
Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3, 2004 17

Copyright © 2004 Inderscience Enterprises Ltd.

Speeding-up
multiprocessors running
DBMS workloads through
coherence protocols

Pierfrancesco Foglia*
Dipartimento di Ingegneria dell’Informazione,
University of Pisa, Via Diotisalvi 2, Pisa 56100, Italy
E-mail: foglia@iet.unipi.it
*Corresponding author

Roberto Giorgi
Dipartimento di Ingegneria dell’Informazione,
University of Siena,
Via Roma 56, Siena 53100, Italy
E-mail: giorgi@unisi.it

Cosimo Antonio Prete
Dipartimento di Ingegneria dell’Informazione,
University of Pisa,
Via Diotisalvi 2, Pisa 56100, Italy
E-mail: prete@iet.unipi.it

Abstract: In this work, it is shown how a DBMS workload, running on a shared-bus
shared-memory multiprocessor, can be accelerated by adding simple support to the MESI
coherence protocol. As a DBMS workload, we choose the TPC-D benchmark running on
the PostgreSQL DBMS. Results show that, for a DSS workload, the use of a WU protocol
with a selective invalidation strategy for private data improves performance because of the
access pattern to shared data and the lower bus utilisation due to the absence of invalidation
miss, when the contribution of passive sharing is eliminated. In the 16 processor case, the
advantage can be quantified in a 20% of increased performance. Finally, it is shown how
results can be extended to other DBMS workloads.

Keywords: shared-bus multiprocessors; DBMS and DSS systems; cache memory;
coherence protocol; sharing analysis.

Reference to this paper should be made as follows: Foglia, P., Giorgi, R. and
Prete, C.A. (2004) ‘Speeding-up multiprocessors running DBMS workloads through
coherence protocols’, Int. J. High Performance Computing and Networking, Vol. 1,
Nos. 1/2/3, pp.17–32.

Biographical notes: Pierfrancesco Foglia is an Assistant Professor at the Department of
Information Engineering, University of Pisa, Italy. He received PhD and MS in computer
engineering from University of Pisa, Italy. His current interests involve computer
architecture themes such as embedded systems, memory system performance, and
high-performance systems for web, and database applications. He is also interested in
network protocols and network management systems. He is member of IEEE, IEEE
Computer Society, and ACM.

Roberto Giorgi is an Assistant Professor at the Department of Information Engineering,
University of Siena, Italy. He was Research Associate at the University of Alabama in
Huntsville, USA. He received his PhD in computer engineering from University of Pisa,
Italy, and his MS in electronics engineering, Magna cum Laude from University of Pisa,

18 P. FOGLIA, R. GIORGI AND C.A. PRETE

Italy. His current interests involve computer architecture themes such as embedded
systems, memory system performance, high-performance systems for web, and database
applications. He is member of IEEE, IEEE Computer Society, and ACM.

Cosimo Antonio Prete is Full Professor of computer systems at the Department of
Information Engineering at the University of Pisa, Italy. His research interests include
multiprocessor architectures, cache memory, performance evaluation, and embedded
systems. He has performed research in programming environments for distributed systems,
commit protocols for distributed transactions, cache memory architecture, and coherence
protocols for tightly coupled multiprocessor systems. He is also an expert on the Open
Microprocessor Systems Initiative for the Commission of the European Communities. He
earned his undergraduate degree in electronic engineering cum laude in 1982 and PhD from
the University of Pisa in 1989.

1 INTRODUCTION

AN ever-increasing number of multiprocessor server
systems shipped today run commercial workloads
(Keeton et al., 2003). These workloads include database
applications such as online transaction processing (OLTP)
and decision support system (DSS), file servers, and
application servers (Stenström et al., 1997). Nevertheless,
technical workloads were widely used to drive the design of
current multiprocessor systems (Stenström et al., 1997;
Cvetanovic and Bhandarkar, 1994; Keeton et al., 2003) and
different studies have shown that commercial workloads
exhibit different behaviour from technical ones
(Maynard et al., 1994; Keeton et al., 1998).

The simpler design for a multiprocessor system is a
shared-bus shared-memory architecture (Tanenbaum, 2001).
In shared-bus systems, processors access the shared
memory through a shared bus. The bus is the bottleneck of
the system, since it can easily reach a saturation condition,
thus limiting the performance and the scalability of the
machine. The classical solution to overcome this problem is
the use of per-processor cache memories (Hennessy and
Patterson, 2002). Cache memories introduce the coherency
problem and the need for adopting adequate coherence
protocols (Tomasevic and Milutinovic, 1994a, 1994b). The
main coherence protocol classes are write-update (WU) and
write-invalidate (WI) (Tomasevic and Milutinovic, 1993).
WU protocols update the remote copies on each write
involving a shared copy, whereas WI protocols invalidate
remote copies in order to avoid updating them. Coherence
protocols generate several bus transactions, thus accounting
for a non-negligible overhead in the system (coherence
overhead). Coherence overhead may have a negative effect
on the performance and, together with the accesses pattern
to application data, determines the best protocol choice for a
given workload (Foglia et al., 1998; Eggers and
Katz, 1989b; Eggers and Katz, 1988). Different
optimisations to minimise coherence overhead have been
proposed (Eggers and Jeremiassen, 1991; Tomasevic and
Milutinovic, 1993; Torrellas et al., 1994; Jeremiassen and
Eggers, 1995; Giorgi and Prete, 1999), also acting at
compile time and architectural level (as the adoption of
adequate coherence protocols (Tomasevic and Milutinovic,
1996; Giorgi and Prete, 1999)).

When the performance achieved by shared-bus
shared-memory multiprocessor is not sufficient, and this is
typical for DBMS applications, an SMP (symmetrical
multi-processing, which includes shared-bus shared-memory
architectures) or a NUMA (non-uniform memory access)
approach can be utilised (Culler and Singh, 1998;
Tanenbaum, 2001; Hennessy and Patterson, 2002). In the
first case, a crossbar switch interconnects the processing
elements, in the second an interconnection network. Such
solutions increase the communication bandwidth among
elements, thus allowing more CPUs to be added to the
system, but at the cost of more expensive and complex
communication networks. In both the designs, the basic
building bock (node) may be a single processor system or,
better, a shared-bus shared-memory multiprocessor
(examples are the HP V-Class and the SGI Origin families
of multiprocessors (Yu et al., 2002)). In this way, by adding
high-performance nodes, we can achieve the desired level of
performance with only a little number of elements,
simplifying the crossbar or IC network design, and lowering
the price of the whole system. Unfortunately, due to limited
bus bandwidth, only a small number of CPU (max four for
the Pentium family of CPU (Shanley and Mindshare Inc.,
1999) may be included in the single node.

The aim of this paper is to analyse the scalability of
shared-bus shared-memory multiprocessors running
commercial workloads and DBMS applications in
particular, and to investigate solutions, as concerns the
memory subsystem, which can increase the processing
power of such architectures. In this way, we can meet the
performance requirement of commercial applications with a
single shared-bus shared-memory machine, or we can adopt
more performing nodes in an SMP or NUMA design,
allowing simpler and cheaper design of switch or IC
networks.

Important database applications include online transaction
processing (OLTP) and decision support systems (DSS).
DSS applications are utilised to extract management
information from databases of historical data; they are
characterised by long-running read-only queries
(Keeton et al., 2003). OLTP applications are utilised by
users to execute transactions against a database (for
instance, in banking systems, air flight reservation systems,
commercial order-entry environment, etc). Different

SPEEDING-UP MULTIPROCESSORS RUNNING DBMS WORKLOADS THROUGH COHERENCE PROTOCOLS 19

from DSS systems, OLTP applications include a large
number of concurrent, relatively short, and updating queries
(Keeton et al., 2003). In consequence, performance of
OLTP queries depends significantly also on the locking
mechanism implemented in the DBMS system. Only
commercial DBMS exhibits adequate locking scheme to run
OLTP application at an adequate level of performance;
hence, every analysis of OLTP system should consider
commercial DBMS. Unfortunately, the methodology of
evaluation at our disposal requires application source code,
which is not available for commercial DBMS system. So, in
the following, we restrict our analysis to DSS system.
Nevertheless, we draw, at the end of the paper, some
consideration on how our results can change when analysing
an OLTP system.

