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Abstract. The focus of this paper is on analyzing the effectiveness of SMP 
(Symmetric Multi-Processor) architecture for implementing Three-Tier Web-
Servers. In particular, we considered a workload based on the TPC-W 
benchmark to evaluate the system.  
As the major bottleneck of this system is accessing memory through the shared 
bus, we analyzed what are the benefits of adopting several solutions aimed at 
boosting the global performance of the Web Server. Our aim is also to quantify 
the scalability of such a system and suggest solutions to achieve the desired 
processing power. The analysis starts from a reference case, and explores 
different architectural choices as for cache, scheduling algorithm, and coherence 
protocol in order to increase the number of processors possibly connected 
through the shared bus. 
Our results show that such an SMP based server could be scaled (up to 20 
processor) quite above the limits expected for this kind of architecture, if 
particular attention is used in solving problems related to process migration and 
coherence overhead. 

Keywords: Multiprocessor, Shared-Memory, Coherence Protocol, Performance 
Evaluation, Process Migration. 

1 Introduction 
Web-Servers are often used as three-tier systems for E-Commerce applications [10], 
[21]. On tier one, the user machine runs a client program, typically a web-browser 
and/or Java applets; the client sends its requests to the server and receives the results 
to be shown to the user. Tier two includes a web-server that satisfies application 
specific requests, takes care of the task management and delivers standard services 
such as transaction management and activity log. Tier three contains data and their 
managers, typically DBMS systems, to furnish credit-card information, catalog 
information, shipping information, and user information. Tier two and three elements 
can be merged onto a single platform, or they can be distributed on several computers 
(clustered solution [26]). The single-computer solution has the advantage of a lower 
cost and a simplified management. The distributed solution has flexibility, scalability, 



and fault-tolerance. In both cases, the systems can be based on multiprocessor 
architecture [29]. 

We considered servers based on shared-bus shared-memory multiprocessor 
systems. In this case, design issues are scalability and speedup, which may be limited 
by memory latency and bus traffic. Using cache memories can reduce both. 
Unfortunately, multiple cache memories introduce the coherence problem [22], [32]. 
The coherence protocol may have a great influence on the performance. Indeed, to 
guarantee cache coherence, the protocol needs a certain number of bus transactions 
(known as coherence overhead) that add up to the basic bus traffic of cache-based 
uni-processors. Thus, a design issue is also the minimization of the coherence 
overhead. A commonly adopted solution to coherence problem is the use of MESI 
protocol [31]. This protocol might not be performance effective for shared-bus 
architecture, and in particular when process migration is allowed to maintain the load 
balancing among processors. The scheduling algorithm plays an essential role in such 
systems in order to obtain load balancing. The consequent process migration 
generates passive sharing: private data blocks of a process can become resident in 
multiple caches. Coherence has to be enforced even on those data, but generates 
useless coherence overhead, which in turn may limit system performance [13], [23]. 

In our evaluation, the workloads have been setup as specified in the TPC-W 
benchmark [35]. TPC-W simulates the activities of a business-oriented transactional 
web server. Our aim is to quantify the scalability of such a system and suggest 
solutions to achieve the desired processing power. We considered the major 
bottlenecks of the memory system of this architecture. The results we obtained show 
that, by reducing the coherence overhead and the effects of process migration on the 
memory sub-system –acting on the affinity scheduler and the coherence protocol, - we 
could scale this kind of architecture up to 20 processors. 

2 Related Work 
Several important categories of general purpose and commercial applications, like 
web-server and database applications, motivated a realistic evaluation framework for 
shared memory multiprocessing research [29]. Several studies started to consider 
benchmarks like TPC-series (including DSS, OLTP, WEB-server benchmarks) 
representative of commercial workloads to evaluate the performance of 
multiprocessor servers [4], [5], [6], [19], [36]. 

Cain et al. [5] implemented TPC-W as a collection of Java servlets and present an 
architectural study detailing the memory system and branch predictor behavior of this 
workload. They used a 6-processor IBM RS/6000 S80 SMP machine, running AIX 
4.33 operating system. They also evaluated the effectiveness of a coarse-grained 
multithreaded processor, simulated using SimOS, at increasing system throughput. 
However, their evaluation uses only no more than 6 processors. They found that the 
false sharing is almost absent in the user part as we also verified. 

