
Process Migration Effects on Memory Performance of
Multiprocessor Web-Servers

Pierfrancesco Foglia, Roberto Giorgi, Cosimo Antonio Prete

Dipartimento di Ingegneria della Informazione
Universita’ di Pisa

Via Diotisalvi, 2 – 56100 Pisa, Italy
{foglia,giorgi,prete}@iet.unipi.it

Abstract. In this work we put into evidence how the memory performance of a Web-
Server machine may depend on the sharing induced by process migration. We considered
a shared-bus shared-memory multiprocessor as the simplest multiprocessor architecture to
be used for accelerating Web-based and commercial applications. It is well known that, in
this kind of system, the bus is the critical element that may limit the scalability of the
machine. Nevertheless, many factors that influence bus utilization, when process
migration is permitted, have not been thoroughly investigated yet. We analyze a basic
four-processor and a high-performance sixteen-processor machine. We show that, even in
the four-processor case, the overhead induced by the sharing of private data as a
consequence of process migration, namely passive sharing, cannot be neglected. Then, we
consider the sixteen-processor case, where the effects on performance are more massive.
The results show that even though the performance may take advantage of larger caches
or from cache affinity scheduling, there is still a great amount of passive sharing, besides
false sharing and active sharing. In order to limit false sharing overhead, we can adopt an
accurate design of kernel data structures. Passive sharing can be reduced, or even
eliminated, by using appropriate coherence protocols. The evaluation of two of such
protocols (AMSD and PSCR) shows that we can achieve better processor utilization
compared to the MESI case.

1 Introduction

Multiprocessor systems are becoming more and more widespread due to both the
cheaper cost of necessary components and the advances of technology. In their
simplest implementation, multiprocessors are built by using commodity processors,
shared memory, and shared bus, in order to achieve high performance at minimum
cost [10]. Their relatively high diffusion made it common to find these machines
running not only traditional scientific applications, but also commercial ones, as is the
case for Web-Server systems [2],[3].

The design of such systems is object of an increasing interest. Nevertheless, we are
not aware of papers that thoroughly investigate some factors that can heavily
influence their performance, e.g. the effect of process migration, and the consequent
passive-sharing [16]. If those aspects were considered correctly, different architectural
choices would be dictated to tune the performance of Web-Server multiprocessors.

Web-Server performance is influenced by network features, I/O subsystem
performance (to access database information or HTML pages) and by hardware and
software architecture both from client and server side. In the following, we shall



consider a server based on shared-bus shared-memory multiprocessor, and in
particular, we shall focus on the core architecture related problems, and the effects of
process migration.

The design issues of a multiprocessor system are scalability and speedup. These
goals can be achieved by using cache memories, in order to hide the memory latency,
and reduce the bus traffic (the main causes that limit speed up and scalability).
Multiple cache memories introduce the coherence problem and the need of a certain
number of bus transactions (known as coherence overhead) that add to the basic bus
traffic of cache-based uniprocessors. Thus, a design issue is also the minimization of
such coherence overhead. The industry-standard MESI protocol may not be enough
effective to minimize that overhead, in the case of Web-Servers.

The scheduling algorithm plays an essential role in operating systems for
multiprocessors because it has to obtain the load balancing among processors. The
consequent process migration generates passive sharing: private data blocks of a
process can become resident in multiple caches and generate useless coherence-
related overhead, which in turn may limit system performance [16].

In this paper, we shall analyze the memory hierarchy behavior and the bus
coherence overhead of a multiprocessor Web-Server. The simulation methodology
relies on trace-driven technique, by means of Trace Factory environment [8], [15].

The analysis starts from a reference case, and explores different architectural
choices for cache and number of processors. The scheduling algorithm has also been
varied, considering both a random and a cache affinity policy [18]. The results we
obtained show that, in these systems, large caches and cache affinity improve the
performance. Anyway, due to both false sharing and passive sharing, MESI does not
allow achieving the best performance for Web-Server applications. Whilst a re-design
of operating system kernel structures is suggested to reduce false sharing, passive
sharing can be eliminated by using new coherence protocol schemes. We evaluated
two different solutions for the coherence protocol (AMSD [19], [4] and PSCR [9]).
The results show a sensible performance increase, especially for high performance
architectures.

2 Coherence Overhead

In a shared-bus, shared-memory multiprocessors, speed-up and scalability are the
design issues. It is well known that the shared bus is the performance bottleneck, in
this kind of systems. To overcome the bus limitations, and achieving the design goals,
we need to carefully design the memory subsystem. These systems usually include
large cache memories that contribute in both hiding memory latency, and reducing the
bus traffic [10], but they generate the need for a coherence protocol [14], [22], [23].
The protocol activity involves a certain number of bus transactions, which adds to the
basic bus traffic of cache-based uniprocessors, thus limiting the system scalability.