A typical DSS activity is performed via a query to look for
ways to increase revenues, such as an SQL query to
quantify the amount of revenue increase that would have
resulted from eliminating a company discount in a given
percentage in a given year (Ballinger, 2001). As mentioned
earlier, such queries are, in most part, read-only queries.
Consequently, as already observed in Trancoso et al. (1997)
and Yu et al. (2002), coherence activity and transactions
involve essentially DBMS metadata (i.e., data structures that
are needed by the DBMS to work rather than to store the
data) and particularly data structure needed to implement
software locks (Trancoso et al., 1997; Yu et al., 2002). The
type of access pattern to those data is one-producer/
many-consumers. Such pattern may advantage solution
based on the write-update family of coherence protocols,
especially if there is a high number of processes (the
‘consumers’) that concurrently read shared data (Eggers and
Katz, 1988). These considerations can suggest the adoption
of other coherence protocols, with respect to the usually
utilised MESI WI protocol (Sweazey and Smith, 1986).

In our evaluation, the DSS workload of the system is
generated by running all the TPC-D queries (Transaction
Processing Performance Council, 1995) (through the
PostgreSQL (Yu and Chen, 1995) DBMS) and several Unix
utilities, which both access the file system and interface the
DBMS with system services running concurrently. Our
methodology relies on trace-driven simulation, by means of
the ‘Trace Factory’ environment (Giorgi et al., 1997), and
on specific tools for the analysis of coherence overhead
(Foglia, 2001).

The performance of the memory subsystem – and
therefore of the whole system – depends on cache
parameters, coherence management techniques, and it is
influenced by operating system activities like process
migration, cache affinity scheduling, kernel/user code
interference, and virtual memory mapping. The importance
of considering operating system activity has been
highlighted in previous works (Chapin et al., 1995;
Chandra et al., 1994; Torrellas et al., 1992). Process
migration, needed to achieve load balancing in such
systems, increases the number of cold/conflict misses and
also generates useless coherence overhead, known as
passive sharing overhead (Giorgi and Prete, 1999). As

passive sharing overhead dramatically decreases the
performance of pure WU protocols (Giorgi and Prete, 1999;
Prete et al., 1997), we considered in our analysis a hybrid
WU protocol, PSCR (Giorgi and Prete, 1999), which adopts
a selective invalidation strategy for private data and a
hybrid WI protocol, AMSD (Cox and Fowler, 1993;
Stenström et al., 1993), which deals with migration of data
and, then, of processes.

Our results show that, in the case of a four-processor
configuration, performance of DSS workload is moderately
influenced by cache parameters and the influence of
coherence protocol is minimal. In 16-processor
configurations, the performance differences due to the
adoption of different architectural solutions are significant.
In high-end architectures, MESI is not the best choice and
workload changes can nullify the action of affinity-based
scheduling algorithms. Architectures based on a
write-update protocol with a selective invalidation strategy
for private data outperform the ones based on MESI of
about 20%, and adapt better to workload.

The rest of the paper is organised as follows. In Section 2,
we discuss architectural parameters and issues related to the
coherence overhead. In Section 3, we report the results of
studies related to the analysis of workloads similar to ours,
differentiating our contribution. In Section 4, we present our
experimental setup and methodology. In Section 5, we
discuss the results of our experiments. In Section 6, we draw
conclusions.

2 ISSUES AFFECTING COHERENCE OVERHEAD

Cache coherency maintaining involves a number of bus
operations. Some of them are overhead that adds up to the
basic bus traffic (the traffic necessary to access main
memory). Three different sources of sharing may be
observed:
• true sharing (Torrellas et al., 1990a, 1994b), which

occurs when the same cached data item is referenced by
different processes concurrently running on different
processors

• false sharing (Torrellas et al., 1990a, 1994b), which
occurs when several processors reference a different
data item belonging to the same memory block
separately

• passive (Prete et al., 1997) or process-migration
(Agarwal, 1989) sharing, which occurs when a memory
block, though belonging to a private area of a process,
is replicated in more than one cache, as a consequence
of the migration of the owner process.

The main coherence protocol classes are write-update
(WU) and write-invalidate (WI) (Tomasevic and
Milutinovic, 1993). WU protocols update the remote copies
on each write involving a shared copy, whereas WI
protocols invalidate remote copies in order to avoid
updating them. An optimal selection for the coherence
protocol can be made by considering the traffic induced by

20 P. FOGLIA, R. GIORGI AND C.A. PRETE

the two approaches in case of different sharing and its
effects on performances (Foglia et al., 1998). The coherence
overhead induced by a WU protocol is due to all the
operations needed to update the remote copies, whereas a
WI protocol invalidates remote copies and processors
generate a miss on the access to the invalidated copy
(invalidation miss). The access patterns to shared data
determine the coherence overhead. In particular, fine-grain
sharing denotes high contention for shared data; sequential
sharing is characterised by long sequences of writes to the
same memory item performed by the same processor.
A WI protocol is adequate in the case of sequential
sharing, whilst, in general, a WU protocol performs better
than WI for program characterised by fine-grain sharing
(Eggers and Katz, 1988, 1989a, 1989b) (alternatively, a
metric based on the write-run and external re-reads
model can be used to estimate the best protocol choice
(Eggers, 1991)). In our evaluation, we considered MESI
protocol as baseline, because it is used in most of the
high-performance processors today (like AMD K5 and K6,
PowerPC series, SUN UltraSparc II, SGI R10000, Intel
Pentium, Pentium Pro series (Pro, II, III), Pentium 4,
and IA-64/Itanium). Then, based on the previous
considerations on the access pattern of DSS workloads, we
included a selective invalidation protocol based on a WU
policy for manage shared data, which limits most
effects of process migration (PSCR (Giorgi and
Prete, 1999)) and a WI protocol specifically designed to
treat the data migration (AMSD (Cox and Fowler, 1993;
Stenström et al., 1993)).

Our implementation of MESI uses the classical MESI
protocol states (Sweazey and Smith, 1986) and the
following bus transactions: read-block (to fetch a block),
read-and-invalidate-block (to fetch a block and invalidate
any copies in other caches), invalidate (to invalidate any
copy in other caches), and update-block (to write back dirty
copies when they need to be replaced). This is mostly
similar to the implementation of MESI in Pentium Pro
(Pentium II) processor family (Shanley and Mindshare Inc.,
1999). The invalidation transaction used to obtain coherency
has, as a drawback, the need to reload a certain copy, if a
remote processor uses again that copy, thus generating a
miss (Invalidation Miss). Therefore, MESI coherence
overhead (that is the transactions needed to enforce
coherence) is due both to Invalidate Transactions and
Invalidation Misses.

PSCR (Passive Shared Copy Removal) adopts a selective
invalidation scheme for private data, and uses a
write-update scheme for shared data, although it is not a
purely write-update protocol. A cached copy belonging to a
process private area is invalidated locally as soon as another
processor fetches the same block (Giorgi and Prete, 1999).
This technique reduces coherence overhead (especially
passive sharing overhead), otherwise dominant in a pure
WU protocol (Prete et al., 1997a). Invalidate transactions
are eliminated and coherence overhead is due to Write
Transactions and Invalidation Misses caused by local
invalidation (Passive Sharing Misses).

