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1 INTRODUCTION 

AN ever-increasing number of multiprocessor server 
systems shipped today run commercial workloads  
(Keeton et al., 2003). These workloads include database 
applications such as online transaction processing (OLTP) 
and decision support system (DSS), file servers, and 
application servers (Stenström et al., 1997). Nevertheless, 
technical workloads were widely used to drive the design of 
current multiprocessor systems (Stenström et al., 1997; 
Cvetanovic and Bhandarkar, 1994; Keeton et al., 2003) and 
different studies have shown that commercial workloads 
exhibit different behaviour from technical ones  
(Maynard et al., 1994; Keeton et al., 1998). 

The simpler design for a multiprocessor system is a 
shared-bus shared-memory architecture (Tanenbaum, 2001). 
In shared-bus systems, processors access the shared  
memory through a shared bus. The bus is the bottleneck of 
the system, since it can easily reach a saturation condition, 
thus limiting the performance and the scalability of the 
machine. The classical solution to overcome this problem is 
the use of per-processor cache memories (Hennessy and 
Patterson, 2002). Cache memories introduce the coherency 
problem and the need for adopting adequate coherence 
protocols (Tomasevic and Milutinovic, 1994a, 1994b). The 
main coherence protocol classes are write-update (WU) and 
write-invalidate (WI) (Tomasevic and Milutinovic, 1993). 
WU protocols update the remote copies on each write 
involving a shared copy, whereas WI protocols invalidate 
remote copies in order to avoid updating them. Coherence 
protocols generate several bus transactions, thus accounting 
for a non-negligible overhead in the system (coherence 
overhead). Coherence overhead may have a negative effect 
on the performance and, together with the accesses pattern 
to application data, determines the best protocol choice for a 
given workload (Foglia et al., 1998; Eggers and  
Katz, 1989b; Eggers and Katz, 1988). Different 
optimisations to minimise coherence overhead have been 
proposed (Eggers and Jeremiassen, 1991; Tomasevic and 
Milutinovic, 1993; Torrellas et al., 1994; Jeremiassen and 
Eggers, 1995; Giorgi and Prete, 1999), also acting at 
compile time and architectural level (as the adoption of 
adequate coherence protocols (Tomasevic and Milutinovic, 
1996; Giorgi and Prete, 1999)). 

When the performance achieved by shared-bus  
shared-memory multiprocessor is not sufficient, and this is 
typical for DBMS applications, an SMP (symmetrical  
multi-processing, which includes shared-bus shared-memory 
architectures) or a NUMA (non-uniform memory access) 
approach can be utilised (Culler and Singh, 1998; 
Tanenbaum, 2001; Hennessy and Patterson, 2002). In the 
first case, a crossbar switch interconnects the processing 
elements, in the second an interconnection network. Such 
solutions increase the communication bandwidth among 
elements, thus allowing more CPUs to be added to the 
system, but at the cost of more expensive and complex 
communication networks. In both the designs, the basic 
building bock (node) may be a single processor system or, 
better, a shared-bus shared-memory multiprocessor 
(examples are the HP V-Class and the SGI Origin families 
of multiprocessors (Yu et al., 2002)). In this way, by adding 
high-performance nodes, we can achieve the desired level of 
performance with only a little number of elements, 
simplifying the crossbar or IC network design, and lowering 
the price of the whole system. Unfortunately, due to limited 
bus bandwidth, only a small number of CPU (max four for 
the Pentium family of CPU (Shanley and Mindshare Inc., 
1999) may be included in the single node. 

The aim of this paper is to analyse the scalability of 
shared-bus shared-memory multiprocessors running 
commercial workloads and DBMS applications in 
particular, and to investigate solutions, as concerns the 
memory subsystem, which can increase the processing 
power of such architectures. In this way, we can meet the 
performance requirement of commercial applications with a 
single shared-bus shared-memory machine, or we can adopt 
more performing nodes in an SMP or NUMA design, 
allowing simpler and cheaper design of switch or IC 
networks. 

Important database applications include online transaction 
processing (OLTP) and decision support systems (DSS). 
DSS applications are utilised to extract management 
information from databases of historical data; they are 
characterised by long-running read-only queries  
(Keeton et al., 2003). OLTP applications are utilised by 
users to execute transactions against a database (for 
instance, in banking systems, air flight reservation systems, 
commercial order-entry environment, etc). Different  
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from DSS systems, OLTP applications include a large 
number of concurrent, relatively short, and updating queries 
(Keeton et al., 2003). In consequence, performance of 
OLTP queries depends significantly also on the locking 
mechanism implemented in the DBMS system. Only 
commercial DBMS exhibits adequate locking scheme to run 
OLTP application at an adequate level of performance; 
hence, every analysis of OLTP system should consider 
commercial DBMS. Unfortunately, the methodology of 
evaluation at our disposal requires application source code, 
which is not available for commercial DBMS system. So, in 
the following, we restrict our analysis to DSS system. 
Nevertheless, we draw, at the end of the paper, some 
consideration on how our results can change when analysing 
an OLTP system. 

A typical DSS activity is performed via a query to look for 
ways to increase revenues, such as an SQL query to 
quantify the amount of revenue increase that would have 
resulted from eliminating a company discount in a given 
percentage in a given year (Ballinger, 2001). As mentioned 
earlier, such queries are, in most part, read-only queries. 
Consequently, as already observed in Trancoso et al. (1997) 
and Yu et al. (2002), coherence activity and transactions 
involve essentially DBMS metadata (i.e., data structures that 
are needed by the DBMS to work rather than to store the 
data) and particularly data structure needed to implement 
software locks (Trancoso et al., 1997; Yu et al., 2002). The 
type of access pattern to those data is one-producer/ 
many-consumers. Such pattern may advantage solution 
based on the write-update family of coherence protocols, 
especially if there is a high number of processes (the 
‘consumers’) that concurrently read shared data (Eggers and 
Katz, 1988). These considerations can suggest the adoption 
of other coherence protocols, with respect to the usually 
utilised MESI WI protocol (Sweazey and Smith, 1986). 

