
Boosting the Performance
of Three-Tier Web Servers

Deploying SMP Architecture

Pierfrancesco Foglia*, Roberto Giorgi+, Cosimo Antonio Prete*

* Dipartimento di Ingegneria dell’Informazione, Universita’ di Pisa , Via Diotisalvi 2,
56126 Pisa, Italy

{foglia,prete}@iet.unipi.it
 + Dipartimento di Ingegneria dell’Informazione, Universita’ di Siena, Via Roma 56,

 53100 Siena, Italy
giorgi@unisi.it

Abstract. The focus of this paper is on analyzing the effectiveness of SMP
(Symmetric Multi-Processor) architecture for implementing Three-Tier Web-
Servers. In particular, we considered a workload based on the TPC-W
benchmark to evaluate the system.
As the major bottleneck of this system is accessing memory through the shared
bus, we analyzed what are the benefits of adopting several solutions aimed at
boosting the global performance of the Web Server. Our aim is also to quantify
the scalability of such a system and suggest solutions to achieve the desired
processing power. The analysis starts from a reference case, and explores
different architectural choices as for cache, scheduling algorithm, and coherence
protocol in order to increase the number of processors possibly connected
through the shared bus.
Our results show that such an SMP based server could be scaled (up to 20
processor) quite above the limits expected for this kind of architecture, if
particular attention is used in solving problems related to process migration and
coherence overhead.

Keywords: Multiprocessor, Shared-Memory, Coherence Protocol, Performance
Evaluation, Process Migration.

1 Introduction
Web-Servers are often used as three-tier systems for E-Commerce applications [10],
[21]. On tier one, the user machine runs a client program, typically a web-browser
and/or Java applets; the client sends its requests to the server and receives the results
to be shown to the user. Tier two includes a web-server that satisfies application
specific requests, takes care of the task management and delivers standard services
such as transaction management and activity log. Tier three contains data and their
managers, typically DBMS systems, to furnish credit-card information, catalog
information, shipping information, and user information. Tier two and three elements
can be merged onto a single platform, or they can be distributed on several computers
(clustered solution [26]). The single-computer solution has the advantage of a lower
cost and a simplified management. The distributed solution has flexibility, scalability,

and fault-tolerance. In both cases, the systems can be based on multiprocessor
architecture [29].

We considered servers based on shared-bus shared-memory multiprocessor
systems. In this case, design issues are scalability and speedup, which may be limited
by memory latency and bus traffic. Using cache memories can reduce both.
Unfortunately, multiple cache memories introduce the coherence problem [22], [32].
The coherence protocol may have a great influence on the performance. Indeed, to
guarantee cache coherence, the protocol needs a certain number of bus transactions
(known as coherence overhead) that add up to the basic bus traffic of cache-based
uni-processors. Thus, a design issue is also the minimization of the coherence
overhead. A commonly adopted solution to coherence problem is the use of MESI
protocol [31]. This protocol might not be performance effective for shared-bus
architecture, and in particular when process migration is allowed to maintain the load
balancing among processors. The scheduling algorithm plays an essential role in such
systems in order to obtain load balancing. The consequent process migration
generates passive sharing: private data blocks of a process can become resident in
multiple caches. Coherence has to be enforced even on those data, but generates
useless coherence overhead, which in turn may limit system performance [13], [23].

In our evaluation, the workloads have been setup as specified in the TPC-W
benchmark [35]. TPC-W simulates the activities of a business-oriented transactional
web server. Our aim is to quantify the scalability of such a system and suggest
solutions to achieve the desired processing power. We considered the major
bottlenecks of the memory system of this architecture. The results we obtained show
that, by reducing the coherence overhead and the effects of process migration on the
memory sub-system –acting on the affinity scheduler and the coherence protocol, - we
could scale this kind of architecture up to 20 processors.

2 Related Work
Several important categories of general purpose and commercial applications, like
web-server and database applications, motivated a realistic evaluation framework for
shared memory multiprocessing research [29]. Several studies started to consider
benchmarks like TPC-series (including DSS, OLTP, WEB-server benchmarks)
representative of commercial workloads to evaluate the performance of
multiprocessor servers [4], [5], [6], [19], [36].

Cain et al. [5] implemented TPC-W as a collection of Java servlets and present an
architectural study detailing the memory system and branch predictor behavior of this
workload. They used a 6-processor IBM RS/6000 S80 SMP machine, running AIX
4.33 operating system. They also evaluated the effectiveness of a coarse-grained
multithreaded processor, simulated using SimOS, at increasing system throughput.
However, their evaluation uses only no more than 6 processors. They found that the
false sharing is almost absent in the user part as we also verified.

Other evaluations considered TPC-based benchmarks [4], [6], [19], [36] for
database workloads. Most of the conclusions found in these evaluations present
analogies with our evaluation. In particular, large caches, more associativity, and
larger blocks help in the case of large working set. The major drawback of large
caches is the increase coherence overhead. In our case, instead of considering single

query execution, we run multiple concurrent query streams. We consider also
configurations with more processors and with different solutions for the cache
parameters, coherence protocol, and scheduling policies (in particular cache affinity).