AMSD (Cox and Fowler, 1993; Stenström et al., 1993) is
designed for Migratory Sharing, which happens when the
control over shared data migrates from one process to
another running on a different processor. The protocol
identifies migratory-shared data dynamically to reduce the
cost of moving them. The implementation relies on an
extension of a common MESI protocol. Though
designed for migratory sharing, AMSD may have some
beneficial effects also on passive sharing. AMSD coherence
overhead is due to Invalidate Transactions and Invalidation
Misses.

The process scheduling strategy, cache parameters, and
the bus features also influence the coherence overhead and,
therefore, the multiprocessor performance. The process
scheduling guarantees the load balancing among the
processors by scheduling a ready process on the first
available processor. Although cache affinity is used, a
process may migrate on a different processor rather than on
the last used processor, producing at least two effects:

• some misses when it restarts on a new processor
(context-switch misses)

• useless coherence transactions due to passive sharing.

These situations may become frequent due to dynamicity of
a workload driven by the user requests, like DSS ones.
Process migration influences also access patterns to data
and, therefore, the coherency overhead.

All the factors described above have important
consequences on the global performance that we evaluate in
the Section 5.

3 RELATED WORK ON DBMS SYSTEMS

In this section, we consider a summary of main results
of evaluations for DSS and similar workloads on
several multiprocessor architectures and operating
systems. The research of a realistic evaluation framework
for shared-memory multiprocessor evaluations (Stenström
et al., 1997; Keeton et al., 2003) motivated many studies
that consider benchmarks like TPC series (including DSS,
OLTP, WEB-server benchmarks) representative of commercial
workloads (Trancoso et al., 1997; Barroso et al., 1998;
Cao et al., 1999; Ranganathan et al., 1998; Lovett and
Clapp, 1996; Lo et al., 1998; Keeton et al., 1998).

Barroso et al. (1998) evaluate an Alpha 21164-based SMP
memory system through hardware counter measurements
and SimOS simulations. Their system was running
Digital-UNIX and Oracle-7 DMBS. The authors consider a
TPC-B database (OLTP benchmark), TPC-D (DSS queries),
and the Altavista search engine. They found that memory
accounts for 75% of stall time. In the case of TPC-D and
Altavista workloads, the size and latency of the on-chip
caches influences mostly the performance. The number of
processes per processor, which is usually kept high in order
to hide I/O latencies, also significantly influences cache
behaviour. When using 2-, 4-, 6-, and 8-processor

SPEEDING-UP MULTIPROCESSORS RUNNING DBMS WORKLOADS THROUGH COHERENCE PROTOCOLS 21

configurations, they found that coherency miss stalls
increase linearly with the number of processors. Beyond an
8M-byte outer level cache, they observed that true sharing
misses limit performance.

Ranganathan et al. (1998) consider both an OLTP
workload (modelled after TPC-B (Transaction Processing
Performance Council, 1994)) and a DSS workload (query 6
of TPC-D (Transaction Processing Performance Council,
1995; Ranganathan et al., 1998). Their study is based on
trace-driven simulation, where traces are collected on a
four-processor AlphaServer4100 running Digital Unix and
Oracle 7 DBMS. The simulated system is a CC-NUMA
shared-memory multiprocessor with advanced ILP support.
Results, on a four-processor system and an ILP
configuration with four-way issue, 64-entry instruction
window, four outstanding misses, provide already
significant benefits for OLTP and DSS workload. Such
configurations are even less aggressive than ILP
commercial processor like Alpha 21264, HP-PA 8000,
MIPS R10000 (Yeager, 1996). The latter processor, used in
our evaluation, makes us reasonably safe that this processor
architecture is sound for investigation in the memory
subsystem.

Another performance analysis of OLTP (TPC-B) and
DSS (query 6 of TPC-D) workloads via simulation is
presented in Lovett and Clapp (1996). The simulated system
is a commercial CC-NUMA multiprocessor, constituted by
four-processor SMP nodes connected using a Scalable
Coherent Interface based coherent interconnects. Coherence
protocol is directory-based. Each node is based on a
Pentium Pro processor with a 512K-byte, four-way set
associative cache. Results show that TPC-D miss rate is
much lower and performance is less sensitive to L2 miss
latency than in the OLTP (TPC-B) experiments. They
analyse also scalability exhibited by such workloads.
The speed-up of the DSS workload is near to the
theoretical ones. Results show that scalability strongly
depends on miss rate.

Trancoso et al. (1997) study the memory access patterns
of a TPC-D-based DSS workload. The DBMS is Postgres95
running on a simulated four-processor CC-NUMA
multiprocessor. For cache block sizes ranging from 4 to 128
bytes and cache capacities from 128 K-bytes to 8 M-bytes,
the main results are that both large cache blocks and data
prefetching help, due to spatial locality of index and
sequential queries. Coherence misses can be more than 60%
of total misses in queries that uses index scan algorithms for
select operations.

Cao et al. (1999) examine a TPC-D workload executing
on a Pentium-Pro four-processor system, with Windows NT
and MS SQL Server. Their goal is to characterise this DSS
system on a real machine, in particular, regarding processor
parameters, bus utilisation, and sharing. Their methodology
is based on hardware counters. They found that kernel time
is negligible (less than 6%). Major sources of processor
stalls are instruction fetch and data miss in outer level
caches. They found lower miss rates for data caches in
comparison with other studies on TPC-C (Barroso et al.,

1998; Keeton et al., 1998). This is due to the smaller
working set of TPC-D compared with TPC-C.

Lo et al. (1998) analyse the performance of database
workloads running on simultaneous multithreading
processors (Eggers et al., 1997) – an architectural technique
to hide memory and functional units latencies. The study is
based on trace driven of a four-processor AlphaServer4100
and Oracle 7 DBMS as in Barroso et al. (1998). They
consider both an OLTP workload (modelled after the TPC-B
(Transaction Processing Performance Council, 1994)
benchmark) and a DSS workload (query six of the TPC-D
(Transaction Processing Performance Council, 1995)
benchmark). Results show that while DBMS workloads
have larger memory footprints, there is a substantial data
reuse in a small working set.

Summarising, these studies considered DBMS workloads
but they were mostly limited to four-processor systems, did
not consider the effects of process migration, and did not
correlate the amount of sharing to the performance of the
system. As we have more processors, it becomes crucial to
characterise further the memory subsystem. In our work, we
investigated both 4- and 16-processor configurations,
finding that larger caches may have several drawbacks due
to coherence overhead. This is mostly related to the use of
shared structures like indices and locks. In Section 5, we
classify the sources of this overhead and propose solutions
to overcome limitations to the performance related to
process migration.

4 METHODOLOGY AND WORKLOAD

The methodology that we used (Trace Factory, Giorgi
et al. 1997) is based on trace-driven simulation (Stunkel
et al., 1991; Prete et al., 1995; Uhlig and Mudge, 1997) and
on the simulation of the three kernel activities that most
affect performance: system calls, process scheduling, and
virtual-to-physical address translation.

The approach used is to produce a source trace – a
sequence of memory references, system-call positions
(and synchronisation events if needed) – by means of a
tracing tool. Trace Factory then models the execution of
complex multiprogrammed workloads by combining
multiple source traces and simulating system calls (which
could also involve I/O activity), process scheduling, and
virtual-to-physical address translation. Finally, Trace
Factory produces the references (target trace) furnished as
input to a memory-hierarchy simulator (Prete et al., 1995).
Trace Factory generates references according to an
on-demand policy: it produces a new reference when
simulator requests one, so that the timing behaviour
imposed by the memory subsystem conditions the reference
production (Giorgi et al., 1997). Process management is
modelled by simulating a scheduler that dynamically assigns
a ready process. Virtual-to-physical address translation is
modelled by mapping sequential virtual pages into
non-sequential physical pages. A careful evaluation of this
methodology has been carried out by Giorgi et al. (1997).