In our evaluations, we have considered the MESI protocol. MESI is a Write-
Invalidate protocol [21], and it is used in most of the actual high-performance
microprocessors, like the AMD K5 and K6, the PowerPC series, the SUN UltraSparc
II, the SGI R10000, the Intel Pentium, Pentium Pro, Pentium II and Merced. The
remote invalidation used by MESI (write-for-invalidate) to obtain coherency has as a



drawback the need to reload the copy, if it is used again by the remote processor, thus
generating a miss (Invalidation Miss). Therefore, MESI coherence overhead (that is
the transactions needed to enforce coherence) is due to Invalidation Misses and write-
for-invalidate transactions.

We wish to relate that overhead with the kinds of data sharing that can be observed
in the system, in order to detect the causes for the coherence overhead, and thus
finding out the appropriate hardware/software solutions. Three different types of data
sharing can be observed: i) active sharing, which occurs when the same cached data
item is referenced by processes running on different processors; ii) false sharing [25],
which occurs when several processors reference different data items belonging to the
same memory block; iii) passive [23], [16] or process-migration [1] sharing, which
occurs when a memory block, though belonging to a private area of a process, is
replicated in more than one cache as a consequence of the migration of the owner
process. Whilst active sharing is unavoidable, the other two forms of sharing are
useless. The relevant overhead they produce can be minimized [24], [19], [13], and
possibly avoided [9].

3 Workload Description

The Web-Server activity is reproduced by means of the Apache daemon [17], which
handles HTTP requests, an SQL server, namely PostgreSQL [29], which handles
TPC-D [26] queries, and several Unix utilities, which interface the various programs.

Table 1. Statistics of source traces for some UNIX utilities (64-byte block size and 5,000,000 references
per application)

APPLICATION Distinct blocks Code (%) Data Read Data Write
AWK (BEG) 4963 76.76 14.76 8.47
AWK (MID) 3832 76.59 14.48 8.93

CP 2615 77.53 13.87 8.60
GZIP 3518 82.84 14.88 2.28
RM 1314 86.39 11.51 2.10

LS -AR 2911 80.62 13.84 5.54
LS -LTR (BEG) 2798 78.77 14.58 6.64
LS -LTR (MID) 2436 78.42 14.07 7.51

Web-Server software relies on server-client paradigm. The client usually requests
HTML files or Java Applets by means of a Web browser. The requested file is
provided and sent back to the client side. We used the Apache daemon [5]. We
configured the daemon, so that it can spawn a minimum of 2 idle processes and a
maximum of 10 idle processes. A child processes up to 100 requests before dying.

Besides this file transferring activity, Web-Servers might need to browse their
internal database [3]. The workload thus includes a search engine, namely
PostgreSQL DBMS [29]. We instructed our Web-Server to generate some queries,
upon incoming calls, as specified by the TPC-D benchmark for Decision Support
Systems (DSS). PostgreSQL consists of a front-end process that accepts SQL queries,
and a backend that forks processes, which manage the queries. A description of
PostgreSQL memory and synchronization management can be found in [27]. TPC-D



simulates an application for a wholesale supplier that manages, sells, and distributes a
product worldwide. It includes 17 read-only queries, and 2 update queries. Most of
the queries involves a high number of records, and perform different operations on
database tables.

For completing our Web-Server workload, we considered some glue-processes that
can be generated by shell scripts (ls , awk, cp , gzip , and rm) . In a typical
situation, various requests may be running, thus requiring the support of different
system commands and ordinary applications.

Table 2. Statistics of multiprocess application source traces (Apache and TPC-D) and our target trace
(SWEB), in case of 64-byte block size and 5,000,000 references per process.

Data (%) Shared data (%)Workload Number of
processes

Distinct
Blocks

Code
(%) Read Write

Shared
blocks Accesses Write

APACHE 13 95343 75.14 18.24 6.61 666 1.52 0.49
TPC-D 5 8821 71.94 18.17 9.88 2573 2.7 0.79
SWEB 26 239848 75.49 17.12 7.39 3982 1.68 0.54

4 Performance Analysis

4.1 Methodology

The methodology used in our analysis is based on trace-driven simulation [20], [15],
[28], and on the simulation of the three kernel activities that most affect performance:
system calls, process scheduling, and virtual-to-physical address translation [7]. In
the first phase, we produce a source trace (a sequence of user memory references,
system-call positions, and synchronization events in case of multithreaded programs)
for each application belonging to the workload, by means of a tracing tool. In the
second phase, Trace Factory simulates the execution of complex workloads by
combining multiple source traces, generating the references of system calls, and by
simulating process scheduling and virtual-to-physical translation. Trace Factory
furnishes the references (target trace) to a memory-hierarchy simulator [15], by using
an on-demand policy. Indeed, Trace Factory produces a new reference whenever the
simulator requests one, so that the timing behavior imposed by the memory subsystem
conditions the reference production [8].