In our evaluation, the DSS workload of the system is 
generated by running all the TPC-D queries (Transaction 
Processing Performance Council, 1995) (through the 
PostgreSQL (Yu and Chen, 1995) DBMS) and several Unix 
utilities, which both access the file system and interface the 
DBMS with system services running concurrently. Our 
methodology relies on trace-driven simulation, by means of 
the ‘Trace Factory’ environment (Giorgi et al., 1997), and 
on specific tools for the analysis of coherence overhead 
(Foglia, 2001). 

The performance of the memory subsystem – and 
therefore of the whole system – depends on cache 
parameters, coherence management techniques, and it is 
influenced by operating system activities like process 
migration, cache affinity scheduling, kernel/user code 
interference, and virtual memory mapping. The importance 
of considering operating system activity has been 
highlighted in previous works (Chapin et al., 1995;  
Chandra et al., 1994; Torrellas et al., 1992). Process 
migration, needed to achieve load balancing in such 
systems, increases the number of cold/conflict misses and 
also generates useless coherence overhead, known as 
passive sharing overhead (Giorgi and Prete, 1999). As 

passive sharing overhead dramatically decreases the 
performance of pure WU protocols (Giorgi and Prete, 1999; 
Prete et al., 1997), we considered in our analysis a hybrid 
WU protocol, PSCR (Giorgi and Prete, 1999), which adopts 
a selective invalidation strategy for private data and a  
hybrid WI protocol, AMSD (Cox and Fowler, 1993; 
Stenström et al., 1993), which deals with migration of data 
and, then, of processes. 

Our results show that, in the case of a four-processor 
configuration, performance of DSS workload is moderately 
influenced by cache parameters and the influence of 
coherence protocol is minimal. In 16-processor 
configurations, the performance differences due to the 
adoption of different architectural solutions are significant. 
In high-end architectures, MESI is not the best choice and 
workload changes can nullify the action of affinity-based 
scheduling algorithms. Architectures based on a  
write-update protocol with a selective invalidation strategy 
for private data outperform the ones based on MESI of 
about 20%, and adapt better to workload.  

The rest of the paper is organised as follows. In Section 2, 
we discuss architectural parameters and issues related to the 
coherence overhead. In Section 3, we report the results of 
studies related to the analysis of workloads similar to ours, 
differentiating our contribution. In Section 4, we present our 
experimental setup and methodology. In Section 5, we 
discuss the results of our experiments. In Section 6, we draw 
conclusions. 

2 ISSUES AFFECTING COHERENCE OVERHEAD 

Cache coherency maintaining involves a number of bus 
operations. Some of them are overhead that adds up to the 
basic bus traffic (the traffic necessary to access main 
memory). Three different sources of sharing may be 
observed: 
• true sharing (Torrellas et al., 1990a, 1994b), which 

occurs when the same cached data item is referenced by 
different processes concurrently running on different 
processors 

• false sharing (Torrellas et al., 1990a, 1994b), which 
occurs when several processors reference a different 
data item belonging to the same memory block 
separately 

• passive (Prete et al., 1997) or process-migration 
(Agarwal, 1989) sharing, which occurs when a memory 
block, though belonging to a private area of a process, 
is replicated in more than one cache, as a consequence 
of the migration of the owner process. 

The main coherence protocol classes are write-update  
(WU) and write-invalidate (WI) (Tomasevic and 
Milutinovic, 1993). WU protocols update the remote copies 
on each write involving a shared copy, whereas WI 
protocols invalidate remote copies in order to avoid 
updating them. An optimal selection for the coherence 
protocol can be made by considering the traffic induced by 
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the two approaches in case of different sharing and its 
effects on performances (Foglia et al., 1998). The coherence 
overhead induced by a WU protocol is due to all the 
operations needed to update the remote copies, whereas a 
WI protocol invalidates remote copies and processors 
generate a miss on the access to the invalidated copy 
(invalidation miss). The access patterns to shared data 
determine the coherence overhead. In particular, fine-grain 
sharing denotes high contention for shared data; sequential 
sharing is characterised by long sequences of writes to the 
same memory item performed by the same processor.  
A WI protocol is adequate in the case of sequential  
sharing, whilst, in general, a WU protocol performs better 
than WI for program characterised by fine-grain sharing 
(Eggers and Katz, 1988, 1989a, 1989b) (alternatively, a 
metric based on the write-run and external re-reads  
model can be used to estimate the best protocol choice 
(Eggers, 1991)). In our evaluation, we considered MESI 
protocol as baseline, because it is used in most of the  
high-performance processors today (like AMD K5 and K6, 
PowerPC series, SUN UltraSparc II, SGI R10000, Intel 
Pentium, Pentium Pro series (Pro, II, III), Pentium 4,  
and IA-64/Itanium). Then, based on the previous 
considerations on the access pattern of DSS workloads, we 
included a selective invalidation protocol based on a WU 
policy for manage shared data, which limits most  
effects of process migration (PSCR (Giorgi and  
Prete, 1999)) and a WI protocol specifically designed to 
treat the data migration (AMSD (Cox and Fowler, 1993; 
Stenström et al., 1993)). 

Our implementation of MESI uses the classical MESI 
protocol states (Sweazey and Smith, 1986) and the 
following bus transactions: read-block (to fetch a block), 
read-and-invalidate-block (to fetch a block and invalidate 
any copies in other caches), invalidate (to invalidate any 
copy in other caches), and update-block (to write back dirty 
copies when they need to be replaced). This is mostly 
similar to the implementation of MESI in Pentium Pro 
(Pentium II) processor family (Shanley and Mindshare Inc., 
1999). The invalidation transaction used to obtain coherency 
has, as a drawback, the need to reload a certain copy, if a 
remote processor uses again that copy, thus generating a 
miss (Invalidation Miss). Therefore, MESI coherence 
overhead (that is the transactions needed to enforce 
coherence) is due both to Invalidate Transactions and 
Invalidation Misses. 