Other evaluations considered TPC-based benchmarks [4], [6], [19], [36] for 
database workloads. Most of the conclusions found in these evaluations present 
analogies with our evaluation. In particular, large caches, more associativity, and 
larger blocks help in the case of large working set. The major drawback of large 
caches is the increase coherence overhead. In our case, instead of considering single 



query execution, we run multiple concurrent query streams. We consider also 
configurations with more processors and with different solutions for the cache 
parameters, coherence protocol, and scheduling policies (in particular cache affinity).  

3 Web-Server Server Setup and Workload Definition 

The typical software architecture of Web-Servers for e-commerce applications is 
based on a three-tiered model: tier one is constituted by the e-commerce clients 
(typically a Web Browser), which access the server by the Internet; tier two is 
constituted by the Web Server, a transaction management process and the application 
processes (which also provide accounting and auditing); tier three is constituted by 
data and their managers [10]. 

The activity of e-commerce systems typically involves data scan (to access product 
list, product features, credit card information, shipping information), update (to 
update customer status and activity status) and transactions (for instance to buy 
products, make payments). These activities involve the interaction between tiers 
according to the following model: the user (i.e. the client, tier one) sends its requests 
by means of a Web-Browser. A process (a daemon, which constitutes part of the tier 
two) waits for the user request, and sends the request to a child application process. 
Then, the daemon waits for new requests, while the child process handles the 
incoming request. This activity may require accessing html pages and/or invocating 
service processes at tier three. 

As for workloads, we implemented a software architecture based on the following 
freeware components. The system front-end (part of the tier two) includes an Apache 
Server [24] (which is currently the most popular HTTP server [9]) Client requests that 
involve database activities are forwarded, via CGI interface, to the Data-Base 
Management System (DBMS) PostgreSQL [38]. PostgreSQL is constituted by a 
front-end (also part of the tier two), which intercepts requests and by a backend (part 
of the tier three), which executes the queries. 

We configured the Apache server, so that it spawns a minimum of 8 idle processes, 
a maximum of 40 idle processes. The number of requests that a child can process 
before dying is limited to 100. PostgreSQL utilizes shared memory to cache 
frequently accessed data, indices, and locking structures [36]. 

We considered general cases of workloads not depending on the specific system. 
To this end, we setup the experiments as described in the TPC-W benchmark [35], 
which specifies how to simulate the activities of a business-oriented transactional web 
server and exercises the breadth of system components. The application portrayed by 
the benchmark is a retail store with customer browse-and-order scenario.  

In a typical situation, application and management processes can require the 
support of different system commands and ordinary applications. To this end, Unix 
utilities (ls, awk, cp, gzip, and rm) have been considered in our workload setup. 
These utilities [14] are important because: i) they increase the effects of process 
migration as discussed in detail in the Section 5; ii) they may interfere with the shared 
data and code footprint of the other applications. 



4 Methodology and Hardware System Configuration 

The methodology used in our performance evaluation is based both on trace-driven 
simulation [30], [37] and on the simulation of the three kernel activities that most 
affect performance: system calls, process scheduling, and virtual-to-physical memory 
address translation. We used the Trace Factory environment [12]. The approach used 
in this environment is to produce a process trace (a sequence of user memory 
references, system-call positions and synchronization events in case of multi-process 
programs) for each process belonging to the workload by means of a modified version 
of Tangolite [15]. By using this tool, we have also traced the system calls of a Linux 
kernel 2.2.13 [20]. 

Process scheduling is modeled by dynamically assigning a ready process to a 
processor. The process scheduling is driven by time-slice for uniprocess applications, 
whilst it is driven by time-slice and synchronization events for multi-process 
applications. Virtual-to-physical memory address translation is modeled by mapping 
sequential virtual pages into non-sequential physical pages. 

