professor of
Computer Systems at the Department of
Electronics, Computer and Telecommunication
Engineering at the University of Pisa, Italy. His
research interests include multiprocessor
architectures, cache memory, performance
evaluation and embedded systems. He has
performed research in programming
environments for distributed systems, in
commit protocols for distributed transactions,
in cache memory architecture and in coherence
protocols for tightly coupled multiprocessor

systems. He has been project manager for the University of Pisa for the
Esprit III Tracs project (Flexible Real-Time Environment for Traffic
Control Systems, supported by the European Communities) and for the
Cache-Sim project (a framework for the modeling and simulation of
cache memories in ARM-based systems, supported by VLSI Technology
Inc., San Jose, California). He has also acted as an expert on the Open
Microprocessor Systems Initiative for the Commission of the European
Communities. He earned his undergraduate degree in Electronic
Engineering cum laude in 1982 and his PhD from the University of Pisa
in 1989. He is a member of IEEE, IEEE Computer Society and ACM.

Roberto Giorgi is currently assistant
professor at the Department of Information
Engineering, University of Siena, Italy. He
was research associate at the Department of
Electrical and Computer Engineering,
University of Alabama in Huntsville, AL
(U.S.A.). He received his MS in electronic
engineering, summa cum laude, and his PhD
in Computer Engineering, both from the
University of Pisa, Italy. His main academic
interest is Computer Architecture and in
particular multithreaded and multiprocessors

systems. He is exploring coherence protocols, compile time
optimizations, behavior of user and system code, architectural simulation
for improving the performance of a wide range of applications from
desktop, to embedded-systems, web-servers, and e-commerce servers.
He took part in the ChARM project in cooperation with VLSI
Technology Inc., San Jose, California, developing part of the software
used for performance evaluation of ARM-processor-based embedded
systems with cache memory. He is a member of the IEEE, IEEE
Computer Society, and ACM.