PSCR (Passive Shared Copy Removal) adopts a selective 
invalidation scheme for private data, and uses a  
write-update scheme for shared data, although it is not a 
purely write-update protocol. A cached copy belonging to a 
process private area is invalidated locally as soon as another 
processor fetches the same block (Giorgi and Prete, 1999). 
This technique reduces coherence overhead (especially 
passive sharing overhead), otherwise dominant in a pure 
WU protocol (Prete et al., 1997a). Invalidate transactions 
are eliminated and coherence overhead is due to Write 
Transactions and Invalidation Misses caused by local 
invalidation (Passive Sharing Misses). 

AMSD (Cox and Fowler, 1993; Stenström et al., 1993) is 
designed for Migratory Sharing, which happens when the 
control over shared data migrates from one process to 
another running on a different processor. The protocol 
identifies migratory-shared data dynamically to reduce the 
cost of moving them. The implementation relies on an 
extension of a common MESI protocol. Though  
designed for migratory sharing, AMSD may have some 
beneficial effects also on passive sharing. AMSD coherence 
overhead is due to Invalidate Transactions and Invalidation 
Misses. 

The process scheduling strategy, cache parameters, and 
the bus features also influence the coherence overhead and, 
therefore, the multiprocessor performance. The process 
scheduling guarantees the load balancing among the 
processors by scheduling a ready process on the first 
available processor. Although cache affinity is used, a 
process may migrate on a different processor rather than on 
the last used processor, producing at least two effects: 

• some misses when it restarts on a new processor 
(context-switch misses) 

• useless coherence transactions due to passive sharing. 

These situations may become frequent due to dynamicity of 
a workload driven by the user requests, like DSS ones. 
Process migration influences also access patterns to data 
and, therefore, the coherency overhead. 

All the factors described above have important 
consequences on the global performance that we evaluate in 
the Section 5. 

3 RELATED WORK ON DBMS SYSTEMS 

In this section, we consider a summary of main results  
of evaluations for DSS and similar workloads on  
several multiprocessor architectures and operating  
systems. The research of a realistic evaluation framework 
for shared-memory multiprocessor evaluations (Stenström 
et al., 1997; Keeton et al., 2003) motivated many studies 
that consider benchmarks like TPC series (including DSS, 
OLTP, WEB-server benchmarks) representative of commercial 
workloads (Trancoso et al., 1997; Barroso et al., 1998;  
Cao et al., 1999; Ranganathan et al., 1998; Lovett and 
Clapp, 1996; Lo et al., 1998; Keeton et al., 1998). 

Barroso et al. (1998) evaluate an Alpha 21164-based SMP 
memory system through hardware counter measurements 
and SimOS simulations. Their system was running  
Digital-UNIX and Oracle-7 DMBS. The authors consider a 
TPC-B database (OLTP benchmark), TPC-D (DSS queries), 
and the Altavista search engine. They found that memory 
accounts for 75% of stall time. In the case of TPC-D and 
Altavista workloads, the size and latency of the on-chip 
caches influences mostly the performance. The number of 
processes per processor, which is usually kept high in order 
to hide I/O latencies, also significantly influences cache 
behaviour. When using 2-, 4-, 6-, and 8-processor 
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configurations, they found that coherency miss stalls 
increase linearly with the number of processors. Beyond an 
8M-byte outer level cache, they observed that true sharing 
misses limit performance. 

Ranganathan et al. (1998) consider both an OLTP 
workload (modelled after TPC-B (Transaction Processing 
Performance Council, 1994)) and a DSS workload (query 6 
of TPC-D (Transaction Processing Performance Council, 
1995; Ranganathan et al., 1998). Their study is based on 
trace-driven simulation, where traces are collected on a 
four-processor AlphaServer4100 running Digital Unix and 
Oracle 7 DBMS. The simulated system is a CC-NUMA 
shared-memory multiprocessor with advanced ILP support. 
Results, on a four-processor system and an ILP 
configuration with four-way issue, 64-entry instruction 
window, four outstanding misses, provide already 
significant benefits for OLTP and DSS workload. Such 
configurations are even less aggressive than ILP 
commercial processor like Alpha 21264, HP-PA 8000, 
MIPS R10000 (Yeager, 1996). The latter processor, used in 
our evaluation, makes us reasonably safe that this processor 
architecture is sound for investigation in the memory 
subsystem. 

Another performance analysis of OLTP (TPC-B) and  
DSS (query 6 of TPC-D) workloads via simulation is 
presented in Lovett and Clapp (1996). The simulated system 
is a commercial CC-NUMA multiprocessor, constituted by 
four-processor SMP nodes connected using a Scalable 
Coherent Interface based coherent interconnects. Coherence 
protocol is directory-based. Each node is based on a 
Pentium Pro processor with a 512K-byte, four-way set 
associative cache. Results show that TPC-D miss rate is 
much lower and performance is less sensitive to L2 miss 
latency than in the OLTP (TPC-B) experiments. They 
analyse also scalability exhibited by such workloads.  
The speed-up of the DSS workload is near to the  
theoretical ones. Results show that scalability strongly 
depends on miss rate. 

Trancoso et al. (1997) study the memory access patterns 
of a TPC-D-based DSS workload. The DBMS is Postgres95 
running on a simulated four-processor CC-NUMA 
multiprocessor. For cache block sizes ranging from 4 to 128 
bytes and cache capacities from 128 K-bytes to 8 M-bytes, 
the main results are that both large cache blocks and data 
prefetching help, due to spatial locality of index and 
sequential queries. Coherence misses can be more than 60% 
of total misses in queries that uses index scan algorithms for 
select operations. 

Cao et al. (1999) examine a TPC-D workload executing 
on a Pentium-Pro four-processor system, with Windows NT 
and MS SQL Server. Their goal is to characterise this DSS 
system on a real machine, in particular, regarding processor 
parameters, bus utilisation, and sharing. Their methodology 
is based on hardware counters. They found that kernel time 
is negligible (less than 6%). Major sources of processor 
stalls are instruction fetch and data miss in outer level 
caches. They found lower miss rates for data caches in 
comparison with other studies on TPC-C (Barroso et al., 

1998; Keeton et al., 1998). This is due to the smaller 
working set of TPC-D compared with TPC-C. 