3 Web-Server Server Setup and Workload Definition

The typical software architecture of Web-Servers for e-commerce applications is
based on a three-tiered model: tier one is constituted by the e-commerce clients
(typically a Web Browser), which access the server by the Internet; tier two is
constituted by the Web Server, a transaction management process and the application
processes (which also provide accounting and auditing); tier three is constituted by
data and their managers [10].

The activity of e-commerce systems typically involves data scan (to access product
list, product features, credit card information, shipping information), update (to
update customer status and activity status) and transactions (for instance to buy
products, make payments). These activities involve the interaction between tiers
according to the following model: the user (i.e. the client, tier one) sends its requests
by means of a Web-Browser. A process (a daemon, which constitutes part of the tier
two) waits for the user request, and sends the request to a child application process.
Then, the daemon waits for new requests, while the child process handles the
incoming request. This activity may require accessing html pages and/or invocating
service processes at tier three.

As for workloads, we implemented a software architecture based on the following
freeware components. The system front-end (part of the tier two) includes an Apache
Server [24] (which is currently the most popular HTTP server [9]) Client requests that
involve database activities are forwarded, via CGI interface, to the Data-Base
Management System (DBMS) PostgreSQL [38]. PostgreSQL is constituted by a
front-end (also part of the tier two), which intercepts requests and by a backend (part
of the tier three), which executes the queries.

We configured the Apache server, so that it spawns a minimum of 8 idle processes,
a maximum of 40 idle processes. The number of requests that a child can process
before dying is limited to 100. PostgreSQL utilizes shared memory to cache
frequently accessed data, indices, and locking structures [36].

We considered general cases of workloads not depending on the specific system.
To this end, we setup the experiments as described in the TPC-W benchmark [35],
which specifies how to simulate the activities of a business-oriented transactional web
server and exercises the breadth of system components. The application portrayed by
the benchmark is a retail store with customer browse-and-order scenario.

In a typical situation, application and management processes can require the
support of different system commands and ordinary applications. To this end, Unix
utilities (ls, awk, cp, gzip, and rm) have been considered in our workload setup.
These utilities [14] are important because: i) they increase the effects of process
migration as discussed in detail in the Section 5; ii) they may interfere with the shared
data and code footprint of the other applications.

4 Methodology and Hardware System Configuration

The methodology used in our performance evaluation is based both on trace-driven
simulation [30], [37] and on the simulation of the three kernel activities that most
affect performance: system calls, process scheduling, and virtual-to-physical memory
address translation. We used the Trace Factory environment [12]. The approach used
in this environment is to produce a process trace (a sequence of user memory
references, system-call positions and synchronization events in case of multi-process
programs) for each process belonging to the workload by means of a modified version
of Tangolite [15]. By using this tool, we have also traced the system calls of a Linux
kernel 2.2.13 [20].

Process scheduling is modeled by dynamically assigning a ready process to a
processor. The process scheduling is driven by time-slice for uniprocess applications,
whilst it is driven by time-slice and synchronization events for multi-process
applications. Virtual-to-physical memory address translation is modeled by mapping
sequential virtual pages into non-sequential physical pages.

By using this methodology, the TPC-W benchmark specification, and the freeware
components, we generated our target workload. We traced the execution of the
workload programs handling of 100 web interactions in a specific time interval
corresponding to 130 millions of references.

Table 1. Statistics of source traces for some UNIX utilities, in case of 32-byte block size

Application Distinct blocks Code (%) Data (%) Data Write (%)

AWK 9876 76.23 23.77 8.83

CP 5432 77.21 22.79 8.88

GZIP 7123 82.32 17.68 2.77

RM 2655 86.18 13.82 2.11

LS -AR 5860 80.23 19.77 5.79

Table 2. Statistics of multi-process application source, in case of 32-byte block size

Number
of processes

Data (%) Shared data (%)

Distinct
Blocks Code (%)

Access Write

Shared
blocks Access Write

8 (PostgreSQL) 24141 71.94 28.06 9.89 5838 2.70 0.79
13 (Apache) 34311 73.84 26.16 6.99 1105 1.84 0.60

The target workload is constituted of 13 processes spawned by the Apache
daemon, 8 by PostgreSQL, and 5 Unix utilities. Table 1 (for the uniprocess
applications) and Table 2 (for the multi-process ones) contain some statistics of the
traces used to generate the workloads for a 32-byte block size. Table 3 summarizes
the statistics of the resulting workloads.