22 P. FOGLIA, R. GIORGI AND C.A. PRETE

The workload considered in our evaluation includes DB
activity reproduced by means of an SQL server, namely
PostgreSQL (Yu and Chen, 1995), which handles the
TPC-D (Transaction Processing Performance Council, 1995)
queries. We also included Unix utilities that access the file
system, interface the various programs running on the
system, and reproduce the activity of typical Unix daemons.

PostgreSQL is a public domain DBMS, which relies on
server-client paradigm. It consists of a front-end process
that accepts SQL queries, and a back-end that forks
processes, which manage the queries. TPC-D is a
benchmark for DSS developed by the Transaction
Processing Performance Council (1995). It simulates an
application for a wholesale supplier that manages, sells, and
distributes a product worldwide. Following TPC-D
specifications, we populated the database via the dbgen
program, with a scale factor of 0.1. The data are organised
in several tables and accessed by 17 read-only queries and
two update queries.

In a typical situation, application and management
processes can require the support of different system
commands and ordinary applications. To this end, Unix
utilities (ls, awk, cp, and rm) and daemons (telnetd, syslogd,
crond) have been added to the workload. These utilities are
important because they model the ‘glue’ activity of the
system software. These utilities:

• do not have shared data and thus they increase the
effects of process migration, as discussed in detail in
Section 5

• they may interfere with shared data and code
cache-footprint of other applications.

To take into account that requests may be using the same
program at different times, we traced some commands in
shifted execution sections: initial (beg) and middle (mid).

In our experiments, we generated two distinct workloads.
The first workload (DSS26 in Table 2) includes the
TPC-D18 source trace (Table 1). TPC-D18 is a multiprocess
source trace taking into account the activity of 18 processes.
One process is generated by DBMS back-end execution,
whilst the other processes are generated by the concurrent
execution of the 17 read-only TPC-D queries (TPC-D18 in
Table 2). Since we wished to explore critical situations for
the affinity scheduling – when the number of process
changes, – we also generated a second workload (DSS18 in
Table 2) that includes a subset of TPC-D queries
(TPC-D12). Table 1 contains some statistics of the
uniprocess and multiprocess source traces used to generate
the DB workloads (target traces, Table 2). Both source
traces related to DBMS activity (TPC-D18, TPC-D12) and
the resulting workloads (DSS26 e DSS18) present similar
characteristics in terms of read, write, and shared accesses.

Table 1 Statistics of source traces for some Unix commands and daemons and for multiprocess source traces
(PostgreSQL, TPC-D queries) both in case of 64-byte block size and 10,000,000 references per process

Data (%) Shared data (%)

Application
No. of

processes
Distinct
blocks

Code
(%) Read Write

Shared
blocks Access Write

awk (beg) 1 4,963 76.76 14.76 8.48 n/a n/a n/a

awk (mid) 1 3,832 76.59 14.48 8.93 n/a n/a n/a

cp 1 2,615 77.53 13.87 8.60 n/a n/a n/a

rm 1 1,314 86.39 11.51 2.10 n/a n/a n/a

ls – aR 1 2,911 80.62 13.84 5.54 n/a n/a n/a

telnetd 1 463 82.75 12.96 4.29 n/a n/a n/a

crond 1 2,464 75.86 16.35 7.79 n/a n/a n/a

syslogd 1 2,848 80.41 14.96 4.63 n/a n/a n/a

TPC-D18 18 139,324 73.05 16.89 10.06 7224 1.58 0.43

TPC-D12 12 93,657 73.04 16.91 10.05 5662 1.55 0.41

Table 2 Statistics of multiprogrammed target traces (DSS26, 260,000,000 references; DSS18, 180,000,000 references) in
case of 64-byte block size

Data (%) Shared data (%)
Workload

No. of
processes

Distinct
blocks Code (%) Read Write

Shared
blocks Access Write

DSS26 26 179,862 74.59 16.26 9.15 7806 1.76 0.53

DSS18 18 124,268 74.00 16.11 8.89 6242 1.63 0.48

SPEEDING-UP MULTIPROCESSORS RUNNING DBMS WORKLOADS THROUGH COHERENCE PROTOCOLS 23

5 RESULTS

In this section, we show the memory subsystem
performance, for our DSS workload, with a detailed
characterisation of coherence overhead and process-migration
problems. To this end, we included results for several values
of the most influencing cache-architecture parameters.
Finally, we considered critical situations for the affinity
scheduling and we analysed how the result may be extend to
other DBMS workloads. Our results show that solutions that
allow us to achieve a higher scalability are possible for this
kind of machine – compared to standard solutions – and
consequently a greater performance at a reasonable cost.

5.1 Design space of our system

The simulated system consists of N processors, which are
interconnected to a 128-bit shared bus for accessing shared
memory. The following coherence schemes have been
considered: AMSD, MESI, and PSCR (more details are in
Section 2). We considered two main configurations: a basic
machine with four processors and a high-performance one
with 16 processors. The scheduling policy is based on
cache-affinity; scheduler time-slice is 200,000 references.
Cache size has been varied between 512 K bytes and 2 M
bytes, while for block size we used 64 bytes and 128 bytes.
The simulated processors are MIPS-R10000-like; paging
relays on 4 K -page size; the bus is pipelined, supports
transaction splitting, and processor-consistency memory
model (Gharachorloo et al., 1991); up to eight outstanding

misses are allowed (Kroft, 1981). The base case study
timings and parameter values for the simulator are
summarised in Table 3.

5.2 Performance metrics

To investigate the effects on the performance due to
memory subsystem operations, we analysed the causes
influencing memory latency and the total execution time.
The memory latency depends on the time necessary to
perform a bus operation (Table 3) and on the waiting time to
access bus (bus latency). Bus latency depends on the
amount and kind of bus traffic. Bus traffic is constituted by
read-block transactions (issued for each miss), update
transactions and coherence transactions (write transactions
or invalidate transactions, depending on the coherence
protocol). Consequently, miss and coherence transactions
affect performance because they affect the processor
waiting-time directly (in the case of read misses) and
contribute to bus latency. Therefore, to investigate the
sources of performance bottlenecks, we reported a
breakdown of misses – which includes invalidation misses
and classical misses (sum of cold, capacity, and conflict
misses) – and the ‘number of coherence transaction per 100
memory references’ – which includes either write-transactions
or invalidate transactions depending on the coherence protocol.
The rest of traffic is due to update transactions. Update
transactions are a negligible part of bus-traffic (lower than
7% of read-block transactions or about 1% of bus occupancy)
and thus they do not influence greatly our analysis.

Table 3 Input parameters for the multiprocessor simulator (timings are in clock cycles)

Class Parameter Timings

CPU Read cycle 2

 Write cycle 2

Cache Cache size (bytes) 512K, 1M, 2M

 Block size (bytes) 64, 128

 Associativity (number of ways) 1, 2, 4

Bus Write transaction (PSCR) 5

 Write for invalidate transaction (AMSD, MESI) 5

 Invalidate transaction (AMSD) 5

 Memory-to-cache read-block transaction 72 (block size 64 bytes), 80 (block size 128 bytes)

 Cache-to-cache read-block transaction 16 (block size 64 bytes), 24 (block size 128 bytes)

 Update-block transaction 10 (block size 64 bytes), 18 (block size 128 bytes)

In our analysis, we differentiated between Cold
Misses and Capacity+Conflict Misses and Invalidation
Misses (Hennessy and Patterson, 2002). Cold Misses
include first access misses by a given process when
it is scheduled either for the first time or it is rescheduled
on another processor (the latter are also known as
context-switch misses). Capacity+Conflict Misses include
misses caused by memory references of a process
competing for the same block (intrinsic interference misses

in Agarwal (1989)), and misses caused by references of
sequential processes, executing on the same processor and
competing for the same cache block (extrinsic interference
misses in Agarwal (1989)). Invalidation Miss is due to
accesses to data that are to be reused on the same processor,
but that have been invalidated in order to maintain
coherence. Invalidation Misses are further classified, along
with the coherence transaction type, by means of an
extension of an existing classification algorithm (Hyde and

24 P. FOGLIA, R. GIORGI AND C.A. PRETE

Fleisch, 1996). Our algorithm extends this classification to
the case of passive sharing, finite size caches, and process
migration (Foglia, 2001). In particular, Invalidation Misses
are differentiated as true sharing misses, false sharing
misses, passive sharing misses. True sharing misses and
false sharing misses are classified according to an already
known methodology (Torrellas et al., 1994; Eggers and
Jeremiassen, 1991; Dubois et al., 1993). Passive sharing
misses are invalidation misses generated by the useless
coherence maintaining of private data (Giorgi and
Prete, 1999). Clearly, these private data could appear as
shared to the coherence protocol, because of the process
migration. Similarly, the coherence transactions are
classified as true, false, and passive sharing transactions
either in the case they are invalidation or write transactions
(Foglia, 2001).