Lo et al. (1998) analyse the performance of database 
workloads running on simultaneous multithreading 
processors (Eggers et al., 1997) – an architectural technique 
to hide memory and functional units latencies. The study is 
based on trace driven of a four-processor AlphaServer4100 
and Oracle 7 DBMS as in Barroso et al. (1998). They 
consider both an OLTP workload (modelled after the TPC-B 
(Transaction Processing Performance Council, 1994) 
benchmark) and a DSS workload (query six of the TPC-D 
(Transaction Processing Performance Council, 1995) 
benchmark). Results show that while DBMS workloads 
have larger memory footprints, there is a substantial data 
reuse in a small working set. 

Summarising, these studies considered DBMS workloads 
but they were mostly limited to four-processor systems, did 
not consider the effects of process migration, and did not 
correlate the amount of sharing to the performance of the 
system. As we have more processors, it becomes crucial to 
characterise further the memory subsystem. In our work, we 
investigated both 4- and 16-processor configurations, 
finding that larger caches may have several drawbacks due 
to coherence overhead. This is mostly related to the use of 
shared structures like indices and locks. In Section 5, we 
classify the sources of this overhead and propose solutions 
to overcome limitations to the performance related to 
process migration. 

4 METHODOLOGY AND WORKLOAD 

The methodology that we used (Trace Factory, Giorgi  
et al. 1997) is based on trace-driven simulation (Stunkel  
et al., 1991; Prete et al., 1995; Uhlig and Mudge, 1997) and 
on the simulation of the three kernel activities that most 
affect performance: system calls, process scheduling, and  
virtual-to-physical address translation. 

The approach used is to produce a source trace – a 
sequence of memory references, system-call positions  
(and synchronisation events if needed) – by means of a 
tracing tool. Trace Factory then models the execution of 
complex multiprogrammed workloads by combining 
multiple source traces and simulating system calls (which 
could also involve I/O activity), process scheduling, and 
virtual-to-physical address translation. Finally, Trace 
Factory produces the references (target trace) furnished as 
input to a memory-hierarchy simulator (Prete et al., 1995). 
Trace Factory generates references according to an  
on-demand policy: it produces a new reference when 
simulator requests one, so that the timing behaviour 
imposed by the memory subsystem conditions the reference 
production (Giorgi et al., 1997). Process management is 
modelled by simulating a scheduler that dynamically assigns 
a ready process. Virtual-to-physical address translation is 
modelled by mapping sequential virtual pages into  
non-sequential physical pages. A careful evaluation of this 
methodology has been carried out by Giorgi et al. (1997). 
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The workload considered in our evaluation includes DB 
activity reproduced by means of an SQL server, namely 
PostgreSQL (Yu and Chen, 1995), which handles the  
TPC-D (Transaction Processing Performance Council, 1995) 
queries. We also included Unix utilities that access the file 
system, interface the various programs running on the 
system, and reproduce the activity of typical Unix daemons. 

PostgreSQL is a public domain DBMS, which relies on 
server-client paradigm. It consists of a front-end process 
that accepts SQL queries, and a back-end that forks 
processes, which manage the queries. TPC-D is a 
benchmark for DSS developed by the Transaction 
Processing Performance Council (1995). It simulates an 
application for a wholesale supplier that manages, sells, and 
distributes a product worldwide. Following TPC-D 
specifications, we populated the database via the dbgen 
program, with a scale factor of 0.1. The data are organised 
in several tables and accessed by 17 read-only queries and 
two update queries. 

In a typical situation, application and management 
processes can require the support of different system 
commands and ordinary applications. To this end, Unix 
utilities (ls, awk, cp, and rm) and daemons (telnetd, syslogd, 
crond) have been added to the workload. These utilities are 
important because they model the ‘glue’ activity of the 
system software. These utilities: 

• do not have shared data and thus they increase the 
effects of process migration, as discussed in detail in 
Section 5 

• they may interfere with shared data and code  
cache-footprint of other applications. 

To take into account that requests may be using the same 
program at different times, we traced some commands in 
shifted execution sections: initial (beg) and middle (mid). 

In our experiments, we generated two distinct workloads. 
The first workload (DSS26 in Table 2) includes the  
TPC-D18 source trace (Table 1). TPC-D18 is a multiprocess 
source trace taking into account the activity of 18 processes. 
One process is generated by DBMS back-end execution, 
whilst the other processes are generated by the concurrent 
execution of the 17 read-only TPC-D queries (TPC-D18 in 
Table 2). Since we wished to explore critical situations for 
the affinity scheduling – when the number of process 
changes, – we also generated a second workload (DSS18 in 
Table 2) that includes a subset of TPC-D queries  
(TPC-D12). Table 1 contains some statistics of the 
uniprocess and multiprocess source traces used to generate 
the DB workloads (target traces, Table 2). Both source 
traces related to DBMS activity (TPC-D18, TPC-D12) and 
the resulting workloads (DSS26 e DSS18) present similar 
characteristics in terms of read, write, and shared accesses. 

Table 1   Statistics of source traces for some Unix commands and daemons and for multiprocess source traces  
(PostgreSQL, TPC-D queries) both in case of 64-byte block size and 10,000,000 references per process 

Data (%) Shared data (%) 

Application 
No. of 

processes 
Distinct 
blocks 

Code 
(%) Read Write 

Shared 
blocks Access Write 

awk (beg) 1 4,963 76.76 14.76 8.48 n/a n/a n/a 

awk (mid) 1 3,832 76.59 14.48 8.93 n/a n/a n/a 

cp 1 2,615 77.53 13.87 8.60 n/a n/a n/a 

rm 1 1,314 86.39 11.51 2.10 n/a n/a n/a 

ls – aR 1 2,911 80.62 13.84 5.54 n/a n/a n/a 

telnetd 1 463 82.75 12.96 4.29 n/a n/a n/a 

crond 1 2,464 75.86 16.35 7.79 n/a n/a n/a 

syslogd 1 2,848 80.41 14.96 4.63 n/a n/a n/a 

TPC-D18 18 139,324 73.05 16.89 10.06 7224 1.58 0.43 

TPC-D12 12 93,657 73.04 16.91 10.05 5662 1.55 0.41 

Table 2   Statistics of multiprogrammed target traces (DSS26, 260,000,000 references; DSS18, 180,000,000 references) in 
case of 64-byte block size 

Data (%) Shared data (%) 
Workload 

No. of 
processes 

Distinct 
blocks Code (%) Read Write 

Shared 
blocks Access Write 

DSS26 26 179,862 74.59 16.26 9.15 7806 1.76 0.53 

DSS18 18 124,268 74.00 16.11 8.89 6242 1.63 0.48 
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5 RESULTS 

In this section, we show the memory subsystem 
performance, for our DSS workload, with a detailed 
characterisation of coherence overhead and process-migration 
problems. To this end, we included results for several values 
of the most influencing cache-architecture parameters. 
Finally, we considered critical situations for the affinity 
scheduling and we analysed how the result may be extend to 
other DBMS workloads. Our results show that solutions that 
allow us to achieve a higher scalability are possible for this 
kind of machine – compared to standard solutions – and 
consequently a greater performance at a reasonable cost. 