To detect sharing patterns, and evaluate the source of overhead, we have extended
an existing classification algorithm [11] to the case of passive sharing, and the case of
finite-size caches.

The Web-Server workload is constituted by 26 processes, 13 of which are spawned
by the Apache daemon, 5 by PostgreSQL (corresponding to the first 5 queries of the
TPC-D benchmark), and 8 processes are Unix utilities. Table 1 (for the uniprocess
applications) and 2 (for the multiprocess ones) contain some statistics of the source
traces that we used to generate the workload. To take into account that some requests
may be using the same program at different times, we traced some commands in
shifted execution sections: initial (beg) and middle (mid). Table 2 contains also the



statistics of the target workload that we used in our evaluation (SWEB). Data are
related to 100 requests to the Web-Server, that produce 130 millions of references.

4.2 Simulation Results

As base case-study, a machine with 128-bit shared bus is considered. As for the
number of processors, two configurations have been studied: a basic machine with 4
processors and a high-performance machine with 16 processors. For the scheduling
policy, two solutions have been considered: random and cache-affinity; scheduler
time slice is 200,000 references. Cache size has been varied between 32K and 2M.
The simulated processors are MIPS-R10000-like; paging relays on 4-KByte-page
size; the bus logic supports transaction splitting, and processor-consistency memory
model [6]. The base case study timings for the simulator are summarized in Table 3.

Table 3. Numerical values of timing parameters for the multiprocessor simulator (times are in
clock cycles) in the case of 64-byte block size.

CLASS PARAMETER TIMINGS

CPU READ/WRITE CYCLE 2
BUS WRITE FOR INVALIDATE TRANSACTION 5

MEMORY-TO-CACHE READ-BLOCK TRANSACTION 72
CACHE-TO-CACHE READ-BLOCK TRANSACTION 16

UPDATE-BLOCK TRANSACTION 10

This paper is mainly concerned in evaluating the effects of process migration on
the performance. The performance is affected by the cache misses (which essentially
contribute to determine the mean memory access time) and the bus-traffic (which
affects the miss cost). In the case of MESI protocol, bus traffic is due to the following
transactions: read-block transactions (essentially due to the misses), write-for-
invalidate transactions and update transactions. Update transactions are only a
neglectable part of the bus-traffic and they do not influence greatly our analysis. The
rest of the traffic is due to classical misses (sum of cold and replacement misses) and
coherence traffic, constituted of Invalidation Misses and write-for-invalidate
transactions.

Process migration affects the miss rate, since a migrating process has to regenerate
its working set on a new processor, while it is destroying the one of the other
processes. Moreover, process migration affects the coherence traffic, since it
generates passive sharing: private data blocks of a process can become resident in
multiple cache and generate useless coherence-related overhead [16]. Thus, our
evaluation includes the analysis of both the miss rate and the coherence traffic.

We first analyze the miss rate (Figure 1) when cache size and number of ways are
varied in the case of four processors. As expected, invalidation miss (i.e. true and
false sharing miss, both due to kernel and user) increases with larger cache sizes.
Nevertheless, the total miss rate decreases significantly as the cache size is increased
up to 2M bytes, and in the case of more ways. For cache sizes above 512K bytes the
difference between 2 and 4 ways becomes neglectable. In Figure 2, we detail the
invalidation misses of Figure 1. Invalidation misses are basically due to the kernel,
and in that case, false sharing is the main source of this overhead.



Cache Size / Number of Ways

0

0.2

0.4

0.6

0.8

1

1.2
32

K
/1

32
K

/2

32
K

/4

64
K

/1

64
K

/2

64
K

/4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

Other Miss

Invalidation MissMiss Rate (%)

Cache Size / Number of Ways

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

32
K

/1

32
K

/2

32
K

/4

64
K

/1

64
K

/2

64
K

/4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

False Sharing (Kernel)

True Sharing (Kernel)

True & False Sharing (User)Miss Rate (%)

Fig. 1. Miss rate versus cache size (32K bytes, 64K
bytes, 128K bytes, 256K bytes, 512K bytes, 1M bytes, 2M
bytes), and number of ways (1, 2, 4). In this experiment,
we had a 4-processors configuration, and random
scheduling policy. "Other Miss" includes cold miss,
capacity miss and replacement miss. Miss rate decreases
while invalidation miss (i.e. the sum of false sharing miss
and true sharing miss) increases with large cache size and
more associativity.