5.3 ANALYSIS OF THE REFERENCE SYSTEM

We started our analysis from a four-processor machine
similar to cases used in literature (Trancoso et al., 1997;
Barroso et al., 1998; Cao et al., 1999; Ranganathan
et al., 1998), running the DSS26 workload (Table 2).

In detail, the reference four-processor machine has a
128-bit bus and 64-byte block size. We varied cache size
(from 512 K to 2 M byte) and cache associativity (1, 2, 4).

Execution Time (Figure 1) is affected by the cache
architecture. It decreases with larger cache sizes and/or
more associativity. Anyway, this variation is limited to
an 8% between the less (512 K byte, one way) and most
performing (2 M byte, four way) configuration. In this case,
the role of the coherence protocol is less important, with a

difference among the various protocols, for a given setup,
which is less than 1%.

Figure 1 Normalised execution time vs. cache size (512K, 1M,
2M bytes), number of ways (1, 2, 4) and coherence protocol
(AMSD, MESI, PSCR). Data assume four processors, 64-byte
block size, and a cache affinity scheduler. Execution Times are
normalised with respect to the MESI – 512K, direct access
architecture. PSCR presents the lowest Execution Time, whilst
MESI the highest

We analysed the reason for this performance improvement
(Figure 2) by decomposing the miss rate in term of
traditional (cold, conflict, and capacity) and invalidation
misses. In Figure 3, we show the contribution of each kind
of sharing to the Invalidation Miss Rate and, in Figure 4, to
the Coherence-Transaction ‘Rate’ (i.e., the number of
coherence transactions per 100 memory references). We
also differentiated between kernel and user overhead.

Figure 2 Breakdown of miss rate vs. cache size (512K, 1M, 2M bytes), number of ways (1, 2, 4) and coherence protocol (AMSD, MESI,
PSCR). Data assumes four processors, affinity scheduling and 64-byte block

SPEEDING-UP MULTIPROCESSORS RUNNING DBMS WORKLOADS THROUGH COHERENCE PROTOCOLS 25

As expected, cache size mainly influences capacity misses.
Invalidation misses increase slightly when increasing cache
size or associativity (Figure 2). For cache sizes larger than
1 M bytes, cold misses are the dominating part and
invalidation misses weigh more and more (at least 30% of
total misses). This indicates that, for our DSS workload,
caches larger than 2 M bytes already capture the main
working set. In fact, for cache sizes larger than 2 M bytes,
Cold Misses remain constant, invalidation misses increase,
and only Capacity+Conflict misses may decrease, but their
contribution to miss rate is already minimal. The solution

based on PSCR presents the lowest miss rate and negligible
invalidation misses.

Our analysis of coherence overhead (Figures 3 and 4)
confirms that the major sources of overhead are invalidation
misses for WI protocols (MESI and AMSD) and
write-transactions for PSCR. Passive sharing overhead,
either as invalidation misses, or coherence transactions,
is minimal: this means that affinity scheduling performs
well. In the user part, true sharing is dominant. In the kernel
part, false sharing is the major portion of coherence
overhead.

Figure 3 Breakdown of miss rate vs. cache size (512K, 1M, 2M bytes), number of ways (1, 2, 4), and coherence protocol (AMSD, MESI,
PSCR). Data assume four processors, affinity scheduling, and 64-byte block

Figure 4 Number of coherence transactions vs. cache size (512K, 1M, 2M bytes), number of ways (1, 2, 4), and coherence protocol
(AMSD, MESI, PSCR). Coherence transactions are invalidate transactions in MESI, and AMSD, write transactions in PSCR. Data assume
four processors, 64-byte block size, and an affinity scheduler

26 P. FOGLIA, R. GIORGI AND C.A. PRETE

The cost of misses is dominating the performances and
indeed we show in Figure 1 that PSCR is able to achieve the
best performance compared with the other protocols.
The reason is the following: what PSCR loses in terms of
extra coherence traffic, is then gained as saved misses.
Indeed, misses are more costly in terms of bus timings and
read-block transactions may produce a higher waiting time
for the processor. Also, AMSD performs better than MESI
due to the reduction of Invalidation Miss Rate overhead
(Figure 2).

Our conclusions, for the four-processor configuration,
agree with previous studies as for the analysis of
miss rate and the effects of coherence maintaining (Barroso
et al., 1998; Cao et al., 1999; Trancoso et al., 1997).

5.4 Analysis of the high-end system

In the previous baseline case analysis, we have seen that the
four-processor machine is efficient: architecture variations
do not produce further gains (e.g., the performance
differences among protocol are small). This kind of machine
may not satisfy the performance needs of DSS workloads,
and more performing systems are demanded. Given current
processor-memory speeds, we considered a ‘high-end’
16-processor configuration. A detailed analysis of the
limitations of this system shows that this architecture makes
sense, i.e., a high-end SMP system results efficient, if we
solve the problems produced by the process migration and
adapt the coherence protocol to the access pattern of the
workload. This architecture has not been analysed in
literature, and still represents a relatively economic solution
to enhance the performance.

In the following, we will compare our results directly with
the four-processor case and show the sensitivity to classical
cache parameters (5.4.1). We will consider separately the
case of different block size (5.4.2), the case of a different
workload pressure in terms of number of processes (5.4.3)
and possible extension of results to other DBMS workloads
(5.4.4).

5.4.1 Comparison with four-processor case and sensitivity to
cache size and associativity

In Figure 5, we show the Execution Time for several
configurations. Protocols designed to reduce the effects of
process migration achieve better performance. In particular,
the performance gain of PSCR over MESI is at least 13% in
all configurations. The influence of cache parameters is
stronger with a 30% difference between the most and less
performing configuration.

We clarify the relationship between execution Time and
process migration, by showing the Miss Rate (Figure 6) and
the Number of CoherenceTransactions (Figure 8). In detail,
we show the breakdown of the most varying components of
Miss Rate (Invalidation Miss, Figure 7) and breakdown of
coherence transactions (Figure 8). In the following, for the
sake of clearness, we assume a 1M byte-cache size, a
64-byte block size, and two-ways.