Table 3. Statistics of target workload, in case of 32-byte block size

Data (%) Shared data (%) Number
of processes

Distinct
blocks Code (%)

Access Write
Shared
blocks Accesses Write

26 112183 75.49 17.12 7.39 6101 1.68 0.54

The simulator of Trace Factory characterizes a shared-bus multiprocessor in terms of
CPU, cache, and bus parameters. The CPU parameters are the number of clock cycles
for a read/write CPU operation. The simulated processors are MIPS-R10000 ones;
paging relays on 4-Kbyte page size. The cache parameters are cache size, block size,
and associativity. The caches are non-blocking ones using a LRU (Least Recently
Used) block replacement policy. We assumed a constant cache access time by the
processor for all configurations.

Each processor uses a write buffer thus implementing a relaxed model of memory
consistency, in particular the processor consistency model [1], [17]. Finally, the bus
parameters are the number of CPU clock cycles for each kind of transaction: write,
invalidation, update-block, memory-to-cache read-block, cache-to-cache read-block,
memory-to-cache read-and-invalidate-block, and cache-to-cache read-and-invalidate-
block. The bus supports transaction splitting.

We considered in our analysis three coherence protocols: MESI [31], AMSD [8],
[28] and PSCR [13], which we describe here briefly. Although MESI is considered
the industry standard, we added for comparison other two coherence protocols that
perform better than MESI, in order to widen our view of possible solutions that could
be combined to enhance the performance of a TPC-W workload.

Besides classical MESI protocol states, our implementation of MESI [25] uses the
following bus transactions: read-block (to fetch a block), read-and-invalidate-block
(to fetch a block and invalidate any copies in other caches), invalidate (to invalidate
any copies in other caches), and update-block (to write back dirty copies when they
need to be destroyed for replacement). The invalidation transaction used to obtain
coherency has, as a drawback, the need to reload a certain copy, if a remote processor
uses again that copy, thus generating a miss (Invalidation Miss). Therefore, MESI
coherence overhead (that is the transactions needed to enforce coherence) is due both
to Invalidate Transactions and Invalidation Misses. SMP architectures based on
MESI have been extensively analyzed in the case of scientific, engineering, DBMS
and web workloads.

AMSD is designed for Migratory Sharing, which is a kind of true sharing that is
characterized by the exclusive use of data by a certain processor for a long time
interval. The protocol identifies migratory-shared data dynamically, in order to reduce
the cost of moving them. Although designed for migratory sharing, AMSD may have
some beneficial effects also on passive sharing. AMSD coherence overhead is due to
invalidate transactions and invalidation misses.

PSCR (Passive Shared Copy Removal) adopts a selective invalidation scheme for
the private data, and uses the write-update scheme for the shared data. A cached copy
belonging to a process private area is invalidated locally as soon as another processor
fetches the same. This technique eliminates passive sharing overhead. Invalidate
transactions are eliminated and coherence overhead is due to write transactions.

 The most significant metric for our evaluation of the machine is the GSP (Global

System Power) [3], [12], which includes the combined effects of processor
architecture and memory hierarchy. We recall the definition GSP:

GSP = ΣUcpu

where

Ucpu = (Tcpu-Tdelay)/Tcpu
Tcpu is the time needed to execute the workload, and Tdelay is the total CPU delay time
due to memory operation.

We used the miss rate to identify the main sources of memory overhead. The
simulator classifies also the coherence overhead by analyzing the access patterns to
shared data (true [33], false [33], e passive sharing [2], [23]). In particular, it classifies
coherence transactions (write or invalidate) and misses due to a previous invalidate
transaction (invalidation misses). The type of access pattern to the cache block
determines the type of the coherence transaction or invalidation-miss. The
classification [11] is based on an existing algorithm [18], extended to the case of
passive sharing, finite size caches, and process migration.

Table 4. Timing parameters for the multiprocessor simulator (in clock cycles)

Timing
Class Parameter

32 bytes 64 bytes 128 bytes 256 bytes
CPU Read/Write operation 2 2 2 2
Bus Invalidate transaction 5 5 5 5
 Write transaction 5 5 5 5
 Memory-to-cache read-block transaction 68 72 80 96
 Memory-to-cache read-and-invalidate-block transaction 68 72 80 96
 Cache-to-cache read-block transaction 12 16 24 40
 Cache-to-cache read-and-invalidate-block transaction 12 16 24 40
 Update-block transaction 8 12 20 36

5 Simulation Results

Our aim in this section is to show our quantitative data on solutions that could
enhance the performance of a shared-bus multiprocessor utilized to as a three-tier
web-server. For this reason, we first considered a reference case study and we varied
the parameters that influence mostly the performance. Thus, we show data from our
simulations showing how much system power we can get (in terms of GSP), and
which are the hardware/software choices that we could adopt in order to build a more
powerful machines.

Let us consider the Web-Server workload running on a single multiprocessor as
reference case study. We considered a 128-bit shared bus. For the scheduling policy
two solutions have been analyzed: random and cache-affinity [34]; scheduler time-
slice is equivalent to about 200,000 references. The bus timings relative to these case
studies are reported in Table 4.