By using this methodology, the TPC-W benchmark specification, and the freeware 
components, we generated our target workload. We traced the execution of the 
workload programs handling of 100 web interactions in a specific time interval 
corresponding to 130 millions of references. 

Table 1. Statistics of source traces for some UNIX utilities, in case of 32-byte block size 

Application Distinct blocks Code (%) Data (%) Data Write (%) 

AWK 9876 76.23 23.77 8.83 

CP 5432 77.21 22.79 8.88 

GZIP 7123 82.32 17.68 2.77 

RM 2655 86.18 13.82 2.11 

LS -AR 5860 80.23 19.77 5.79 
 

Table 2. Statistics of multi-process application source, in case of 32-byte block size 

Number 
of processes 

Data (%) Shared data  (%) 

 

Distinct
Blocks Code (%) 

Access Write 

Shared
blocks Access Write 

8 (PostgreSQL) 24141 71.94 28.06 9.89 5838 2.70 0.79 
13 (Apache) 34311 73.84 26.16 6.99 1105 1.84 0.60 

 

The target workload is constituted of 13 processes spawned by the Apache 
daemon, 8 by PostgreSQL, and 5 Unix utilities. Table 1 (for the uniprocess 
applications) and Table 2 (for the multi-process ones) contain some statistics of the 
traces used to generate the workloads for a 32-byte block size. Table 3 summarizes 
the statistics of the resulting workloads.  

 
Table 3. Statistics of target workload, in case of 32-byte block size 

Data (%) Shared data (%) Number 
of processes 

Distinct 
blocks Code  (%)

Access Write 
Shared 
blocks Accesses Write 

26 112183 75.49 17.12 7.39 6101 1.68 0.54 
 



 
The simulator of Trace Factory characterizes a shared-bus multiprocessor in terms of 
CPU, cache, and bus parameters. The CPU parameters are the number of clock cycles 
for a read/write CPU operation. The simulated processors are MIPS-R10000 ones; 
paging relays on 4-Kbyte page size. The cache parameters are cache size, block size, 
and associativity. The caches are non-blocking ones using a LRU (Least Recently 
Used) block replacement policy. We assumed a constant cache access time by the 
processor for all configurations. 

Each processor uses a write buffer thus implementing a relaxed model of memory 
consistency, in particular the processor consistency model [1], [17]. Finally, the bus 
parameters are the number of CPU clock cycles for each kind of transaction: write, 
invalidation, update-block, memory-to-cache read-block, cache-to-cache read-block, 
memory-to-cache read-and-invalidate-block, and cache-to-cache read-and-invalidate-
block. The bus supports transaction splitting. 

We considered in our analysis three coherence protocols: MESI [31], AMSD [8], 
[28] and PSCR [13], which we describe here briefly. Although MESI is considered 
the industry standard, we added for comparison other two coherence protocols that 
perform better than MESI, in order to widen our view of possible solutions that could 
be combined to enhance the performance of a TPC-W workload.  

Besides classical MESI protocol states, our implementation of MESI [25] uses the 
following bus transactions: read-block (to fetch a block), read-and-invalidate-block 
(to fetch a block and invalidate any copies in other caches), invalidate (to invalidate 
any copies in other caches), and update-block (to write back dirty copies when they 
need to be destroyed for replacement). The invalidation transaction used to obtain 
coherency has, as a drawback, the need to reload a certain copy, if a remote processor 
uses again that copy, thus generating a miss (Invalidation Miss). Therefore, MESI 
coherence overhead (that is the transactions needed to enforce coherence) is due both 
to Invalidate Transactions and Invalidation Misses. SMP architectures based on 
MESI have been extensively analyzed in the case of scientific, engineering, DBMS 
and web workloads. 

AMSD is designed for Migratory Sharing, which is a kind of true sharing that is 
characterized by the exclusive use of data by a certain processor for a long time 
interval. The protocol identifies migratory-shared data dynamically, in order to reduce 
the cost of moving them. Although designed for migratory sharing, AMSD may have 
some beneficial effects also on passive sharing. AMSD coherence overhead is due to 
invalidate transactions and invalidation misses. 