Figure 5 Normalised execution time vs. cache size (512K, 1M,
2M bytes), number of ways (1, 2, 4), and coherence protocol
(AMSD, MESI, PSCR). Data assume 16 processors, 64-byte block
size, and an affinity scheduler. Execution Times are normalised
with respect to the execution time of the MESI, 512 K, direct
access configuration

The Execution Time is mainly determined by the
cost of read-block transactions and the cost of
coherence-maintaining transactions (see also Section 5.2).
Let us take MESI as baseline. AMSD has a lower Execution
Time because of its lower Miss Rate (Figure 6, and in
particular Invalidation Miss Rate, Figure 7). The small
variation in the Number of Coherence Transactions (Figure
8) does not weigh much on the performance. PSCR gains
strongly from the reduction of Miss Rate, while it is not
penalised too much by the high Number of Coherence
Transactions (Figures 6 and 8). In detail

Figure 6 Breakdown of miss rate vs. coherence protocol (AMSD,
MESI, PSCR) and number of processors (4, 16). Data assume an
affinity scheduler, 64-byte block, 1M-cache size two-way set
associative. The higher number of processor causes more
coherence misses (false plus true sharing) and more capacity and
conflict misses. It is interesting to observe that while the aggregate
cache size increases (from 4M to 16M bytes), Capacity and
Conflict misses also increase. This situation is different from the
uniprocessor case, where Capacity + Conflict misses always
decrease when cache size increases. This effect is due to process
migration

• Classical misses (Cold and Conflict+Capacity) do not
vary with the coherence protocol, although they
increase while switching from 4 to 16 processors
because of the higher migration of the processes: for the
Cold Miss portion, because a process may be scheduled
on a higher number of processors, and for the
Conflict+Capacity, because a process has less
opportunities of reusing its working set and it destroys
the cache footprint generated by other processes.

SPEEDING-UP MULTIPROCESSORS RUNNING DBMS WORKLOADS THROUGH COHERENCE PROTOCOLS 27

• The much lower Miss Rate in PSCR is due to its low
Invalidation Miss Rate (Figure 6). In particular, PSCR
does not have invalidation misses due to true and false
sharing, neither in the user nor in the kernel mode
(Figure 7). On the contrary, in the other two protocols
the latter factors weigh very much. This effect is more
evident in the 16-processor case as compared to the
four-processor case because of the higher probability of
sharing data, produced by the increased number of
processors.

• The DSS workload, in the PostgreSQL implementation,
exhibits an access pattern to shared data, which
speed-up the WU strategy for maintain coherence
among shared data with respect to the WI strategy. We
can explain such pattern with the following
considerations: the TPC-D DSS queries are read-only
queries and consequently, as already observed in
Trancoso et al. (1997) and Yu et al. (2002) coherence

misses and transactions involve PostgreSQL metadata
(i.e., data structures that are needed by the DBMS to
work rather than to store the data) and particularly data
structure needed to implement software locks
(Trancoso et al., 1997; Yu et al., 2002). The type of
access pattern to those data is one producer/many
consumers. Such pattern advantages WU protocols,
especially if there are a high number of processes (the
‘consumers’) that concurrently read shared data. When
the number of processors switches from 4 to 16, the
number of consumer processes increases, due to the
higher number of processes concurrently in execution
and, consequently, true sharing Invalidation Misses and
Transactions (in the user part) increase especially for
WI protocols (Figures 7 and 8), thus speeding-up the
performance of the WU solution (PSCR). However, we
cannot utilise a pure WU protocol, as passive sharing
dramatically decreases performances (Prete et al., 1997).

Figure 7 Breakdown of invalidation miss rate vs. coherence protocol (AMSD, MESI, PSCR) and number of processors
(4, 16). Data assume, an affinity scheduler, 64-byte block, 1M-byte 2-way set associative caches. Having more processors causes more
coherence misses (false and true sharing). Passive sharing misses are slightly higher in PSCR compared to the other two protocols. This is
a consequence of the selective invalidation mechanism of PSCR. In fact, as soon as a private block is fetched on another processor, PSCR
invalidates all the remote copies of that block. In the other two protocols, the invalidation is performed on a write operation on shared data,
thus less frequently than in PSCR

Figure 8 Number of coherence transactions vs. coherence protocol (AMSD, MESI, PSCR) and number of processors (4, 16). Data assume,
an affinity scheduler, 64-byte block, 1M-byte 2-way set associative caches. There is an increment in the sharing overhead in all of its
components. This increment is more evident in the WI class protocols, also because there is more passive sharing overhead

28 P. FOGLIA, R. GIORGI AND C.A. PRETE

5.4.2 Analysing the effects of a larger block size in the
‘high-end’ system

We started our analysis from the 64-byte block size for
references comparison with other studies. When switching
from 64 to 128 bytes, PSCR has further advantages in
respect of the other two considered protocols (Figure 9).
This is due to the following two reasons. First, we observe a
reduction of Capacity+Conflict miss component (Figure 10),
a small reduction of coherence traffic (Figure 12), and
Invalidation Miss Rate (Figure 11). Secondly, in the case of
64-byte block, the system is in saturation1 (Giorgi and Prete,
1999) for all configurations of Figure 9. In the case of
128-byte blocks, an architecture based on PSCR is not

saturated, and thus we can use configurations with a higher
number of processors efficiently. When switching from 64
to 128 bytes, the decrease of the Execution Time is 27% for
PSCR, and only a 20% for the other protocols. We observe
that a block size larger than 128 bytes produces diminishing
returns, because the increased cost of read-block transaction
is not compensated by the reduction of the number of
misses. Similar result has been obtained for a CC-NUMA
machine running a DSS workload (Lovett and Clapp, 1996).
In that work, the number of ‘Effective Processors’ for a
16-processor CC-NUMA system was almost the same as
that obtained for our cheaper shared-bus shared-memory
system (figure not showed).

Figure 9 Normalised execution time vs. block size (64, 128 bytes) and coherence protocol (AMSD, MESI, PSCR). Data assume, an affinity
scheduler, 1M-byte 2-way set associative caches. Execution Times are normalised with respect to the execution time of the MESI, 64 byte
block configuration

Figure 10 Breakdown of miss rate vs. coherence protocol (AMSD, MESI, PSCR) and block size (64 byte, 128 byte). Data assume an
affinity scheduler, 1M-byte 2-way set associative caches. There is a decrease of Cold, Capacity+Conflict miss components, and a little
decrease of invalidation miss component

Figure 11 Breakdown of invalidation miss rate vs. coherence protocol (AMSD, MESI, PSCR) and block size (64 byte, 128 byte). Data
assume an affinity scheduler, 1M-byte 2-way set associative caches. Passive Sharing Misses decrease when increasing block size because
the invalidation unit is larger

SPEEDING-UP MULTIPROCESSORS RUNNING DBMS WORKLOADS THROUGH COHERENCE PROTOCOLS 29

Figure 12 Number of coherence transactions vs. coherence protocol (AMSD, MESI, PSCR) and block size (64, 128 byte). Data assume an
affinity scheduler, 1M-byte 2-way set associative caches

5.4.3 Analysing the effects of variations in the number of
processes of the workload

We considered another scenario where the number of
processes in the workload may vary and thus the scheduler
could fail in applying affinity. The affinity scheduling could
fail when the number of ready processes is limited. We
defined a new workload (DSS18, Table 2) having
characteristics similar to DSS26 workload that was used in
the previous experiments, but constituted of only 18
processes. The machine under study is still the 16-processor
one. In such a condition, the scheduler can only choose
between at most two ready processes. The measured miss
rate and number of coherence transactions (Figures 13, 14, 15)
shows an interesting behaviour. The miss rate, and in
particular Cold, Conflict+Capacity miss rate, increases with
respect to the DSS26 workload. This is consequence of
process migration, and it is determined by the failure of the
affinity requirement: as the number of processes is almost
equal to the number of processors, it is not always possible
for the system to reschedule a process on the processor
where it last executed. In such cases, PSCR can reduce
greatly the associated overhead and it achieves the best
performance (figure not shown).