Fig. 2. Detail of the invalidation miss versus cache size
(32K bytes, 64K bytes, 128K bytes, 256K bytes, 512K
bytes, 1M bytes, 2M bytes), and number of ways (1, 2, 4),
for a 4-processor configuration with a random scheduling
policy. Invalidation misses are basically due to the kernel
and false sharing is the main source of overhead.

False sharing occurs when data are used in exclusive way by different processes,
and those data become physically shared. This happens when data are improperly
aligned, i.e. when different data objects are placed into the same block. False sharing
can be eliminated either by using special coherence protocols [24], or properly
allocating the involved shared data structures [12]. This latter solution seems more
suitable for our case study, since the detected false sharing is mainly due to kernel,
which is a completely known part of the system at design time. Invalidation miss rate
is significant for large cache sizes, whilst is neglectable for small cache sizes.
Therefore, for cache sizes above 256K bytes, our results indicate that the kernel of
Web-Server should be designed according to the above techniques, in order to avoid
false sharing effects.

Cache Size /Number of Ways / Scheduling

0

0.1

0.2

0.3

0.4

0.5

0.6

25
6K

/1
/R

an
do

m

25
6K

/2
/R

an
do

m

25
6K

/4
/R

an
do

m

25
6K

/1
/A

ffi
ni

ty

25
6K

/2
/A

ffi
ni

ty

25
6K

/4
/A

ffi
ni

ty

51
2K

/1
/R

an
do

m

51
2K

/2
/R

an
do

m

51
2K

/4
/R

an
do

m

51
2K

/1
/A

ffi
ni

ty

51
2K

/2
/A

ffi
ni

ty

51
2K

/4
/A

ffi
ni

ty

1M
/1

/R
an

do
m

1M
/2

/R
an

do
m

1M
/4

/R
an

do
m

1M
/1

/A
ffi

ni
ty

1M
/2

/A
ffi

ni
ty

1M
/4

/A
ffi

ni
ty

Other Miss (Kernel & User)
False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)Miss Rate (%)

Cache Size /Number of Ways / Scheduling

0

0.1

0.2

0.3

0.4

0.5

0.6

25
6K

/1
/R

an
do

m

25
6K

/2
/R

an
do

m

25
6K

/4
/R

an
do

m

25
6K

/1
/A

ffi
ni

ty

25
6K

/2
/A

ffi
ni

ty

25
6K

/4
/A

ffi
ni

ty

51
2K

/1
/R

an
do

m

51
2K

/2
/R

an
do

m

51
2K

/4
/R

an
do

m

51
2K

/1
/A

ffi
ni

ty

51
2K

/2
/A

ffi
ni

ty

51
2K

/4
/A

ffi
ni

ty

1M
/1

/R
an

do
m

1M
/2

/R
an

do
m

1M
/4

/R
an

do
m

1M
/1

/a
ffi

ni
ty

1M
/2

/A
ffi

ni
ty

1M
/4

/A
ffi

ni
ty

Other Miss (Kernel & User)
False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)Miss Rate (%)

Fig. 3. Breakdown of miss rate versus cache sizes (256K
bytes, 512K bytes, 1M bytes), number of ways (1, 2, 4),
and scheduling policy (random, affinity), for a 4-processor
configuration. Invalidation misses, and in particular, false
sharing misses, increase in the 16-processor configuration.

Fig. 4. Breakdown of miss rate versus cache sizes (256K
bytes, 512K bytes, 1M bytes), number of ways (1, 2, 4), and
scheduling policy (random, affinity), for the 16-processor
configuration.



To highlight the effects of process migration on miss rate we varied the scheduling
policy (random and cache affinity). Figures 3 and 4 investigate the effects in the case
of 4 processor and 16 processors, respectively. Cache affinity mainly causes a
reduction of the "other misses". In the 4-processor case the benefit is higher than in
the 16-processor case, due to a larger number of processes compared to the number of
processors. Indeed, in this condition, there is a larger number of ready-to-execute
processes, so that we have a high probability that a process can execute its time-slice
on the last-assigned processor. Thus, cache affinity seems to be not so effective for
high-end machines. Comparing Figures 3 and 4, we also notice that in the case of 16
processors the miss rate is higher, as we expected, due to the presence of more copies
of the same block. This is caused by the larger number of processors (and caches).