5.1 Design space of our system 

The simulated system consists of N processors, which are 
interconnected to a 128-bit shared bus for accessing shared 
memory. The following coherence schemes have been 
considered: AMSD, MESI, and PSCR (more details are in 
Section 2). We considered two main configurations: a basic 
machine with four processors and a high-performance one 
with 16 processors. The scheduling policy is based on 
cache-affinity; scheduler time-slice is 200,000 references. 
Cache size has been varied between 512 K bytes and 2 M 
bytes, while for block size we used 64 bytes and 128 bytes. 
The simulated processors are MIPS-R10000-like; paging 
relays on 4 K -page size; the bus is pipelined, supports 
transaction splitting, and processor-consistency memory 
model (Gharachorloo et al., 1991); up to eight outstanding  
 

misses are allowed (Kroft, 1981). The base case study 
timings and parameter values for the simulator are 
summarised in Table 3. 

5.2 Performance metrics 

To investigate the effects on the performance due to 
memory subsystem operations, we analysed the causes 
influencing memory latency and the total execution time. 
The memory latency depends on the time necessary to 
perform a bus operation (Table 3) and on the waiting time to 
access bus (bus latency). Bus latency depends on the 
amount and kind of bus traffic. Bus traffic is constituted by 
read-block transactions (issued for each miss), update 
transactions and coherence transactions (write transactions 
or invalidate transactions, depending on the coherence 
protocol). Consequently, miss and coherence transactions 
affect performance because they affect the processor 
waiting-time directly (in the case of read misses) and 
contribute to bus latency. Therefore, to investigate the 
sources of performance bottlenecks, we reported a 
breakdown of misses – which includes invalidation misses 
and classical misses (sum of cold, capacity, and conflict 
misses) – and the ‘number of coherence transaction per 100 
memory references’ – which includes either write-transactions 
or invalidate transactions depending on the coherence protocol. 
The rest of traffic is due to update transactions. Update 
transactions are a negligible part of bus-traffic (lower than 
7% of read-block transactions or about 1% of bus occupancy) 
and thus they do not influence greatly our analysis. 

Table 3   Input parameters for the multiprocessor simulator (timings are in clock cycles) 

Class Parameter Timings 

CPU Read cycle 2 

 Write cycle 2 

Cache Cache size (bytes) 512K, 1M, 2M 

 Block size (bytes) 64, 128 

 Associativity (number of ways) 1, 2, 4 

Bus Write transaction (PSCR) 5 

 Write for invalidate transaction (AMSD, MESI) 5 

 Invalidate transaction (AMSD) 5 

 Memory-to-cache read-block transaction 72 (block size 64 bytes), 80 (block size 128 bytes) 

 Cache-to-cache read-block transaction 16 (block size 64 bytes), 24 (block size 128 bytes) 

 Update-block transaction 10 (block size 64 bytes), 18 (block size 128 bytes) 

 
In our analysis, we differentiated between Cold  
Misses and Capacity+Conflict Misses and Invalidation 
Misses (Hennessy and Patterson, 2002). Cold Misses 
include first access misses by a given process when  
it is scheduled either for the first time or it is rescheduled  
on another processor (the latter are also known as  
context-switch misses). Capacity+Conflict Misses include  
misses caused by memory references of a process 
competing for the same block (intrinsic interference misses 

in Agarwal (1989)), and misses caused by references of 
sequential processes, executing on the same processor and 
competing for the same cache block (extrinsic interference 
misses in Agarwal (1989)). Invalidation Miss is due to 
accesses to data that are to be reused on the same processor, 
but that have been invalidated in order to maintain 
coherence. Invalidation Misses are further classified, along 
with the coherence transaction type, by means of an 
extension of an existing classification algorithm (Hyde and 
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Fleisch, 1996). Our algorithm extends this classification to 
the case of passive sharing, finite size caches, and process 
migration (Foglia, 2001). In particular, Invalidation Misses 
are differentiated as true sharing misses, false sharing 
misses, passive sharing misses. True sharing misses and 
false sharing misses are classified according to an already 
known methodology (Torrellas et al., 1994; Eggers and 
Jeremiassen, 1991; Dubois et al., 1993). Passive sharing 
misses are invalidation misses generated by the useless 
coherence maintaining of private data (Giorgi and  
Prete, 1999). Clearly, these private data could appear as 
shared to the coherence protocol, because of the process 
migration. Similarly, the coherence transactions are 
classified as true, false, and passive sharing transactions 
either in the case they are invalidation or write transactions 
(Foglia, 2001). 

5.3 ANALYSIS OF THE REFERENCE SYSTEM 

We started our analysis from a four-processor machine 
similar to cases used in literature (Trancoso et al., 1997; 
Barroso et al., 1998; Cao et al., 1999; Ranganathan  
et al., 1998), running the DSS26 workload (Table 2). 

In detail, the reference four-processor machine has a  
128-bit bus and 64-byte block size. We varied cache size 
(from 512 K to 2 M byte) and cache associativity (1, 2, 4). 

Execution Time (Figure 1) is affected by the cache 
architecture. It decreases with larger cache sizes and/or 
more associativity. Anyway, this variation is limited to  
an 8% between the less (512 K byte, one way) and most 
performing (2 M byte, four way) configuration. In this case, 
the role of the coherence protocol is less important, with a 

difference among the various protocols, for a given setup, 
which is less than 1%. 