PSCR (Passive Shared Copy Removal) adopts a selective invalidation scheme for 
the private data, and uses the write-update scheme for the shared data. A cached copy 
belonging to a process private area is invalidated locally as soon as another processor 
fetches the same. This technique eliminates passive sharing overhead. Invalidate 
transactions are eliminated and coherence overhead is due to write transactions. 

 
 The most significant metric for our evaluation of the machine is the GSP (Global 

System Power) [3], [12], which includes the combined effects of processor 
architecture and memory hierarchy. We recall the definition GSP: 

GSP = ΣUcpu 



where  

Ucpu = (Tcpu-Tdelay)/Tcpu 
Tcpu is the time needed to execute the workload, and Tdelay is the total CPU delay time 
due to memory operation.  

We used the miss rate to identify the main sources of memory overhead. The 
simulator classifies also the coherence overhead by analyzing the access patterns to 
shared data (true [33], false [33], e passive sharing [2], [23]). In particular, it classifies 
coherence transactions (write or invalidate) and misses due to a previous invalidate 
transaction (invalidation misses). The type of access pattern to the cache block 
determines the type of the coherence transaction or invalidation-miss. The 
classification [11] is based on an existing algorithm [18], extended to the case of 
passive sharing, finite size caches, and process migration. 

 
Table 4. Timing parameters for the multiprocessor simulator (in clock cycles) 

Timing 
Class Parameter 

32 bytes 64 bytes 128 bytes 256 bytes 
CPU Read/Write operation 2 2 2 2 
Bus Invalidate  transaction 5 5 5 5 
 Write transaction 5 5 5 5 
 Memory-to-cache  read-block transaction  68 72 80 96 
 Memory-to-cache  read-and-invalidate-block transaction  68 72 80 96 
 Cache-to-cache  read-block transaction  12 16 24 40 
 Cache-to-cache  read-and-invalidate-block transaction  12 16 24 40 
 Update-block transaction  8 12 20 36 

5 Simulation Results 

Our aim in this section is to show our quantitative data on solutions that could 
enhance the performance of a shared-bus multiprocessor utilized to as a three-tier 
web-server. For this reason, we first considered a reference case study and we varied 
the parameters that influence mostly the performance. Thus, we show data from our 
simulations showing how much system power we can get (in terms of GSP), and 
which are the hardware/software choices that we could adopt in order to build a more 
powerful machines.  

Let us consider the Web-Server workload running on a single multiprocessor as 
reference case study. We considered a 128-bit shared bus. For the scheduling policy 
two solutions have been analyzed: random and cache-affinity [34]; scheduler time-
slice is equivalent to about 200,000 references. The bus timings relative to these case 
studies are reported in Table 4.  

The GSP graph (Figure 1) shows, as expected, that we can obtain a more powerful 
machine by increasing the cache size and associativity. The larger are the caches, the 
more scalable is the machine. 

In the following we shall use this definition of scalability: we say that a 
multiprocessor system is scalable up to N processor, if N is the number of processors 
that causes the GSP to drop by more than 0.5 when the when switching between a N- 
to (N+1)-processor machine (this definition is equivalent to the definition of ‘critical 



point’ in [13]) By using this definition, the machine we are considering is scalable up 
to 4 processors in the case of 128-Kbyte direct access cache, and up to 9 processors in 
the case of 2-Mbyte 4-way caches. The higher scalability is essentially due to lower 
bus utilization when adopting larger caches (Figure 1). As the cache size and 
associativity increase, the reduction of bus traffic is due to the lower miss. 
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Fig. 1. Global System Power (GSP) versus 
cache size (128 Kbytes, 256 Kbytes, 512 
Kbytes, 1 Mbytes, 2 Mbytes) and number of 
ways (1, 2, 4), for a 4-processor system, 
random scheduling policy, and 32-byte block 
size. The sum of processor utilizations (GSP) 
switches from 2.2 to 3.4 as the cache size and 
associativity increases 