Cache Size / Number of Ways

0

0.1

0.2

0.3

0.4

0.5

32
K

/1

32
K

/2

32
K

/4

64
K

/1

64
K

/2

64
K

/4

12
8K

/1

12
8K

/2

12
8K

/4

25
6K

/1

25
6K

/2

25
6K

/4

51
2K

/1

51
2K

/2

51
2K

/4

1M
/1

1M
/2

1M
/4

2M
/1

2M
/2

2M
/4

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Cache Size / Number of Ways / Number of Processors

0

0.1

0.2

0.3

0.4

0.5

25
6K

/1
/4

25
6K

/2
/4

25
6K

/4
/4

25
6K

/1
/1

6

25
6K

/2
/1

6

25
6K

/4
/1

6

51
2K

/1
/4

51
2K

/2
/4

51
2K

/4
/4

51
2K

/1
/1

6

51
2K

/2
/1

6

51
2K

/4
/1

6

1M
/1

/4

1M
/2

/4

1M
/4

/4

1M
/1

/1
6

1M
/2

/1
6

1M
/4

/1
6

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Fig. 5. Number of coherence transactions of MESI versus
cache size (32K bytes, 64K bytes, 128K bytes, 256K bytes,
512K bytes, 1M bytes, 2M bytes) and number of ways (1,
2, 4), for 4-processor configuration and a random
scheduling policy. The decrease of passive sharing
transactions with the associativity is due to the reduction of
passively shared copies produced by the write-for-
invalidate transactions. That effect is more evident for
small cache sizes.

Fig. 6. Number of coherence transactions (write-for-
invalidate transactions) versus cache size (256K bytes,
512K bytes, 1M bytes), number of processors (4, 16), and
number of ways (1, 2, 4), for a random scheduling policy.
There is an increase in each component of this overhead in
the high-end (16 processor) configuration.

As observed above, cache misses produce a relevant traffic of read-block
transactions on the bus. Thus, the graphs in Figures 1, 3, 4, can be read as the number
of read-block transactions per 100 memory references. The most significant part of
the rest of transactions is due to coherence transactions (e.g. write-for-invalidate
transactions, in the case of MESI). Figure 5 and 6 show such coherence transactions
when cache size, ways, and number of processors is varied. In order to allow the
comparison between read-block and write-for-invalidate traffic, we used the same
metric for the two quantities: number of bus transactions generated by 100
references.

As for the overhead produced by shared data accesses, the behavior seen in the
previous figures is confirmed: kernel related overhead is more consistent than user-
related overhead and false sharing dominates it. However, user accesses also exhibit a
noticeable amount of passive sharing, produced by private data as a consequence of
process migration. Passive sharing overhead decreases with larger cache sizes and
with a higher number of ways. This non-intuitive result is more evident in the case of
small caches, and is a consequence of two competing factors. On one hand, there is an



increase of passive shared copies due to their longer lifetime. This is produced by the
increase of cache size, or set-associativity. On the other, MESI invalidates remote
copies on every write-miss, thus reducing the passively shared copies.

Passive sharing increases when switching from the 4- to the 16-processor
configuration (Figure 6). As it happens for false sharing, also passive sharing is a
"useless" sharing, since it is consequence of migration and it is not caused by accesses
to active shared data.

We considered three different techniques that could reduce passive sharing: two
are based on coherence protocol (PSCR [9], and AMSD [19], [4]), and one is based
on an affinity scheduling algorithm [18]. AMSD is our acronym, which stands for
Adaptive Migratory Sharing Detection. Migratory sharing is characterized by the
exclusive use of data for a long time interval. Typically, the control over these data
migrates from one process to another. The protocol identifies migratory-shared data
dynamically in order to reduce the cost of moving them. The implementation relies on
an extension of a common MESI protocol. Coherence traffic is again due to write-for-
invalidate transactions and invalidation transactions.

Cache Size / Scheduling / Coherence Protocol

0

0.1

0.2

0.3

0.4

0.5

25
6K

/R
an

do
m

/A
M

S
D

25
6K

/R
an

do
m

/M
E

S
I

25
6K

/R
an

do
m

/P
S

C
R

25
6K

/A
ffi

ni
ty

/A
M

S
D

25
6K

/A
ffi

ni
ty

/M
E

S
I

25
6K

/A
ffi

ni
ty

/P
S

C
R

51
2K

/R
an

do
m

/A
M

S
D

51
2K

/R
an

do
m

/M
E

S
I

51
2K

/R
an

do
m

/P
S

C
R

51
2K

/A
ffi

ni
ty

/A
M

S
D

51
2K

/A
ffi

ni
ty

/M
E

S
I

51
2K

/A
ffi

ni
ty

/P
S

C
R

1M
/R

an
do

m
/A

M
S

D

1M
/R

an
do

m
/M

E
S

I

1M
/R

an
do

m
/P

S
C

R

1M
/A

ffi
ni

ty
/A

M
S

D

1M
/A

ffi
ni

ty
/M

E
S

I

1M
/A

ffi
ni

ty
/P

S
C

R

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Cache Size / Scheduling / Coherence Protocol