 
Figure 1   Normalised execution time vs. cache size (512K, 1M, 
2M bytes), number of ways (1, 2, 4) and coherence protocol 
(AMSD, MESI, PSCR). Data assume four processors, 64-byte 
block size, and a cache affinity scheduler. Execution Times are 
normalised with respect to the MESI – 512K, direct access 
architecture. PSCR presents the lowest Execution Time, whilst 
MESI the highest 

We analysed the reason for this performance improvement 
(Figure 2) by decomposing the miss rate in term of 
traditional (cold, conflict, and capacity) and invalidation 
misses. In Figure 3, we show the contribution of each kind 
of sharing to the Invalidation Miss Rate and, in Figure 4, to 
the Coherence-Transaction ‘Rate’ (i.e., the number of 
coherence transactions per 100 memory references). We 
also differentiated between kernel and user overhead. 

 
Figure 2   Breakdown of miss rate vs. cache size (512K, 1M, 2M bytes), number of ways (1, 2, 4) and coherence protocol (AMSD, MESI, 
PSCR). Data assumes four processors, affinity scheduling and 64-byte block 
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As expected, cache size mainly influences capacity misses. 
Invalidation misses increase slightly when increasing cache 
size or associativity (Figure 2). For cache sizes larger than 
1 M bytes, cold misses are the dominating part and 
invalidation misses weigh more and more (at least 30% of 
total misses). This indicates that, for our DSS workload, 
caches larger than 2 M bytes already capture the main 
working set. In fact, for cache sizes larger than 2 M bytes, 
Cold Misses remain constant, invalidation misses increase, 
and only Capacity+Conflict misses may decrease, but their 
contribution to miss rate is already minimal. The solution 

based on PSCR presents the lowest miss rate and negligible 
invalidation misses. 

Our analysis of coherence overhead (Figures 3 and 4) 
confirms that the major sources of overhead are invalidation 
misses for WI protocols (MESI and AMSD) and  
write-transactions for PSCR. Passive sharing overhead, 
either as invalidation misses, or coherence transactions,  
is minimal: this means that affinity scheduling performs 
well. In the user part, true sharing is dominant. In the kernel 
part, false sharing is the major portion of coherence 
overhead. 

 
Figure 3   Breakdown of miss rate vs. cache size (512K, 1M, 2M bytes), number of ways (1, 2, 4), and coherence protocol (AMSD, MESI, 
PSCR). Data assume four processors, affinity scheduling, and 64-byte block 

 

 
Figure 4   Number of coherence transactions vs. cache size (512K, 1M, 2M bytes), number of ways (1, 2, 4), and coherence protocol 
(AMSD, MESI, PSCR). Coherence transactions are invalidate transactions in MESI, and AMSD, write transactions in PSCR. Data assume 
four processors, 64-byte block size, and an affinity scheduler 
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The cost of misses is dominating the performances and 
indeed we show in Figure 1 that PSCR is able to achieve the 
best performance compared with the other protocols.  
The reason is the following: what PSCR loses in terms of 
extra coherence traffic, is then gained as saved misses. 
Indeed, misses are more costly in terms of bus timings and 
read-block transactions may produce a higher waiting time 
for the processor. Also, AMSD performs better than MESI 
due to the reduction of Invalidation Miss Rate overhead 
(Figure 2). 

Our conclusions, for the four-processor configuration, 
agree with previous studies as for the analysis of  
miss rate and the effects of coherence maintaining (Barroso 
et al., 1998; Cao et al., 1999; Trancoso et al., 1997). 

5.4 Analysis of the high-end system 

In the previous baseline case analysis, we have seen that the 
four-processor machine is efficient: architecture variations 
do not produce further gains (e.g., the performance 
differences among protocol are small). This kind of machine 
may not satisfy the performance needs of DSS workloads, 
and more performing systems are demanded. Given current 
processor-memory speeds, we considered a ‘high-end’  
16-processor configuration. A detailed analysis of the 
limitations of this system shows that this architecture makes 
sense, i.e., a high-end SMP system results efficient, if we 
solve the problems produced by the process migration and 
adapt the coherence protocol to the access pattern of the 
workload. This architecture has not been analysed in 
literature, and still represents a relatively economic solution 
to enhance the performance. 

In the following, we will compare our results directly with 
the four-processor case and show the sensitivity to classical 
cache parameters (5.4.1). We will consider separately the 
case of different block size (5.4.2), the case of a different 
workload pressure in terms of number of processes (5.4.3) 
and possible extension of results to other DBMS workloads 
(5.4.4). 

5.4.1 Comparison with four-processor case and sensitivity to 
cache size and associativity 

In Figure 5, we show the Execution Time for several 
configurations. Protocols designed to reduce the effects of 
process migration achieve better performance. In particular, 
the performance gain of PSCR over MESI is at least 13% in 
all configurations. The influence of cache parameters is 
stronger with a 30% difference between the most and less 
performing configuration. 

We clarify the relationship between execution Time and 
process migration, by showing the Miss Rate (Figure 6) and 
the Number of CoherenceTransactions (Figure 8). In detail, 
we show the breakdown of the most varying components of 
Miss Rate (Invalidation Miss, Figure 7) and breakdown of 
coherence transactions (Figure 8). In the following, for the 
sake of clearness, we assume a 1M byte-cache size, a  
64-byte block size, and two-ways. 

