
Analysis of sharing overhead in Shared Memory Multiprocessors

Pierfrancesco Foglia, Roberto Giorgi and Cosimo Antonio Prete
Dipartimento di Ingegneria dell'Informazione

Facoltà di Ingegneria - Università di Pisa, Italy

A cache memory contributes in both hiding

memory latency and reducing the traffic on the processor

interconnection network of shared memory multi-

processors but it causes the coherence problem. A

coherence protocol [Tomasevic93] is required in order

to guarantee the coherence of the cached copies. An

adequate choice of the coherence protocol is critical for

performance. In fact, when the number of nodes exceeds

a critical value, the processor interconnection network

reaches a saturation condition, due to both cache misses

and coherence operations.

Three main classes of coherence protocols are

write-update (WU), write-invalidate (WI), and hybrid. A

WU protocol updates the remote copies on each write

involving on a shared copy. Whereas, a WI protocol

invalidates previously remote copies in order to avoid

updating them. A hybrid protocol uses both WU and WI

strategies to combine the best aspect of each one. The

frequency and the pattern of accesses to shared copies

influence coherence overhead. Since access pattern to

shared data varies from application to application;

neither WI nor WU is the better strategy for maintaining

cache coherence in all cases. Results [Veenstra94] show

that, although the hybrid protocol [Cox93, Prete90,

Prete95b, Stenstrom93] does not offer any significant

advantage over the best choice of pure protocols for a

particular application, it may offer optimal performance

over a wider range of applications than any single pure

protocol.

An optimal selection for the coherence protocol

can be made by considering the traffic induced by the

two approaches in case of different sharing. The

coherence overhead induced by a WU protocol is due to

all the operations needed to update the remote copies.

Whereas, a WI protocol invalidates remote copies and

processors generate a miss on the access to the

invalidated copy. Invalidation and block fetching (due to

invalidation misses) contribute to the coherence

overhead of WI protocols. By considering the cost for

invalidation, block fetching and updating, the potential

penalty for choosing WU incorrectly is much higher than

the potential penalty for choosing WI incorrectly.

Three different sources of sharing may be

observed: i) active sharing, which occurs when the same

cached data item is referenced by processes concurrently

running on different processors; ii) false sharing

[Torrellas94, Tomasevic96], which occurs when several

processors reference separate data items belonging to the

same memory block; iii) passive [Prete90, Prete95,

Prete97a] or process-migration [Agarwal88] sharing,

which occurs when a memory block, though belonging to

a private area of a process, is replicated in more than one

cache as a consequence of owner process migration.

Active sharing can be subdivided in fine-grain

and sequential sharing [Eggers89]. Fine-grain sharing

denotes high contention for shared data; sequential

sharing is characterized by long sequences of writes to

the same memory item performed by the same processor.

A WI protocol is adequate in the case of sequential

sharing, whilst, in general, a WU protocol performs

better than WI for programs characterized by fine-grain

sharing. Migratory sharing is an example of sequential

sharing that occurs when a block is read and written by

several processors, but in long intervals the memory

block is exclusively used by one processor at a time

[Gupta92, Stenstrom93]. For example, n the use of data

structures belonging to critical sections, processors read

and modify data structures one at time. In the case of WI

protocols, processors that access shared data in this way

cause a cache miss followed by an invalidation request

being sent to the cache belongs to the processor that most

recently exited the critical section. It is possible to merge

the invalidation request with the previous read-miss

request and thus eliminate all explicit invalidation

actions [Stenstrom93].

Passive sharing is particularly emphasized when

multiprocessors are used not only to speed-up parallel

applications, but also to minimize the execution time of



general-purpose workloads consisting of both parallel

and sequential applications, such as, for example, in case

of network server or general-purpose high performance

systems. These workloads generally produce more

processes than the number of processors in the machine

and, therefore, there are two factors that increase the

number of misses and useless coherence overhead. First,

several processes are forced to time-share the same

cache, resulting in one process destroying the cache state

previously built up by another. Consequently, when this

process runs again, it generates a stream of misses as it

rebuilds its cache state. Second, since an idle processor

simply selects the highest priority runnable process, a

given process often moves from one CPU to another.

This frequent process migration causes passive sharing,

since private data blocks of a process can become

resident in multiple caches and generate useless

coherence-related overhead [Prete97a].