The GSP graph (Figure 1) shows, as expected, that we can obtain a more powerful
machine by increasing the cache size and associativity. The larger are the caches, the
more scalable is the machine.

In the following we shall use this definition of scalability: we say that a
multiprocessor system is scalable up to N processor, if N is the number of processors
that causes the GSP to drop by more than 0.5 when the when switching between a N-
to (N+1)-processor machine (this definition is equivalent to the definition of ‘critical

point’ in [13]) By using this definition, the machine we are considering is scalable up
to 4 processors in the case of 128-Kbyte direct access cache, and up to 9 processors in
the case of 2-Mbyte 4-way caches. The higher scalability is essentially due to lower
bus utilization when adopting larger caches (Figure 1). As the cache size and
associativity increase, the reduction of bus traffic is due to the lower miss.
Global System Power

0

0,5

1

1,5

2

2,5

3

3,5

4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size (bytes) / Number of Ways

Bus Utilization (%)

0

10

20

30

40

50

60

70

80

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size (bytes) / Number of Ways

Fig. 1. Global System Power (GSP) versus
cache size (128 Kbytes, 256 Kbytes, 512
Kbytes, 1 Mbytes, 2 Mbytes) and number of
ways (1, 2, 4), for a 4-processor system,
random scheduling policy, and 32-byte block
size. The sum of processor utilizations (GSP)
switches from 2.2 to 3.4 as the cache size and
associativity increases

Fig. 2. Bus Utilization (in percentage) versus
cache size (128 Kbytes, 256 Kbytes, 512
Kbytes, 1 Mbytes, 2 Mbytes) and number of
ways (1, 2, 4), for a 4-processor system,
random scheduling policy, and 32-byte block
size. The less the bus utilization, the more
system power can be gained by adding new
processors to the system

Invalidation Miss Rate (%)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size / Number of Ways

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)

Number of Coherence Transactions
per 100 Memory References

0

0.02

0.04

0.06

0.08

0.1

0.12

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Cache Size / Number of Ways

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Fig. 3. Breakdown of invalidation miss rate
versus cache size (128 Kbytes, 256 Kbytes,
512 Kbytes, 1 Mbytes, 2 Mbytes) and number
of ways (1, 2, 4), for a 4-processor system,
random scheduling policy, and 32-byte block
size. Invalidation misses are basically due to
the kernel, and false sharing is the main source
of those misses. They slightly increase with
cache size

Fig. 4. Number of coherence transactions
(invalidate transactions) versus cache size
(same conditions as previous figure). Passive
sharing overhead increases with cache and
associativity, becoming significant in case of
cache sizes larger than 256 Kbytes. Passive
sharing increases due to a larger average
lifetime for a cached copy when the cache size
is increased

Coherence overhead increases with the cache size and associativity (Figures 3 and
4), and it weighs, in percentage, more and more on the performance. Indeed, the
coherence overhead, in terms of bus utilization, changes from about 5%, in the case of
128-Kbyte direct access cache, up to 20% in the case of 2-Mbyte 4-way set
associative cache. In this case, most of the coherence overhead (Figure 3) is due to
false sharing generated in the kernel. True sharing is present in the kernel, whilst it is
limited in the application user area. Passive sharing increases as the cache capacity is
increased (Figure 4), since average lifetime of cached copies increases as well. This
also shows that even a low sharing may have an important impact on the global
performance: this will be more clear as the number of processors is scaled up, as we
shall discus in the following paragraph. The importance of coherence traffic on
performance as the cache size increases has been also highlighted in previous studies
[7], [19].

As a second step, we compared the 4- and the 8-processor case. We discuss briefly
the results: we found that the 8-processor configuration is near the scalability limit of
the machine. In fact, the bus utilization in the 8-processor case is very high (more than
90%). Despite the fact that the GSP increases, due to higher number of processors,
each processor has a lower utilization. This is essentially due to the increased bus
latency.

By acting only on cache size and associativity, however, we cannot significantly
increase the scalability of the machine. Thus we considered other optimizations. In
particular, we can increase the performance of the 8-processor system by intervening:
i) on the classical misses (sum of cold, conflict and capacity misses), ii) on the kernel
false sharing, iii) by limiting the effects of process migration.

We can intervene on the point i) and ii) by modifying the block size. As for the
effects on performance caused by the process migration, we can modify both the
scheduling policy and the coherence protocol.

As the block size increases, we observed lower bus utilization in all the cache
configurations, and a higher GSP. This is due to the decrease of miss rate, in
particular due to the reduction of “classical” misses. Anyway, increasing block size
become soon not so effective for block sizes above 128 bytes. In fact we should
consider both higher transaction cost and coherence overhead. As we increase the
block size from 32 bytes to 256 bytes, in case of 2-way caches and 2-Mbyte cache
sizes, GSP increases from 5.6 to 7, and bus utilization decreases from 71% to 43%.
This allows us to increase architecture scalability up to 18 processors, corresponding
to a 14.5 GSP value.