Figure 13 Breakdown of miss rate vs. coherence protocol
(AMSD, MESI, PSCR) and workload (DSS26–DSS18). Data
assume an affinity scheduler, 64-byte block, 1M-byte 2-way set
associative caches. The workload DSS18 exhibits the higher miss
rate, due to an increased number of Cold, Capacity, and Conflict
Miss. This is a consequence of process migration, which affinity
fails to mitigate

Figure 14 Breakdown of invalidation miss rate vs. coherence
protocol (AMSD, MESI, PSCR) and workload (DSS26 – DSS18).
Data assume an affinity scheduler, 64-byte block, 1M-byte 2-way
set associative caches. Passive sharing misses decrease, while true
and false sharing misses increase. This is consequence of the
failure of affinity scheduling: in the DSS18 execution. Processes
migrate more than in DSS26 execution, thus generating more
reuse of shared data (and more invalidation misses on shared
data) but lower reuse of private data (and lower number of passive
sharing misses)

Figure 15 Breakdown of Coherence Transactions vs. coherence
protocol (AMSD, MESI, PSCR) and workload (DSS26 – DSS18).
Data assume affinity, 64-byte block, 1M-byte 2-way set associative
caches

The main conclusion here is that PSCR maintains its
advantage also in different load conditions, while the other
protocols are more penalised by critical scheduling
conditions.

5.4.4 Extending our results to OLTP systems

As also observed in other works (Barroso et al., 1998;
Lovett and Clapp, 1996; Transaction Processing
Performance Council, 1994; Keeton et al., 2003), the main

30 P. FOGLIA, R. GIORGI AND C.A. PRETE

differences among OLTP and DSS applications are the
following:
• execution time of OLTP queries is shorter
• the number of concurrent queries running against the

DB is larger
• the reuse of data cached in DBMS shared memory is

smaller
• queries are updating queries.

As a consequence, we can aspect that:
• passive sharing effects are less important in OLTP

systems than in DSS ones, due to the shortness of
queries, and then to the lower probability of reuse of
private data

• affinity scheduling is much more effective in OLTP, as
there is a higher number of running processes

• OLTP systems present much more sharing in the user
part of the workload, due to the higher number of
updating queries.

All these facts suggest that, in the case of OLTP workloads,
the differences among the protocols become smaller than
those in DSS workloads, and the access pattern to user
shares data (i.e., the number of queries updating the same
row in the database) is crucial to decide which is the best
performing protocol.

6 CONCLUSIONS

We evaluated the memory performance of a shared-bus
shared-memory multiprocessor running a DSS workload, by
considering several different choices that could improve the
overall performance of the system. We considered different
architectures based on the following coherence protocols:
MESI – a pure WI protocol, widely used in
high-performance multiprocessors, AMSD – a WI protocol
designed to reduce effects of data migrations – and
PSCR – a coherence protocol using a hybrid strategy, that is
WU for shared data and WI for private data, designed to
reduce the effects of process migration. The DSS workload
was setup using the PostgreSQL DBMS executing queries
of the TPC-D benchmark and typical Unix shell commands
and daemons. We considered kernel effects that are more
relevant to our analysis like process scheduling, virtual
memory mapping, user/kernel code interactions.

Our conclusions, for the four-processor case, agree with
previous studies as for the analysis of miss rate and the
effects of coherence maintaining. Our analysis outlines also:

• cache sizes larger than 2 M bytes already capture the
working set of such workload

• the kernel effects account for 50% of the coherence
overhead.

Previous studies that considered DSS workloads were
mostly limited to four-processor systems, did not consider
the effects of process migration, and did not correlate the
amount of sharing to the performance of the system.

Our analysis of a ‘high-end’ machine considered
a 16-processor SMP. We analysed variations of classical
cache parameters and variations in the workload pressure on
the scheduler due to a different number of processes. We
found that in the high-end systems some factors, which were
less noticed in the four-processor case, become more
evident.

MESI protocol is not the best choice in high-end SMP
architectures: AMSD improves the performance of a DSS
system of about 10% compared to MESI; PSCR improves
the performance of about 20% compared to MESI. DSS
workloads running on SMP architectures generate a variable
load. The affinity scheduler may fail to deliver the affinity
requirements. The use of PSCR allows us to build systems,
whose performance is less influenced by the load condition.
Finally, in OLTP systems, we expect that the effect of
migration are less evident, due to the short life of executing
processes.

REFERENCES

Agarwal, A. (1989) Analysis of Cache Performance for Operating
Systems and Multiprogramming, Kluwer Academic Publishers,
Norwell, MA.

Ballinger, C. (2001) Relevance of the TPC-D Benchmark Queries:
The Questions You Ask Every Day, NCR parallel System,
http://www.tpc.org/information/other/articles/TPCDart_0197.a
sp.

Barroso, L.A., Gharachorloo, K. and Bugnion, E. (1998) ‘Memory
system characterisation of commercial workloads’, Proc. of
25th Intl. Symp. on Computer Architecture, Barcelona, Spain,
June, pp.3–14.

Cao, Q., Torrellas, J., Trancoso, P., Pey, L.J., Knighten, B. and
Won, Y. (1999) ‘Detailed characterisation of a quad Pentium
Pro server running TPC-D’, Proc. of Intl. Conf. on Computer
Design, October, pp.108–115.

Chandra, R., Devine, S., Verghese, B., Gupta, A. and Rosenblum,
M. (1994) ‘Scheduling and page migration for multiprocessor
compute servers’, Proc. of 6th ASPLOS, October, pp.12–24.

Chapin, J., Herrod, S., Rosenblum, M. and Gupta, A. (1995)
‘Memory system performance of UNIX on CC-NUMA
multiprocessors’, ACM Sigmetrics Conf. on Measurement and
Modeling of Computer Systems, May, pp.1–13.

Cox, A.L. and Fowler, R.J. (1993) ‘Adaptive cache coherency
for detecting migratory shared data’, Proc. 20th Intl. Symp. on
Computer Architecture, San Diego, California, May,
pp.98–108.

Culler, D. and Singh, J. (1998) Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann, San
Francisco, CA.

Cvetanovic, Z. and Bhandarkar, D. (1994) ‘Characterisation of
alpha AXP performance using TP and SPEC workloads’, Proc.
21st Intl. Symp. on Computer Architecture, April, pp.60–70.

Dubois, M., Skeppstedt, J., Ricciulli, L., Ramamurthy, K. and
Stenström, P. (1993) ‘The detection and elimination of useless
miss in multiprocessor’, Proc. of 20th Intl. Symp. on Computer
Architecture, San Diego, CA, May, pp.88–97.

Eggers, S.J. (1991) ‘Simplicity versus accuracy in a model of
cache coherency overhead’, IEEE Transactions on Computers,
August, Vol. 40, No. 8, pp.893–906.

Eggers, S.J. and Jeremiassen, T.E. (1991) ‘Eliminating false
sharing’, Proc. 1991 Intl. Conf. on Parallel Processing,
August, pp.I:377–381.

SPEEDING-UP MULTIPROCESSORS RUNNING DBMS WORKLOADS THROUGH COHERENCE PROTOCOLS 31

Eggers, S.J. and Katz, R.H. (1988) ‘A characterisation of sharing
in parallel programs and its application to coherency protocol
evaluation’, Proc. of 15th Annual Int. Symp. on Computer
Architecture, Honolulu, Hl, May, pp.373–382.

Eggers, S.J. and Katz, R.H. (1989a) ‘Evaluating the performance
of four snooping cache coherency protocols’, Proc. of 16th
Annual International Symp. on Computer Architecture,
Jerusalem, Israel, pp.2–15.

Eggers, S.J. and Katz, R.H. (1989b) ‘The effect of sharing on the
cache and bus performance of parallel programs’, Proc. 3rd
ASPLOS, Boston, MA, April, pp.257–270.

Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L. and
Tullsen, D.M. (1997) ‘Simultaneous multithreading: a platform
for next-generation processors’, IEEE Micro, October, Vol. 17,
No. 5, pp.12–19.

Foglia, P. (2001) ‘An algorithm for the classification of coherence
related overhead in shared-bus shared-memory
multiprocessors’, IEEE TCCA Newsletter, January, pp.40–46.

Foglia, P., Giorgi, R. and Prete, C.A. (1998) ‘Analysis of sharing
overhead in shared memory multiprocessors’, 31st IEEE
Hawaii Int. Conf. on Systems, Kohala Coast, HL, January,
Vol. 7, pp.776–778.