0

0.1

0.2

0.3

0.4

0.5

25
6K

/R
an

do
m

/A
M

S
D

25
6K

/R
an

do
m

/M
E

S
I

25
6K

/R
an

do
m

/P
S

C
R

25
6K

/A
ffi

ni
ty

/A
M

S
D

25
6K

/A
ffi

ni
ty

/M
E

S
I

25
6K

/A
ffi

ni
ty

/P
S

C
R

51
2K

/R
an

do
m

/A
M

S
D

51
2K

/R
an

do
m

/M
E

S
I

51
2K

/R
an

do
m

/P
S

C
R

51
2K

/A
ffi

ni
ty

/A
M

S
D

51
2K

/A
ffi

ni
ty

/M
E

S
I

51
2K

/A
ffi

ni
ty

/P
S

C
R

1M
/R

an
do

m
/A

M
S

D

1M
/R

an
do

m
/M

E
S

I

1M
/R

an
do

m
/P

S
C

R

1M
/A

ffi
ni

ty
/A

M
S

D

1M
/A

ffi
ni

ty
/M

E
S

I

1M
/A

ffi
ni

ty
/P

S
C

R

False Sharing (Kernel)
True Sharing (Kernel)
True & False Sharing (User)
Passive Sharing (User)

Number of Coherence Transactions
per 100 Memory References

Fig. 7. Number of coherence transactions of versus cache
size (256K bytes, 512K bytes, 1M bytes), scheduling
algorithm (random, affinity), coherence protocol (MESI,
PSCR, AMSD). Data assume 4 processors and a two-way
set associative cache. Both AMSD and PSCR are effective
in reducing or eliminating passive sharing overhead.

Fig. 8. Number of coherence transactions versus cache
size (256K bytes, 512K bytes, 1M bytes), scheduling
algorithm (random, affinity), and coherence protocol
(AMSD, PSCR, MESI). Data assume 16 processors and a
two-way set associative cache. The affinity scheduling
produces only a slightly reduction of passive sharing.

PSCR (Passive Shared Copy Removal) adopts a selective invalidation for the
private data, and uses the write-update scheme for the actively shared data. A cached
copy belonging to a process private area is invalidated locally as soon as another
processor fetches the same block.

In the case of four processors (Figure 7), the adoption of AMSD causes a reduction
of passive, true, and false sharing transactions compared to the MESI case. PSCR
eliminates the transactions due to passive sharing, but causes a higher number of them
in the other kinds of sharing, due to the broadcast nature of the protocol. Cache
affinity technique also reduces passive sharing transactions, so it does not improve
PSCR performance. In the case of 16 processors (Figure 8), we have the same effects
for the number of transactions, except in the case of affinity. Indeed, since the number
of processors is getting closer to the number of processes, the affinity scheduling is
not always applicable. The scheduler is forced to allocate a ready process on a
different available processor.



Figure 9 also considers the cost of transactions combining the effects on
performance in a single figure, the Global System Power (i.e. the sum of processor
utilization [9]). Again, we varied the cache size, the protocol, the scheduling policy,
and the number of processors. In the case of four processors, all the three techniques
do not produce a sensible effect on performance. The situation is very different in the
case of sixteen processors. In that case PSCR and AMSD allow much better
performance than MESI. As shown in Figure 10 (and 8) this is due to a reduction of
the miss rate for PSCR and to a reduction of coherence transactions for AMSD.