Fig. 2. Bus Utilization (in percentage) versus 
cache size (128 Kbytes, 256 Kbytes, 512 
Kbytes, 1 Mbytes, 2 Mbytes) and number of 
ways (1, 2, 4), for a 4-processor system, 
random scheduling policy, and 32-byte block 
size. The less the bus utilization, the more 
system power can be gained by adding new 
processors to the system 
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Number of Coherence Transactions 
per 100 Memory References
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Fig. 3. Breakdown of invalidation miss rate 
versus cache size (128 Kbytes, 256 Kbytes, 
512 Kbytes, 1 Mbytes, 2 Mbytes) and number 
of ways (1, 2, 4), for a 4-processor system, 
random scheduling policy, and 32-byte block 
size. Invalidation misses are basically due to 
the kernel, and false sharing is the main source 
of those misses. They slightly increase with 
cache size 

Fig. 4. Number of coherence transactions 
(invalidate transactions) versus cache size 
(same conditions as previous figure). Passive 
sharing overhead increases with cache and 
associativity, becoming significant in case of 
cache sizes larger than 256 Kbytes. Passive 
sharing increases due to a larger average 
lifetime for a cached copy when the cache size 
is increased 

 



Coherence overhead increases with the cache size and associativity (Figures 3 and 
4), and it weighs, in percentage, more and more on the performance. Indeed, the 
coherence overhead, in terms of bus utilization, changes from about 5%, in the case of 
128-Kbyte direct access cache, up to 20% in the case of 2-Mbyte 4-way set 
associative cache. In this case, most of the coherence overhead (Figure 3) is due to 
false sharing generated in the kernel. True sharing is present in the kernel, whilst it is 
limited in the application user area. Passive sharing increases as the cache capacity is 
increased (Figure 4), since average lifetime of cached copies increases as well. This 
also shows that even a low sharing may have an important impact on the global 
performance: this will be more clear as the number of processors is scaled up, as we 
shall discus in the following paragraph. The importance of coherence traffic on 
performance as the cache size increases has been also highlighted in previous studies 
[7], [19]. 

 

As a second step, we compared the 4- and the 8-processor case. We discuss briefly 
the results: we found that the 8-processor configuration is near the scalability limit of 
the machine. In fact, the bus utilization in the 8-processor case is very high (more than 
90%). Despite the fact that the GSP increases, due to higher number of processors, 
each processor has a lower utilization. This is essentially due to the increased bus 
latency.  

By acting only on cache size and associativity, however, we cannot significantly 
increase the scalability of the machine. Thus we considered other optimizations. In 
particular, we can increase the performance of the 8-processor system by intervening: 
i) on the classical misses (sum of cold, conflict and capacity misses), ii) on the kernel 
false sharing, iii) by limiting the effects of process migration.  

We can intervene on the point i) and ii) by modifying the block size. As for the 
effects on performance caused by the process migration, we can modify both the 
scheduling policy and the coherence protocol.  

As the block size increases, we observed lower bus utilization in all the cache 
configurations, and a higher GSP. This is due to the decrease of miss rate, in 
particular due to the reduction of “classical” misses. Anyway, increasing block size 
become soon not so effective for block sizes above 128 bytes. In fact we should 
consider both higher transaction cost and coherence overhead. As we increase the 
block size from 32 bytes to 256 bytes, in case of 2-way caches and 2-Mbyte cache 
sizes, GSP increases from 5.6 to 7, and bus utilization decreases from 71% to 43%. 
This allows us to increase architecture scalability up to 18 processors, corresponding 
to a 14.5 GSP value. 

This technique has the disadvantage of a higher cost to transfer the block on the 
bus. Another drawback is false sharing overhead, which varies with the block size. 
Moreover, intervening on the block size connects system performance to the program 
locality more tightly. Considering that program locality may vary, it is not convenient 
to use too much larger block sizes. Therefore, we considered in the following the 
results related to a system having a 128-byte block size. 

 

As a further step, we analyzed the system when the kernel adopts a scheduling 
policy based on cache affinity [27]. Cache affinity produces ‘other miss’ (i.e. classical 
misses) rate reduction (Figure 6), and in particular the reduction of context-switch 
miss portion. Also, the coherence transactions are lower (Figure 7), due to the 



reduction of number of passive sharing related transactions. As for invalidation 
misses (not reported in figure), there is no substantial difference compared to the base 
scheduling policy case. 