Gharachorloo, K., Gupta, A. and Hennessy, J. (1991) ‘Performance
evaluation of memory consistency models for shared-memory
multiprocessors’, Proc. Fourth ASPLOS, Santa Clara,
California, April, pp.245–357.

Giorgi, R. and Prete, C.A. (1999) ‘PSCR: a coherence protocol for
eliminating passive sharing in shared-bus shared-memory
multiprocessors’, IEEE Trans. on Parallel and Distributed
Systems, Vol. 10, No. 7, pp.742–763.

Giorgi, R., Prete, C., Prina, G. and Ricciardi, L. (1997) ‘Trace
factory: a workload generation environment for trace-driven
simulation of shared-bus multiprocessor’, IEEE Concurrency,
Vol. 5, No. 4, pp.54–68.

Hennessy, J. and Patterson, D.A. (2002) Computer Architecture: a
Quantitative Approach, Morgan Kaufmann Publishers, San
Francisco, CA.

Hyde, R.L. and Fleisch, B.D. (1996) ‘An analysis of degenerate
sharing and false coherence’, Journal of Parallel and
Distributed Computing, Vol. 34, No. 2, May, pp.183–195.

Jeremiassen, T. and Eggers, S. (1995) ‘Reducing false sharing on
shared memory multiprocessors through compile time data
transformations’, ACM SIGPLAN Notices, Vol. 30, No. 8,
August, pp.179–188.

Keeton, K., Clapp, R. and Nanda, A. (2003) ‘Evaluating servers
with commercial workloads’, IEEE Computer, February,
Vol. 36, No. 2, pp.29–32.

Keeton, K., Patterson, D., He, Y., Raphael, R. and Baker, W.
(1998) ‘Performance characterisation of a quad pentium pro
SMP using OLTP workloads’, Proc. 25th Intl. Symp. on
Computer Architecture, June, pp.15–26.

Kroft, D. (1981) ‘Lockup-free instruction fetch/prefetch cache
organisation’, Proc. 8th Intl. Symp. on Computer Architecture,
June, pp.81–87.

Lo, L., Barroso, A., Eggers, S.J., Gharachorloo, K.G., Levy, H.M.
and Pareck, S. (1998) ‘An analysis of database workload
performance on simultaneous multithreaded processors’, Proc.
25th Annual Intl. Symp. on Computer Architecture, Barcelona,
Spain, June, pp.39–50.

Lovett, T. and Clapp, R. (1996) ‘StiNG: a CC-NUMA computer
system for the commercial marketplace’, Proc. of the 23rd Intl.
Symp. on Computer Architecture, May, pp.308–317.

Maynard, G.A.M., Donnelly, C.M. and Olszewski, B.R. (1994)
‘Contrasting characteristics and cache performance of
technical and multi-user commercial workloads’, Proc. of the
6th ASPLOS, October, pp.158–170.

Prete, C.A., Prina, G. and Ricciardi, L. (1995) ‘A trace driven
simulator for performance evaluation of cache-based
multiprocessor system’, IEEE Trans. on Parallel and
Distributed Systems, Vol. 6, No. 9, pp.915–929.

Prete, C.A., Prina, G., Giorgi, R. and Ricciardi, L. (1997) ‘Some
considerations about passive sharing in shared-memory
multiprocessors’, IEEE TCCA Newsletter, March, pp.34–40.

Ranganathan, P., Gharachorloo, K., Adve, S.V. and Barroso, L.
(1998) ‘Performance of database workloads on shared-memory
systems with out-of-order processors’, Proc. of the 8th
ASPLOS, San Jose, CA, pp.307–318.

Shanley, T. and Mindshare Inc. (1999) Pentium Pro and Pentium
II System Architecture, Addison Wesley, Reading, MA.

Stenström, P., Brorsson, M. and Sandberg, L. (1993) ‘An adaptive
cache coherence protocol optimised for migratory sharing’,
Proc. of the 20th Annual Intl. Symp. on Computer
Architecture, May, pp.109–118.

Stenström, P., Hagersten, E., Li, D.J., Martonosi, M. and
Venugopal, M. (1997) ‘Trends in shared memory
multiprocessing’, IEEE Computer, December, Vol. 30, No. 12,
pp.44–50.

Stunkel, B., Janssens, B. and Fuchs, K. (1991) ‘Address tracing for
parallel machines’, IEEE Computer, Vol. 24, No. 1, January,
pp.31–45.

Sweazey, P. and Smith, A.J. (1986) ‘A class of compatible cache
consistency protocols and their support by the IEEE
futurebus’, Proc. of the 13th Intl. Symp. on Computer
Architecture, June, pp.414–423.

Tanenbaum, A.S. (2001) Structured Computer Organisation,
4th Edition, Prentice-Hall, Inc.

Tomasevic, M. and Milutinovic, V. (1993) The Cache Coherence
Problem in Shared-Memory Multiprocessors – Hardware
Solutions, IEEE Computer Society Press, Los Alamitos, CA,
April.

Tomasevic, M. and Milutinovic, V. (1994a) ‘Hardware approaches
to cache coherence in shared-memory multiprocessors’, IEEE
Micro, October, Vol. 14, No. 5, pp.52–59.

Tomasevic, M. and Milutinovic, V. (1994b) ‘Hardware approaches
to cache coherence in shared-memory multiprocessors’, IEEE
Micro, December, Vol. 14, No. 6, pp.61–66.

Tomasevic, M. and Milutinovic, V. (1996) ‘The word-invalidate
cache coherence protocol’, Microprocessors and
Microsystems, Vol. 20, pp.3–16.

Torrellas, J., Gupta, A. and Hennessy, J. (1992) ‘Characterising the
caching and synchronisation performance of a multiprocessor
operating system’, Proc. 5th ASPLOS, September, pp.162–174.

Torrellas, J., Lam, M. and Hennessy, J.L. (1990) ‘Share data
placement optimisations to reduce multiprocessor cache miss
rates’, Proc. Intl. Conf. on Parallel Processing, Urbana, IL,
August, pp.266–270.

Torrellas, J., Lam, M.S. and Hennessy, J.L. (1994) ‘False sharing
and spatial locality in multiprocessor caches’, IEEE
Transactions on Computer, June, Vol. 43, No. 6, pp.651–663.

Trancoso, P., Pey, L.J.L., Zhang, Z. and Torrellas, J. (1997) ‘The
memory performance of DSS commercial workloads in
shared-memory multiprocessors’, Proc. of the 3rd Intl. Symp.
on High Performance Computer Architecture, Los Alamitos,
CA, February, pp.250–260.

Transaction Processing Performance Council (1994) TPC
Benchmark B (Online Transaction Processing) Standard
Specification, June, http://www.tpc.org.

Transaction Processing Performance Council (1995) TPC
Benchmark D (Decision Support) Standard Specification,
December, http://www.tpc.org.

Uhlig, R. and Mudge, T. (1997) ‘Trace-driven memory simulation:
a survey’, ACM Computing Surveys, June, pp.128–170.

32 P. FOGLIA, R. GIORGI AND C.A. PRETE

Yeager, K.C. (1996) ‘The MIPS R10000 superscalar
microprocessor’, IEEE Micro, August, Vol. 16, No. 4, pp.42–50.

Yu, A. and Chen, J. (1995) The POSTGRES95 User Manual,
Computer Science Div., Dept. of EECS, UCB, July.

Yu, R., Bhuyan, L. and Iyer, R. (2002) ‘Comparing the memory
system performance of DSS workloads on the HP v-class and
SGI origin 2000’, Proc. of the Int. Parallel and Distributed
Processing Symposium, Fort Lauderdale, FL, April, pp.31–37.

NOTE

1We recall that a shared-bus shared-memory SMP system is in
saturation (Giorgi and Prete, 1999) when the performance does
not increase at least of a given quantity, when we add one
processor to the machine.