Cache Size / Coherence Protocol / Number of Processors

0

2

4

6

8

10

12

25
6K

/A
M

S
D

/4

25
6K

/M
E

S
I/4

25
6K

/P
S

C
R

/4

25
6K

/A
M

S
D

/1
6

25
6K

/M
E

S
I/1

6

25
6K

/P
S

C
R

/1
6

51
2K

/A
M

S
D

/4

51
2K

/M
E

S
I/4

51
2K

/P
S

C
R

/4

51
2K

/A
M

S
D

/1
6

51
2K

/M
E

S
I/1

6

51
2K

/P
S

C
R

/1
6

1M
/A

M
S

D
/4

1M
/M

E
S

I/4

1M
/P

S
C

R
/4

1M
/A

M
S

D
/1

6

1M
/M

E
S

I/1
6

1M
/P

S
C

R
/1

6

Random

AffinityGlobal System Power

Cache Size / Scheduling / Coherence Protocol

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

25
6K

/R
an

do
m

/A
M

S
D

25
6K

/R
an

do
m

/M
E

S
I

25
6K

/R
an

do
m

/P
S

C
R

25
6K

/A
ffi

ni
ty

/A
M

S
D

25
6K

/A
ffi

ni
ty

/M
E

S
I

25
6K

/A
ffi

ni
ty

/P
S

C
R

51
2K

/R
an

do
m

/A
M

S
D

51
2K

/R
an

do
m

/M
E

S
I

51
2K

/R
an

do
m

/P
S

C
R

51
2K

/A
ffi

ni
ty

/A
M

S
D

51
2K

/A
ffi

ni
ty

/M
E

S
I

51
2K

/A
ffi

ni
ty

/P
S

C
R

1M
/R

an
do

m
/A

M
S

D

1M
/R

an
do

m
/M

E
S

I

1M
/R

an
do

m
/P

S
C

R

1M
/A

ffi
ni

ty
/A

M
S

D

1M
/A

ffi
ni

ty
/M

E
S

I

1M
/A

ffi
ni

ty
/P

S
C

R

Other Miss

Invalidation Miss Miss Rate (%)

Fig. 9. Global System Power versus cache size (256K
bytes, 512K bytes, 1M bytes), coherence protocol (AMSD,
PSCR, MESI), and number of processors (4, 16) for two
scheduling policy (random, affinity). Data assume a two
way set associative cache. Global System Power is the sum
of processor utilizations. In all cases PSCR and AMSD
show better processor utilization than MESI.

Fig. 10. Miss Rate versus cache size (256K bytes, 512K
bytes, 1M bytes), scheduling policy (random, affinity), and
coherence protocol (AMSD, PSCR, MESI). Data assume a
4-processor configuration, and a two way set associative
cache. The miss rate is almost the same for MESI and
AMSD, even if their miss component actually varies. PSCR
allows a much lower miss rate compared to the other
protocols’ due to the absence of the invalidation miss.

5 Conclusions

In this paper we characterized the number and type of transactions induced on the
shared-bus of a shared-memory multiprocessors used as a Web-Server machine. Our
workload has been set up by tracing a combined workload made of an HTTP server
(Apache), PostgreSQL DB-server resolving TPC-D benchmark queries, and typical
UNIX shell commands. The analysis has been carried out with trace-driven
simulation, and by considering not only user references, but also the most influencing
kernel activities. The low usage of shared memory in the user space causes most of
the data sharing to happen in the kernel space. The larger part of this sharing has
resulted to be due to false sharing, and secondly to passive sharing. To eliminate false
sharing, we suggest the redesign of kernel structures. We put into evidence how the
MESI protocol is not capable of treating passive sharing, that is the sharing generated
on private data as a consequence of process migration. These facts indicate that
margins to improve MESI protocol still exist. The use of affinity scheduling
algorithms determines only a partial reduction of passive sharing and this technique
does not adapt to all load conditions. Ad hoc protocols, like PSCR and AMSD, better
reduce the main causes of overhead and allow better performance than MESI.



References

1. A. Agarwal and A. Gupta, “Memory Reference Characteristics of Multiprocessor Applications under
Mach”. Proc. ACM Sigmetrics, Santa Fe, NM, pp. 215-225, May 1998.

2. M. Baentsch, L. Baum, and G. Molter, “Enhancing the Web’s Infrastructure: From Caching to
Replication”. Internet Computing, vol. 1, no. 2, pp. 18-27, Mar.-Apr. 1997.

3. L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory System Characterization of Commercial
Workloads”. Proc. of the 25th Intl. Symp. on Computer Architecture, pp. 3-14, June 1998.

4. A. L. Cox and R. J. Fowler, "Adaptive Cache Coherency for Detecting Migratory Shared Data,'' Proc.
20th Intl. Symp. on Computer Architecture, San Diego, California, pp. 98-108, May 1993.

5. J. Edwards, “The changing Face of Freeware”. IEEE Computer, Vol. 31, N. 10, pp 11-13, Oct. 1998.
6. K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance Evaluation of Memory Consistency Models

for Shared-Memory Multiprocessors”, Proc. of the 4th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Santa Clara, California, pp. 245-357, Apr. 1991.

7. R. Giorgi, C. Prete, G. Prina, L. Ricciardi, “A Hybrid Approach to Trace Generation for Performance
Evaluation of Shared-Bus Multiprocessors”. Proc. 22nd EuroMicro Intl. Conf., Prague, pp. 207-241,
September 1996.

8. R. Giorgi, C. A. Prete, G. Prina, L. Ricciardi, “Trace Factory: a Workload Generation Environment for
Trace-Driven Simulation of Shared-Bus Multiprocessor”. IEEE Concurrency, 5(4), pp. 54-68, Oct-Dec
1997.