In the case of 2-Mbyte, 2-way set associative cache, we observed a miss rate 
reduction, which causes a GSP increase from 6.9 to 7.4 (Figure 5) and a bus 
utilization change from 47% to 32%. This situation would allow us to extend the 
number of system processors up to 14, with a related increase of GSP equal to 11.3. 
Cache affinity reduces context switch misses, while still tolerating process migration 
for load balance.  
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Fig. 5. Global System Power versus cache size 
(128 Kbytes, 256 Kbytes, 512 Kbytes, 1 
Mbytes, 2 Mbytes) and scheduling policy 
(random, affinity), in case of 8 processors, 128-
byte block size, and two-way set associative 
cache 

Fig. 6. Breakdown of miss rate versus cache 
size (128 Kbytes, 256 Kbytes, 512 Kbytes, 1 
Mbytes, 2 Mbytes) and scheduling policy 
(random, affinity), in case of 8 processors, 
128-byte block size, and two-way set 
associative cache. Miss reduction due to cache 
affinity technique is evident 
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Fig. 7. Number of coherence transactions (invalidate transactions) 
versus cache size (128 Kbytes, 256 Kbytes, 512 Kbytes, 1 Mbytes, 
2 Mbytes) and scheduling policy (random, affinity), in case of 8 
processors, 128-byte block size, and two-way set associative 
cache. Cache affinity scheduling reduces only passive sharing 
component, while the other components remain constant 

 



Based on our experiments, the best way to further increase the system scalability is to 
reduce the coherence overhead by adopting a special coherence protocol, as we show 
below. 

We considered two additional coherence protocols that reduce or eliminate passive 
sharing. The first is based on Write-Update technique and the second on a Write-
Invalidate technique. They are respectively, PSCR [13] and AMSD (Adaptive 
Migratory Sharing Detection) [8], [28]. We described briefly these protocols in 
Section 2. 

As shown (Figure 8), as the number of processors increases, the performance 
difference among protocols becomes more evident. In particular, the choice of MESI 
protocol appears the most penalizing. This is due to the non-selective invalidation 
technique of MESI. 

AMSD has beneficial effects on passive sharing although it does not eliminate it 
completely. The benefits on passive sharing are due mainly to a decrease of coherence 
transactions (Figure 11). The reduction of coherence transaction number is due to the 
behavior of AMSD on shared copies. When AMSD detects a block that has to be 
treated exclusively for a long time interval, it invalidates the copy locally during the 
handling of a remote miss, thus avoiding a necessary consequent bus transaction.  

PSCR is based on the update of effectively shared copies, thus minimizing 
invalidation misses. By using the write-update technique, the number of coherence 
transactions results higher compared to other protocols (Figure 11). On the other side, 
the reduction of total number of misses produces a more consistent bus utilization 
decrease than with the other protocols. Moreover, the cost of the coherence overhead 
is somewhat limited by the lower cost of the coherence maintaining write transactions 
(Table 4). Finally, the write transaction cost is independent from the block size. More 
generally, in non-technical workloads has been noticed that there is a scarce reuse of 
data and there are large working sets [16]. This will give further advantage to such 
solutions that are based on write-update techniques, like PSCR. 
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Fig. 8. Global System Power versus number of 
processors (8, 12, 16) and scheduling algorithm 
(random, affinity). Cache is a 2-way set 
associative with 128-byte block size, and 2-
Mbyte size 

Fig. 9. Average Processor Utilization versus 
number of processors (8, 12, 16) and 
scheduling algorithm (random, affinity). 
Cache is a 2-way set associative with 128-byte 
block size, and 2-Mbyte size 

 



Let us now analyze the scalability offered by the various protocols. As observed 
previously, the system is in saturation when the GSP does not increase of a minimal 
quantity as the number of processors is increased. In our experiments we calculated 
that this minimal quantity is equal to a GSP of 0.5 for each added processor. As a rule 
of thumb, this corresponds to a GSP increase of 2 when switching among different 
configurations in Figure 8. Thus, as shown in Figure 8, we can state that MESI (in 
case of random scheduling policy) is already near the saturation threshold for a 12-
processor configuration. AMSD performs slightly better since the saturation is 
reached for some number of processors between 12 and 16, for both scheduling 
policies. In the shown configurations, PSCR is never in saturation. This justifies its 
adoption when higher performance (GSP) is needed.  