 
Figure 5   Normalised execution time vs. cache size (512K, 1M, 
2M bytes), number of ways (1, 2, 4), and coherence protocol 
(AMSD, MESI, PSCR). Data assume 16 processors, 64-byte block 
size, and an affinity scheduler. Execution Times are normalised 
with respect to the execution time of the MESI, 512 K, direct 
access configuration 

The Execution Time is mainly determined by the  
cost of read-block transactions and the cost of  
coherence-maintaining transactions (see also Section 5.2). 
Let us take MESI as baseline. AMSD has a lower Execution 
Time because of its lower Miss Rate (Figure 6, and in 
particular Invalidation Miss Rate, Figure 7). The small 
variation in the Number of Coherence Transactions (Figure 
8) does not weigh much on the performance. PSCR gains 
strongly from the reduction of Miss Rate, while it is not 
penalised too much by the high Number of Coherence 
Transactions (Figures 6 and 8). In detail 

 
Figure 6   Breakdown of miss rate vs. coherence protocol (AMSD, 
MESI, PSCR) and number of processors (4, 16). Data assume an 
affinity scheduler, 64-byte block, 1M-cache size two-way set 
associative. The higher number of processor causes more 
coherence misses (false plus true sharing) and more capacity and 
conflict misses. It is interesting to observe that while the aggregate 
cache size increases (from 4M to 16M bytes), Capacity and 
Conflict misses also increase. This situation is different from the 
uniprocessor case, where Capacity + Conflict misses always 
decrease when cache size increases. This effect is due to process 
migration 

• Classical misses (Cold and Conflict+Capacity) do not 
vary with the coherence protocol, although they 
increase while switching from 4 to 16 processors 
because of the higher migration of the processes: for the 
Cold Miss portion, because a process may be scheduled 
on a higher number of processors, and for the 
Conflict+Capacity, because a process has less 
opportunities of reusing its working set and it destroys 
the cache footprint generated by other processes. 
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• The much lower Miss Rate in PSCR is due to its low 
Invalidation Miss Rate (Figure 6). In particular, PSCR 
does not have invalidation misses due to true and false 
sharing, neither in the user nor in the kernel mode 
(Figure 7). On the contrary, in the other two protocols 
the latter factors weigh very much. This effect is more 
evident in the 16-processor case as compared to the 
four-processor case because of the higher probability of 
sharing data, produced by the increased number of 
processors. 

• The DSS workload, in the PostgreSQL implementation, 
exhibits an access pattern to shared data, which  
speed-up the WU strategy for maintain coherence 
among shared data with respect to the WI strategy. We 
can explain such pattern with the following 
considerations: the TPC-D DSS queries are read-only 
queries and consequently, as already observed in 
Trancoso et al. (1997) and Yu et al. (2002) coherence 

misses and transactions involve PostgreSQL metadata 
(i.e., data structures that are needed by the DBMS to 
work rather than to store the data) and particularly data 
structure needed to implement software locks 
(Trancoso et al., 1997; Yu et al., 2002). The type of 
access pattern to those data is one producer/many 
consumers. Such pattern advantages WU protocols, 
especially if there are a high number of processes (the 
‘consumers’) that concurrently read shared data. When 
the number of processors switches from 4 to 16, the 
number of consumer processes increases, due to the 
higher number of processes concurrently in execution 
and, consequently, true sharing Invalidation Misses and 
Transactions (in the user part) increase especially for 
WI protocols (Figures 7 and 8), thus speeding-up the 
performance of the WU solution (PSCR). However, we 
cannot utilise a pure WU protocol, as passive sharing 
dramatically decreases performances (Prete et al., 1997). 

 
Figure 7   Breakdown of invalidation miss rate vs. coherence protocol (AMSD, MESI, PSCR) and number of processors  
(4, 16). Data assume, an affinity scheduler, 64-byte block, 1M-byte 2-way set associative caches. Having more processors causes more 
coherence misses (false and true sharing). Passive sharing misses are slightly higher in PSCR compared to the other two protocols. This is 
a consequence of the selective invalidation mechanism of PSCR. In fact, as soon as a private block is fetched on another processor, PSCR 
invalidates all the remote copies of that block. In the other two protocols, the invalidation is performed on a write operation on shared data, 
thus less frequently than in PSCR 

 
Figure 8   Number of coherence transactions vs. coherence protocol (AMSD, MESI, PSCR) and number of processors (4, 16). Data assume, 
an affinity scheduler, 64-byte block, 1M-byte 2-way set associative caches. There is an increment in the sharing overhead in all of its 
components. This increment is more evident in the WI class protocols, also because there is more passive sharing overhead 
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5.4.2 Analysing the effects of a larger block size in the  
‘high-end’ system 

We started our analysis from the 64-byte block size for 
references comparison with other studies. When switching 
from 64 to 128 bytes, PSCR has further advantages in 
respect of the other two considered protocols (Figure 9). 
This is due to the following two reasons. First, we observe a 
reduction of Capacity+Conflict miss component (Figure 10), 
a small reduction of coherence traffic (Figure 12), and 
Invalidation Miss Rate (Figure 11). Secondly, in the case of 
64-byte block, the system is in saturation1 (Giorgi and Prete, 
1999) for all configurations of Figure 9. In the case of  
128-byte blocks, an architecture based on PSCR is not 

saturated, and thus we can use configurations with a higher 
number of processors efficiently. When switching from 64 
to 128 bytes, the decrease of the Execution Time is 27% for 
PSCR, and only a 20% for the other protocols. We observe 
that a block size larger than 128 bytes produces diminishing 
returns, because the increased cost of read-block transaction 
is not compensated by the reduction of the number of 
misses. Similar result has been obtained for a CC-NUMA 
machine running a DSS workload (Lovett and Clapp, 1996). 
In that work, the number of ‘Effective Processors’ for a  
16-processor CC-NUMA system was almost the same as 
that obtained for our cheaper shared-bus shared-memory 
system (figure not showed). 