This technique has the disadvantage of a higher cost to transfer the block on the
bus. Another drawback is false sharing overhead, which varies with the block size.
Moreover, intervening on the block size connects system performance to the program
locality more tightly. Considering that program locality may vary, it is not convenient
to use too much larger block sizes. Therefore, we considered in the following the
results related to a system having a 128-byte block size.

As a further step, we analyzed the system when the kernel adopts a scheduling
policy based on cache affinity [27]. Cache affinity produces ‘other miss’ (i.e. classical
misses) rate reduction (Figure 6), and in particular the reduction of context-switch
miss portion. Also, the coherence transactions are lower (Figure 7), due to the

reduction of number of passive sharing related transactions. As for invalidation
misses (not reported in figure), there is no substantial difference compared to the base
scheduling policy case.

In the case of 2-Mbyte, 2-way set associative cache, we observed a miss rate
reduction, which causes a GSP increase from 6.9 to 7.4 (Figure 5) and a bus
utilization change from 47% to 32%. This situation would allow us to extend the
number of system processors up to 14, with a related increase of GSP equal to 11.3.
Cache affinity reduces context switch misses, while still tolerating process migration
for load balance.

Global System Power

0

1

2

3

4

5

6

7

8

12
8K

/ra
nd

om

12
8K

/a
ffi

ni
ty

25
6K

/ra
nd

om

25
6K

/a
ffi

ni
ty

51
2K

/ra
nd

om

51
2K

/a
ffi

ni
ty

1M
/ra

nd
om

1M
/a

ffi
ni

ty

2M
/ra

nd
om

2M
/a

ffi
ni

ty

Cache Size / Scheduling Algorithm

Miss Rate (%)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

12
8K

/ra
nd

om

12
8K

/a
ffi

ni
ty

25
6K

/ra
nd

om

25
6K

/a
ffi

ni
ty

51
2K

/ra
nd

om

51
2K

/a
ffi

ni
ty

1M
/ra

nd
om

1M
/a

ffi
ni

ty

2M
/ra

nd
om

2M
/a

ffi
ni

ty

Cache Size / Scheduling Algorithm

Other Miss
Invalidation Miss

Fig. 5. Global System Power versus cache size
(128 Kbytes, 256 Kbytes, 512 Kbytes, 1
Mbytes, 2 Mbytes) and scheduling policy
(random, affinity), in case of 8 processors, 128-
byte block size, and two-way set associative
cache

Fig. 6. Breakdown of miss rate versus cache
size (128 Kbytes, 256 Kbytes, 512 Kbytes, 1
Mbytes, 2 Mbytes) and scheduling policy
(random, affinity), in case of 8 processors,
128-byte block size, and two-way set
associative cache. Miss reduction due to cache
affinity technique is evident

Number of Coherence Transactions
 per 100 Memory References

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

12
8K

/ra
nd

om

12
8K

/a
ffi

ni
ty

25
6K

/ra
nd

om

25
6K

/a
ffi

ni
ty

51
2K

/ra
nd

om

51
2K

/a
ffi

ni
ty

1M
/ra

nd
om

1M
/a

ffi
ni

ty

2M
/ra

nd
om

2M
/a

ffi
ni

ty

Cache Size / Scheduling Algorithm

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Fig. 7. Number of coherence transactions (invalidate transactions)
versus cache size (128 Kbytes, 256 Kbytes, 512 Kbytes, 1 Mbytes,
2 Mbytes) and scheduling policy (random, affinity), in case of 8
processors, 128-byte block size, and two-way set associative
cache. Cache affinity scheduling reduces only passive sharing
component, while the other components remain constant

Based on our experiments, the best way to further increase the system scalability is to
reduce the coherence overhead by adopting a special coherence protocol, as we show
below.

We considered two additional coherence protocols that reduce or eliminate passive
sharing. The first is based on Write-Update technique and the second on a Write-
Invalidate technique. They are respectively, PSCR [13] and AMSD (Adaptive
Migratory Sharing Detection) [8], [28]. We described briefly these protocols in
Section 2.

As shown (Figure 8), as the number of processors increases, the performance
difference among protocols becomes more evident. In particular, the choice of MESI
protocol appears the most penalizing. This is due to the non-selective invalidation
technique of MESI.

AMSD has beneficial effects on passive sharing although it does not eliminate it
completely. The benefits on passive sharing are due mainly to a decrease of coherence
transactions (Figure 11). The reduction of coherence transaction number is due to the
behavior of AMSD on shared copies. When AMSD detects a block that has to be
treated exclusively for a long time interval, it invalidates the copy locally during the
handling of a remote miss, thus avoiding a necessary consequent bus transaction.