To reduce the number of misses and the useless

coherence-related overhead in these workloads, processes

should reuse their cached state more. One way to

encourage this is to schedule each process based on its

affinity to individual cache, that is, based on the amount

of state that the process has accumulated in an individual

cache. The cache affinity scheduling [Squillante89]

cannot be applied to all workload conditions.

The aim of this work is to analyze [Prete95a,

Prete97b] the overhead caused by general-purpose

workloads in managing shared cached copies and

investigate the relations among workload features,

process scheduling policies, and some architecture

features, such as, processor and cache organization, and

coherence protocol.

References

[Agarwal88] A. Agarwal and A. Gupta, "Memory reference
characteristics of multiprocessor applications
under Mach'', Proc. ACM Sigmetrics, Santa Fe,
NM, pp. 215-225, May 1988.

[Cox93] A.L. Cox and R.J. Fowler, "Adaptive cache
coherency for detecting migratory shared data'',
Proc. 20th Int. Symp. Comput. Arch., pp. 98-
108, 1993.

[Eggers89] S.J. Eggers, "Simulation analysis of data
sharing in shared memory multiprocessors'',
Ph.D. dissertation, Univ. of California,
Berkeley, April 1989.

[Gupta92] A. Gupta and W. D. Weber, "Cache Invali-
dation Patterns in Shared-Memory Multiproc-

essors", IEEE Transactions on Computers, vol.
C-41, n. 7, pp.794-810, July 1992.

[Prete90] C.A. Prete, "A new solution of coherence
protocol for tightly coupled multiprocessor
systems'', Microprocessing and Micropro-
gramming, vol. 30, n. 1-5, Amsterdam, pp.207-
214, 1990.

[Prete95a] C.A. Prete, G. Prina, and L. Ricciardi, "A
trace-driven simulator for performance evalua-
tion of cache-based multiprocessor systems'',
IEEE Trans. Parall. Distr. Syst., vol.6, n. 9, pp.
915-929, Sept. 1995.

[Prete95b] C.A. Prete, G. Prina, and L. Ricciardi, "A
selective invalidation strategy for cache coher-
ence'', IEICE Trans. on Information and
Systems, vol. E78-D, n. 10, pp. 1316-1320, Oct.
1995.

[Prete95c] C.A. Prete, G. Prina, and L. Ricciardi,
"Reducing coherence-related overhead in multi-
processor systems'', Proc. 3rd Euromicro
Workshop on Par. and Distr. Processing,
Sanremo, IEEE Computer Society Press,
pp.444-451, Jan. 1995.

[Prete97a]. A. Prete, G. Prina, R. Giorgi and L.
Ricciardi, “Some Considerations About
Passive Sharing in Shared-Memory Multiproc-
essors”, IEEE TCCA Newsletter, pp.34-40,
March 1997.

[Prete97b] R. Giorgi, C.A. Prete, L. Ricciardi, G. Prina,
“Trace Factory: a Workload Generation Envi-
ronment for Trace-Driven Simulation of
Shared-Bus Multiprocessors”, to appear on
IEEE Concurrency.

[Squillante93] M.S. Squillante and D.E. Lazowska, "Using
processor-cache affinity information in shared-
memory multiprocessor scheduling'', IEEE
Trans. Parall. Distr. Syst., vol. 4, n. 2, pp. 131-
143, Feb. 1993.

[Stenstrom93] P. Stenström, M. Brorsson, and L. Sandberg,
"An adaptive cache coherence protocol
optimized for migratory sharing'', Proc. 20th
Int. Symp. Comput. Arch., pp. 109-118, 1993.

[Tomasevic93] M. Tomasevic, V. Milutinovic, eds., The
cache coherence problem in shared-memory
multiprocessors: hardware solutions, IEEE
Computer Society Press, Los Alamitos, CA,
April 1993.

[Tomasevic96] M. Tomasevic, V. Milutinovic, "The word-
invalidate cache coherence protocol'', Micro-
processors and Microsystems, vol. 20, pp. 3-
16, 1996.

[Torrellas94] J. Torrellas, M.S. Lam, and J.L. Hennessy,
"False sharing and spatial locality in multiproc-
essor caches'', IEEE Trans. Comput., vol. 43, n.
6, pp. 651-663, June 1994.

[Veenstra94] Jack E. Veenstra and Robert J. Fowler, "The
Prospects for On-Line Hybrid Coherency Proto-
cols on Bus-Based Multiprocessors", University
of Rochester, Computer Science Department",
Technical Report TR 490, March 1994.