 
Figure 9   Normalised execution time vs. block size (64, 128 bytes) and coherence protocol (AMSD, MESI, PSCR). Data assume, an affinity 
scheduler, 1M-byte 2-way set associative caches. Execution Times are normalised with respect to the execution time of the MESI, 64 byte 
block configuration 

 
Figure 10   Breakdown of miss rate vs. coherence protocol (AMSD, MESI, PSCR) and block size (64 byte, 128 byte). Data assume an 
affinity scheduler, 1M-byte 2-way set associative caches. There is a decrease of Cold, Capacity+Conflict miss components, and a little 
decrease of invalidation miss component 

 
Figure 11   Breakdown of invalidation miss rate vs. coherence protocol (AMSD, MESI, PSCR) and block size (64 byte, 128 byte). Data 
assume an affinity scheduler, 1M-byte 2-way set associative caches. Passive Sharing Misses decrease when increasing block size because 
the invalidation unit is larger 
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Figure 12   Number of coherence transactions vs. coherence protocol (AMSD, MESI, PSCR) and block size (64, 128 byte). Data assume an 
affinity scheduler, 1M-byte 2-way set associative caches 

5.4.3 Analysing the effects of variations in the number of 
processes of the workload 

We considered another scenario where the number of 
processes in the workload may vary and thus the scheduler 
could fail in applying affinity. The affinity scheduling could 
fail when the number of ready processes is limited. We 
defined a new workload (DSS18, Table 2) having 
characteristics similar to DSS26 workload that was used in 
the previous experiments, but constituted of only 18 
processes. The machine under study is still the 16-processor 
one. In such a condition, the scheduler can only choose 
between at most two ready processes. The measured miss 
rate and number of coherence transactions (Figures 13, 14, 15) 
shows an interesting behaviour. The miss rate, and in 
particular Cold, Conflict+Capacity miss rate, increases with 
respect to the DSS26 workload. This is consequence of 
process migration, and it is determined by the failure of the 
affinity requirement: as the number of processes is almost 
equal to the number of processors, it is not always possible 
for the system to reschedule a process on the processor 
where it last executed. In such cases, PSCR can reduce 
greatly the associated overhead and it achieves the best 
performance (figure not shown). 

 

Figure 13   Breakdown of miss rate vs. coherence protocol 
(AMSD, MESI, PSCR) and workload (DSS26–DSS18). Data 
assume an affinity scheduler, 64-byte block, 1M-byte 2-way set 
associative caches. The workload DSS18 exhibits the higher miss 
rate, due to an increased number of Cold, Capacity, and Conflict 
Miss. This is a consequence of process migration, which affinity 
fails to mitigate 

 
Figure 14   Breakdown of invalidation miss rate vs. coherence 
protocol (AMSD, MESI, PSCR) and workload (DSS26 – DSS18). 
Data assume an affinity scheduler, 64-byte block, 1M-byte 2-way 
set associative caches. Passive sharing misses decrease, while true 
and false sharing misses increase. This is consequence of the 
failure of affinity scheduling: in the DSS18 execution. Processes 
migrate more than in DSS26 execution, thus generating more 
reuse of shared data (and more invalidation misses on shared 
data) but lower reuse of private data (and lower number of passive 
sharing misses) 

 
Figure 15   Breakdown of Coherence Transactions vs. coherence 
protocol (AMSD, MESI, PSCR) and workload (DSS26 – DSS18). 
Data assume affinity, 64-byte block, 1M-byte 2-way set associative 
caches 

The main conclusion here is that PSCR maintains its 
advantage also in different load conditions, while the other 
protocols are more penalised by critical scheduling 
conditions. 

5.4.4 Extending our results to OLTP systems 

As also observed in other works (Barroso et al., 1998; 
Lovett and Clapp, 1996; Transaction Processing 
Performance Council, 1994; Keeton et al., 2003), the main 
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differences among OLTP and DSS applications are the 
following: 
• execution time of OLTP queries is shorter 
• the number of concurrent queries running against the 

DB is larger 
• the reuse of data cached in DBMS shared memory is 

smaller 
• queries are updating queries. 

As a consequence, we can aspect that: 
• passive sharing effects are less important in OLTP 

systems than in DSS ones, due to the shortness of 
queries, and then to the lower probability of reuse of 
private data 

• affinity scheduling is much more effective in OLTP, as 
there is a higher number of running processes 

• OLTP systems present much more sharing in the user 
part of the workload, due to the higher number of 
updating queries. 

All these facts suggest that, in the case of OLTP workloads, 
the differences among the protocols become smaller than 
those in DSS workloads, and the access pattern to user 
shares data (i.e., the number of queries updating the same 
row in the database) is crucial to decide which is the best 
performing protocol. 

6 CONCLUSIONS 

We evaluated the memory performance of a shared-bus 
shared-memory multiprocessor running a DSS workload, by 
considering several different choices that could improve the 
overall performance of the system. We considered different 
architectures based on the following coherence protocols: 
MESI – a pure WI protocol, widely used in  
high-performance multiprocessors, AMSD – a WI protocol 
designed to reduce effects of data migrations – and  
PSCR – a coherence protocol using a hybrid strategy, that is 
WU for shared data and WI for private data, designed to 
reduce the effects of process migration. The DSS workload 
was setup using the PostgreSQL DBMS executing queries 
of the TPC-D benchmark and typical Unix shell commands 
and daemons. We considered kernel effects that are more 
relevant to our analysis like process scheduling, virtual 
memory mapping, user/kernel code interactions. 

Our conclusions, for the four-processor case, agree with 
previous studies as for the analysis of miss rate and the 
effects of coherence maintaining. Our analysis outlines also: 

• cache sizes larger than 2 M bytes already capture the 
working set of such workload 

• the kernel effects account for 50% of the coherence 
overhead. 

Previous studies that considered DSS workloads were 
mostly limited to four-processor systems, did not consider 
the effects of process migration, and did not correlate the 
amount of sharing to the performance of the system. 

Our analysis of a ‘high-end’ machine considered  
a 16-processor SMP. We analysed variations of classical 
cache parameters and variations in the workload pressure on 
the scheduler due to a different number of processes. We 
found that in the high-end systems some factors, which were 
less noticed in the four-processor case, become more 
evident. 

MESI protocol is not the best choice in high-end SMP 
architectures: AMSD improves the performance of a DSS 
system of about 10% compared to MESI; PSCR improves 
the performance of about 20% compared to MESI. DSS 
workloads running on SMP architectures generate a variable 
load. The affinity scheduler may fail to deliver the affinity 
requirements. The use of PSCR allows us to build systems, 
whose performance is less influenced by the load condition. 
Finally, in OLTP systems, we expect that the effect of 
migration are less evident, due to the short life of executing 
processes. 
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NOTE 

1We recall that a shared-bus shared-memory SMP system is in 
saturation (Giorgi and Prete, 1999) when the performance does 
not increase at least of a given quantity, when we add one 
processor to the machine. 