9. R. Giorgi, C. A. Prete, “PSCR: A Coherence Protocol for Eliminating Passive Sharing in Shared-Bus
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and Distributed Systems, vol. 10, n.
7, pp. 742-763, July 1999.

10. J. Hennessy and D.A. Petterson, Computer Architecture: a Quantitative Approach, 2nd edition. Morgan
Kaufmann Pablishers, San francisco, CA, 1996.

11. R. L. Hyde and B. D. Fleisch, “An Analysis of Degenerate Sharing and False Coherence”. Journal of
Parallel and Distributed Computing, 34(2), pp. 183-195, May 1996.

12. T. E. Jeremiassen and S. J. Eggers, “Reducing False Sharing on Shared Memory Multiprocessors
through Compile Time Data Transformations”, ACM SIGPLAN Notice, 30(8), pp.179-188, Aug. 1995.

13. C. A. Prete, "A new solution of coherence protocol for tightly coupled multiprocessor systems,''
Microprocessing and Microprogramming, vol. 30, no. 1-5, pp. 207-214, 1990.

14. C. A. Prete, "RST Cache Memory Design for a Tightly Coupled Multiprocessor System,'' IEEE Micro,
vol. 11, no. 2, pp. 16-19, 40-52, Apr. 1991.

15. C. A. Prete, G. Prina, and L. Ricciardi, “A Trace Driven Simulator for Performance Evaluation of
Cache-Based Multiprocessor System”. IEEE Transactions on Parallel and Distributed Systems, vol. 6
(9), pp. 915-929, September 1995

16. C. A. Prete, G. Prina, R. Giorgi, and L. Ricciardi, “Some Considerations About Passive Sharing in
Shared-Memory Multiprocessors”. IEEE TCCA Newsletter, pp.34-40, Mar. 1997.

17. D. Robinson and the Apache Group, APACHE – An HTTP Server, Reference Manual, 1995. .
18. M. S. Squillante, D. E. Lazowska, “Using Processor-Cache Affinity Information in Shared-Memory

Multiprocessor Scheduling”. IEEE Transactions on Parallel and Distributed Systems, vol. 4 (2), pp.
131-143, February 1993.

19. P. Stenstrom, M. Brorsson, and L. Sandberg, “An Adaptive Cache Coherence Protocol Optimezed for
Migratory Sharing”. Proc. of the 20th Intl. Symp. on Computer Architecture. San Diego, CA, May 1993.

20. C. B. Stunkel, B. Janssens, and W. K. Fuchs, "Address Tracing for Parallel Machines,'' IEEE Computer,
vol. 24, no. 1, pp. 31-45, Jan. 1991.

21. P. Sweazey and A.J. Smith, "A Class of Compatible Cache Consistency Protocols and Their Support by
the IEEE Futurebus''. Proc. of the 13th Intl. Symp. on Computer Architecture, pp. 414-423, June 1986.

22. M. Tomasevic and V. Milutinovic, The Cache Coherence Problem in Shared-Memory Multiprocessors
–Hardware Solutions. IEEE Computer Society Press, Los Alamitos, CA, April 1993.

23. M. Tomasevic and V. Milutinovic, "Hardware Approaches to Cache Coherence in Shared-Memory
Multiprocessors''. IEEE Micro, vol. 14, no. 5, pp. 52-59, Oct. 1994 and vol. 14, no. 6, 61-66, Dec. 1994.

24. M. Tomasevic and V. Milutinovic, “The word-invalidate cache coherence protocol”, Microprocessors
and Microsystems, pp. 3-16, vol. 20, Mar. 1996.

25. J. Torrellas, M. S. Lam, and J.L. Hennessy, “False Sharing and Spatial Locality in Multiprocessor
Caches”. IEEE Transactions on Computer, vol. 43, n. 6, pp. 651-663, June 1994.

26. Transaction Processing Performance Council, TPC Benchmark D Standard Specification. Dec 1995.
27. P. Trancoso, J. L. Larriba-Pey, Z. Zhang, and J. Torrellas, “The Memory Performance of DSS

Commercial Workloads in Shared-Memory Multiprocessors”. Proc. of the 3rd Intl. Symp. on High
Performance Computer Architecture, Feb 1997.

28. R. A. Uhlig and T. N. Mudge, "Trace-Driven Memory Simulation: a survey''. ACM Computing Surveys,
pp. 128-170, June 1997.

29. A. yu and J. Chen, The POSTGRES95 User Manual. Computer science Div., dept of EECS, University
of California at Berkeley, July 1995.