 

When the performance is pushed to the limits (and consequently the system works 
near saturation) the designer should take advantage of more optimization techniques 
like smart coherence protocols. The combination of all analyzed techniques (adequate 
block size, cache affinity, and PSCR) allows us to push system scalability up to 20 
processors with a corresponding GSP of about 16. 

 
 

In Table 5, we report a summary of the configuration that we tested, and how 
effective the solutions were, in increasing the scalability of a machine. 

 

Table 5. Scalability that can be reached on our shared-bus multiprocessor 
NUMBER OF PROCESSORS 4 8 8 8 16 
CACHE CAPACITY (BYTES) 2M 2M 2M 2M 2M 

CACHE BLOCK SIZE (BYTES) 32 32 256 128 128 
SCHEDULING POLICY RANDOM RANDOM RANDOM AFFINITY AFFINITY 

 
 
 

SYSTEM PARAMETER 
COHERENCE PROTOCOL MESI MESI MESI MESI PSCR 

GSP 3.3 5.6 7 7.4 14  

PERFORMANCE BUS UTILIZATION 38% 71% 43% 32% 55% 
MAX NUMBER OF PROCESSORS 9 9 18 14 20  

SCALABILITY CORRESPONDING (ESTIMATED) 
GSP 

~6 ~6 ~14 ~11 ~16 
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Fig. 10. Invalidation Miss Rate versus number 
of processor (8, 12, 16) and scheduling 
algorithm (random, affinity). The cache has a 
128-byte block size, 2-Mbyte size, and it is 2-
way set associative 

Fig. 11. Miss Rate versus number of processor 
(8, 12, 16) and scheduling algorithm (random, 
affinity). The cache has 128-byte block size, 
2Mbyte size, and it is 2-way set associative 



6 Conclusions  

In this paper we analyzed a three-tier Web-Server used for e-commerce 
applications (TPC-W benchmark), based on a shared-bus multiprocessors SMP 
architecture. We analyzed what are the benefits of adopting several solutions aimed at 
reducing the major bottlenecks in this kind of architecture. In particular, we have 
analyzed in detail the memory subsystem, whose performance depends heavily on the 
miss rate and traffic on the shared-bus. We tried to quantify the scalability of such a 
system and suggested solutions to achieve the desired processing power. 

As the number of processors increases, the goal of reducing coherence overhead 
and bus traffic becomes essential, in order to achieve good performance. When 
designing Web-Servers for e-commerce applications as well as other processing 
power demanding applications, the first goal is the reduction of classical misses. This 
can be achieved by using techniques that enhance the locality of the program, and 
other traditional solutions. Then, kernel designers should take into account false 
sharing. False sharing misses have to be reduced by using kernel data restructuring 
techniques. This could be easily achieved, since the kernel is a well-know part of the 
system at design time.  

The use of cache affinity scheduling produces also good results for reducing 
classical misses and passive sharing overhead, even if its applicability is somewhat 
limited by the load conditions (and in particular, by the difference between number of 
processors and number of processes). As for architectural aspects, in the case of bus-
based multiprocessors, MESI protocol is sufficient for configurations having a not so 
high number of processors (8 in our experiments). If a higher computing power is 
needed, the increase of number of processors really produces benefits, if other miss 
reduction techniques are considered. Coherence protocols like PSCR and AMSD, 
produce performance benefits. In particular PSCR eliminates coherence overhead due 
to passive sharing, without generating useless invalidation misses, and thus achieve 
better results. The adoption of PSCR allows us to extend the multiprocessor 
scalability at least up to 20 processors when we choose also cache affinity scheduling 
for the experiments that we carried out. 
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