PSCR is based on the update of effectively shared copies, thus minimizing
invalidation misses. By using the write-update technique, the number of coherence
transactions results higher compared to other protocols (Figure 11). On the other side,
the reduction of total number of misses produces a more consistent bus utilization
decrease than with the other protocols. Moreover, the cost of the coherence overhead
is somewhat limited by the lower cost of the coherence maintaining write transactions
(Table 4). Finally, the write transaction cost is independent from the block size. More
generally, in non-technical workloads has been noticed that there is a scarce reuse of
data and there are large working sets [16]. This will give further advantage to such
solutions that are based on write-update techniques, like PSCR.

Global System Power

0

2

4

6

8

10

12

14

16

8/Random 8/Affinity 12/Random 12/Affinity 16/Random 16/Affinity
Number of Processors / Scheduling Algorithm

MESI
AMSD
PSCR

Average Processor Utilization

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

8/Random 8/Affinity 12/Random 12/Affinity 16/Random 16/Affinity
Number of Processors / Scheduling Algorithm

MESI
AMSD
PSCR

Fig. 8. Global System Power versus number of
processors (8, 12, 16) and scheduling algorithm
(random, affinity). Cache is a 2-way set
associative with 128-byte block size, and 2-
Mbyte size

Fig. 9. Average Processor Utilization versus
number of processors (8, 12, 16) and
scheduling algorithm (random, affinity).
Cache is a 2-way set associative with 128-byte
block size, and 2-Mbyte size

Let us now analyze the scalability offered by the various protocols. As observed
previously, the system is in saturation when the GSP does not increase of a minimal
quantity as the number of processors is increased. In our experiments we calculated
that this minimal quantity is equal to a GSP of 0.5 for each added processor. As a rule
of thumb, this corresponds to a GSP increase of 2 when switching among different
configurations in Figure 8. Thus, as shown in Figure 8, we can state that MESI (in
case of random scheduling policy) is already near the saturation threshold for a 12-
processor configuration. AMSD performs slightly better since the saturation is
reached for some number of processors between 12 and 16, for both scheduling
policies. In the shown configurations, PSCR is never in saturation. This justifies its
adoption when higher performance (GSP) is needed.

When the performance is pushed to the limits (and consequently the system works
near saturation) the designer should take advantage of more optimization techniques
like smart coherence protocols. The combination of all analyzed techniques (adequate
block size, cache affinity, and PSCR) allows us to push system scalability up to 20
processors with a corresponding GSP of about 16.

In Table 5, we report a summary of the configuration that we tested, and how
effective the solutions were, in increasing the scalability of a machine.

Table 5. Scalability that can be reached on our shared-bus multiprocessor
NUMBER OF PROCESSORS 4 8 8 8 16
CACHE CAPACITY (BYTES) 2M 2M 2M 2M 2M

CACHE BLOCK SIZE (BYTES) 32 32 256 128 128
SCHEDULING POLICY RANDOM RANDOM RANDOM AFFINITY AFFINITY

SYSTEM PARAMETER
COHERENCE PROTOCOL MESI MESI MESI MESI PSCR

GSP 3.3 5.6 7 7.4 14

PERFORMANCE BUS UTILIZATION 38% 71% 43% 32% 55%
MAX NUMBER OF PROCESSORS 9 9 18 14 20

SCALABILITY CORRESPONDING (ESTIMATED)
GSP

~6 ~6 ~14 ~11 ~16

Invalidation Miss Rate (%)

0

0.05

0.1

0.15

0.2

0.25

8/
R

an
do

m
/M

ES
I

8/
R

an
do

m
/A

M
SD

8/
Af

fin
ity

/M
ES

I

8/
Af

fin
ity

/A
M

SD

12
/R

an
do

m
/M

ES
I

12
/R

an
do

m
/A

M
SD

12
/A

ffi
ni

ty
/M

ES
I

12
/A

ffi
ni

ty
/A

M
SD

16
/R

an
do

m
/M

ES
I

16
/R

an
do

m
/A

M
SD

16
/A

ffi
ni

ty
/M

ES
I

16
/A

ffi
ni

ty
/A

M
SD

Number of Processors / Scheduling Algorithm / Coherence Protocol

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)

Number of Coherence Transaction
per 100 Memory References

0

0.02

0.04

0.06

0.08

0.1

0.12

8/
R

an
do

m
/M

ES
I

8/
R

an
do

m
/A

M
SD

8/
R

an
do

m
/P

SC
R

8/
Af

fin
ity

/M
ES

I

8/
Af

fin
ity

/A
M

SD

8/
Af

fin
ity

/P
SC

R

12
/R

an
do

m
/M

ES
I

12
/R

an
do

m
/A

M
SD

12
/R

an
do

m
/P

SC
R

12
/A

ffi
ni

ty
/M

ES
I

12
/A

ffi
ni

ty
/A

M
SD

12
/A

ffi
ni

ty
/P

SC
R

16
/R

an
do

m
/M

ES
I

16
/R

an
do

m
/A

M
SD

16
/R

an
do

m
/P

SC
R

16
/A

ffi
ni

ty
/M

ES
I

16
/A

ffi
ni

ty
/A

M
SD

16
/A

ffi
ni

ty
/P

SC
R

Number of Processors / Scheduling Algorithm / Coherence Protocol

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)0.52 0.52 0.53 0.53

0.53 0.53

Fig. 10. Invalidation Miss Rate versus number
of processor (8, 12, 16) and scheduling
algorithm (random, affinity). The cache has a
128-byte block size, 2-Mbyte size, and it is 2-
way set associative

Fig. 11. Miss Rate versus number of processor
(8, 12, 16) and scheduling algorithm (random,
affinity). The cache has 128-byte block size,
2Mbyte size, and it is 2-way set associative

6 Conclusions

In this paper we analyzed a three-tier Web-Server used for e-commerce
applications (TPC-W benchmark), based on a shared-bus multiprocessors SMP
architecture. We analyzed what are the benefits of adopting several solutions aimed at
reducing the major bottlenecks in this kind of architecture. In particular, we have
analyzed in detail the memory subsystem, whose performance depends heavily on the
miss rate and traffic on the shared-bus. We tried to quantify the scalability of such a
system and suggested solutions to achieve the desired processing power.

As the number of processors increases, the goal of reducing coherence overhead
and bus traffic becomes essential, in order to achieve good performance. When
designing Web-Servers for e-commerce applications as well as other processing
power demanding applications, the first goal is the reduction of classical misses. This
can be achieved by using techniques that enhance the locality of the program, and
other traditional solutions. Then, kernel designers should take into account false
sharing. False sharing misses have to be reduced by using kernel data restructuring
techniques. This could be easily achieved, since the kernel is a well-know part of the
system at design time.

The use of cache affinity scheduling produces also good results for reducing
classical misses and passive sharing overhead, even if its applicability is somewhat
limited by the load conditions (and in particular, by the difference between number of
processors and number of processes). As for architectural aspects, in the case of bus-
based multiprocessors, MESI protocol is sufficient for configurations having a not so
high number of processors (8 in our experiments). If a higher computing power is
needed, the increase of number of processors really produces benefits, if other miss
reduction techniques are considered. Coherence protocols like PSCR and AMSD,
produce performance benefits. In particular PSCR eliminates coherence overhead due
to passive sharing, without generating useless invalidation misses, and thus achieve
better results. The adoption of PSCR allows us to extend the multiprocessor
scalability at least up to 20 processors when we choose also cache affinity scheduling
for the experiments that we carried out.

References

1. S.V. Adve and K. Gharachorloo: Shared Memory Consistency Models: A Tutorial. IEEE Computer, pp.
66-76, December 1996.

2. A. Agarwal and A. Gupta: Memory Reference Characteristics of Multiprocessor Applications under
Mach. Proc. ACM Sigmetrics, Santa Fe, NM, pp. 215-225, May 1988.

3. J.K. Archibald and J. L. Baer: Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model. ACM Transactions On Computer Systems, vol. 4, pp. 273-298, April 1986.

4. L.A. Barroso, K. Gharachorloo, and E. Bugnion: Memory System Characterization of Commercial
Workloads. Proc. 25th Int. Sympo. on Computer Architecture, Barcelona, Spain, pp. 3-14, June 1998.

5. T. Cain, R. Rajwar, M. Marden, and M. Lipasti: An Architectural Characterization of Java TPC-W. 7th
International Symposium of High-Performance Computer Architecture, pp. 229-240, January 2001.

6. Q. Cao, J. Torrellas, et al.: Detailed characterization of a quad Pentium Pro server running TPC-D.
International Conference on Computer Design, pp.108-115, October 1999.

7. J. Chapin, et al.: Memory System Performance of UNIX on CC-NUMA Multiprocessors. ACM
Sigmetrics Conf. on Measurement and Modeling of Computer Systems, pp. 1-13, May 1995.

8. A. L. Cox and R.J. Fowler: Adaptive Cache Coherency for Detecting Migratory Shared Data. Proc. of
20th International Symposium on Computer Architecture, San Diego, CA, pp. 98-108, May 1993.

9. J. Edwards: The changing Face of Freeware. IEEE Computer, vol. 31, no. 10, pp. 11-13, October 1998.
10. J. Edwards: 3-Tier Client/Server At Work. Wiley Computer Publishing, New York, NY, 1999.
11. P. Foglia: An Algorithm for the Classification of Coherence Related Overhead in Shared-Bus Shared-

Memory Multiprocessors. IEEE TCCA Newsletter, pp. 53-58, January 2001.
12. R. Giorgi, C.A. Prete et al.: Trace Factory: a Workload Generation Environment for Trace-Driven

Simulation of Shared-Bus Multiprocessor. IEEE Concurrency, vol. 5, no. 4, pp. 54-68, October 1997.
13. R. Giorgi and C.A. Prete: PSCR: A Coherence Protocol for Eliminating Passive Sharing in Shared-Bus

Shared-Memory Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, pp. 742-763,
vol. 10, no. 7, July 1999.

14. GNU Free Software Foundation. http://www.gnu.org/software/
15. S.R. Goldschmidt and J.L. Hennessy: The Accuracy of Trace-Driven Simulations of Multiprocessors.

Sigmetrics Conf. on Measurement and Modeling of Computer Systems, CA, pp. 146-157, May 1993.
16. A. M. Griffazzi Maynard et al.: Contrasting characteristics and cache performance of technical and

multi-user commercial workloads. Proc. of the 6th International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 158-170, October 1994.

17. J. Hennessy and D.A. Patterson: Computer Architecture: a Quantitative Approach, 2nd edition. Morgan
Kaufmann Publishers, San Francisco, CA, 1996.

18. R.L. Hyde and B.D. Fleisch: An Analysis of Degenerate Sharing and False Coherence. Journal of
Parallel and Distributed Computing, vol. 34, no. 2, pp. 183-195, May 1996.

19. K. Keeton, D. Patterson et al.: Performance characterization of a quad Pentium Pro SMP using OLTP
workloads. Proc. of the 25th International Symposium on Computer Architecture, pp. 15-26, June 1998.

20. Linux on SGI/MIPS, http://oss.sgi.com/mips/
21. V. Milutinovic: Infrastructure for Electronic Business on the Internet. Kluwer Publishers, 2001.
22. C.A. Prete: RST Cache Memory Design for a Tightly Coupled Multiprocessor System. IEEE Micro,

vol. 11, no. 2, pp. 16-19, 40-52, April 1991.
23. C.A. Prete, G. Prina, R. Giorgi, and L. Ricciardi,: Some Considerations About Passive Sharing in

Shared-Memory Multiprocessors. IEEE TCCA Newsletter, pp. 34-40, March 1997.
24. D. Robinson: APACHE – An HTTP Server. Reference Manual, 1995, http://www.apache.org
25. T. Shanley and Mindshare Inc.; Pentium Pro and Pentium II System Architecture, 2nd edition. Addison

Wesley, Reading, MA, 1999.
26. R. Short, R. Gamache, et al.: Windows NT Clusters for Availability and Scalability. In Proceedings of

the 42nd IEEE International Computer Conference, pp. 8-13, San Jose, CA February 1997.
27. M.S. Squillante and D.E. Lazowska: Using Processor-Cache Affinity Information in Shared-Memory

Multiprocessor Scheduling. IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2, pp.
131-143, February 1993.

28. P. Stenström, M. Brorsson, and L. Sandberg: An Adaptive Cache Coherence Protocol Optimized for
Migratory Sharing. 20th Int. Symposium on Computer Architecture, San Diego, CA, May 1993.

29. P. Stenström, E. Hagersten, D.J. Li, M. Martonosi, and M. Venugopal. Trends in Shared Memory
Multiprocessing. IEEE Computer, vol. 30, no. 12 pp. 44-50, December 1997.

30. C.B. Stunkel, B. Janssens, and W.K. Fuchs: Address Tracing for Parallel Machines. IEEE Computer,
vol. 24, no. 1, pp. 31-45, January 1991.

31. P. Sweazey and A.J. Smith: A Class of Compatible Cache Consistency Protocols and Their Support by
the IEEE Futurebus. Proc. of the 13th Intnl. Symph, on Computer Architecture, pp. 414-423, June 1986.

32. M. Tomasevic and V. Milutinovic: The Cache Coherence Problem in Shared-Memory Multiprocessors
– Hardware Solutions. IEEE Computer Society Press, Los Alamitos, CA, April 1993.

33. J. Torrellas, M.S. Lam, and J.L. Hennessy: False Sharing and Spatial Locality in Multiprocessor
Caches. IEEE Transactions on Computer, vol. 43, no. 6, pp. 651-663, June 1994.

34. J. Torrellas et al.: Evaluating the Performance of Cache-Affinity Scheduling in Shared-Memory
Multiprocessors. Journal of Parallel and Distributed Computing, vol. 24, no. 2, pp. 139-151, Feb. 1995.

35. TPC BENCHMARK W (Web Commerce) Specification, version 1.0.1. Transaction Processing
Performance Council, February 2000.

36. P. Trancoso, et. al.: Memory Performance of DSS Commercial Workloads in Shared-Memory
Multiprocessors. 3rd Int. Symp. on High Perf. Computer Architecture, pp. 250-260, February 1997.

37. R.A. Uhlig and T.N. Mudge: Trace-Driven memory simulation: a survey. ACM Computing Surveys,
pp. 128-170, June 1997.

38. A. Yu and J. Chen: The POSTGRES95 User Manual. Computer Science Div., Dept. of EECS,
University of California at Berkeley, July 1995.

