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Abstract 
 
Embedded systems are using more extensively multi-core chips to reach high 
performance goals. While current systems contain only a few cores, present trends and 
commercial/research roadmaps foresee that in a near future many cores will be 
integrated on the same chip to achieve the best tradeoff between power consumption 
and performance. At the same time, centralized designs are progressively abandoned in 
favour of more modular and scalable approaches that address explicitly wire delay 
problem and aim to exploit application parallelism. Such designs are often referred as 
tiled architectures. Here we present our idea how the tiled paradigm can be applied on 
the SDF architecture.  
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1 Introduction and motivation 
 
The main reason for creating tiled architectures is to achieve better scalability than current 
modern Chip Multiprocessors, while addressing wire-delay [1] [2] [3]. One of the main 
limitations to scalability is wire delay. In the recent past there were several proposals for 
tiled architectures, such as: Raw [4], Smart Memories [5], Synchroscalar [6], TRIPS [7], and 
WaveScalar [8]. These proposals are different in terms of number and type of tiles, 
computational power of processing elements, memory organization, interconnection 
network and programming model.  
Our proposal is based on the SDF architecture [9] [10]. SDF exploits a simple paradigm 
that is based on dataflow and multithreading. Program is partitioned into non-blocking 
execution threads and all memory accesses are decoupled from program execution. Each 
thread is partitioned into preload phase (data that is needed in execution is fetched into 
the local registers), execution phase (thread is executed without any memory access) and 
post-store phase (results are stored back into the memory). In this way, decoupling 
memory access from execution is achieved. There are two pipeline types in the 
architecture, one for preload and post-store thread phases (synchronization pipeline) and 
one for execution phase (execution pipeline).  
We have performed some tests in order to demonstrate scaling possibilities of the SDF 
with large number of pipelines, and used two hand-coded benchmarks for that: bit-count 
from MiBench and radix sort from SPLASH2. They showed that when working with up to 
256 pipelines, SDF can achieve almost linear scaling (figure 1). The purpose of these 
experiments was to see if limitations to scalability were coming from the proposed 
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architecture or from the program. We found that both for Mibench-bitcnt and SPLASH2-
radix the proposed architecture can scale of a factor at least 100x.  
Saturation for bitcount occurs because the loop unrolling was done for 64 registers in a 
register set. If we have supposed bigger number of registers, even higher scalability could 
have been achieved. The scalability of radix sort algorithm can be improved by forking 
more threads for sorting and merging the array. In this case we forked 1024 threads, and 
saturation is reached for this number of pipeline pairs (it is almost linear up to 200, and 
above it’s not because there are prts of algorithm that can’t be parallelized).   

 
Figure 1.  -  Scalability of the SDF architecture (speedup is calculated by measuring the number of cycles needed for 

program execution) 
  

2 The proposal 
 
In the basic SDF architecture if we have a lot of pipelines, they can’t communicate with the 
memory all in one cycle. That is one of the reasons why we have to clusterize the resources 
in some way to exploit the parallel potential of the architecture, besides the classical wire-
delay problem. We propose a new tiled architecture based on the SDF architecture [11]. 
We want to have a lot of threads running in parallel, while keeping most of the data 
accesses to local resources, not the shared one. Programs can remain the same as in the 
basic SDF architecture.  
The whole chip is divided into clusters (figure 2). Every cluster is the same and can be 
considered as high level tile. Inside each cluster there are two (low level) tile types, one 
execution and one control. Control tile, we call it the Distributed Scheduler (DS), takes 
care of scheduling the threads onto relatively small group of execution tiles, and 
everything else is done in the execution tile. Control tile consists of Falloc Request Queue 
(FRQ) with all the threads that wait to be assigned for execution onto some tile, Free 
Frame Table (FFT) with the number of available frames in each execution tile of the cluster 
and control logic. This tile can communicate also with other DS tiles, and eventually 
schedule some threads on the other clusters.  

Scalability of radix sort algorithm
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Execution tiles are similar to SDF processors, and they are able to completely execute 
threads. In each of the execution tiles there is a local scheduler, which takes care about 
continuation management once the thread is scheduled to the tile. Each thread has its 
dedicated frame (portion o f memory in execution tile) from which it reads the input data. 
New thread is created with the FALLOC instruction.  
 
 

 

 

 

 

 
 
 
 
 
 
 

Figure 2.  – Architecture 

3   How the machine works 
 
Here we briefly describe algorithms of both Distributed and Local schedulers.  
Distributed scheduler serves to forward messages from one processing element to another 
and to make decision where the new thread is going to be executed. When the DS receives 
new Falloc Request Message it  
looks up for available frames in the local cluster. If there is any, forwards the message to 
the chosen processing element. In all of them are busy, it puts the message in FRQ and 
send broadcast message to all other clusters. Message can be removed from the queue in 
two cases: 1) when Ffree Message arrives; this means that one of the local PEs has finished 
the execution of some thread and therefore has the resources available and 2) when 
Broadcast Response Message arrives from some other cluster that can execute new thread. 
In both cases DS just forwards the message from the FRQ. Other messages (Data Response 
Message and Falloc Response Message) are simply forwarded to their destination.  
Local scheduler operates in a simple manner. When it receives a Falloc Request Message, 
dedicates one free frame for the execution of the new thread and sends Falloc Response 
Message (that contains frame number of dedicated frame) to the processing element that 
issued this request. When Falloc Response Message is received it stores the frame number 
in the destination register of the Falloc instruction. Data Response Message is sent for each 
store instruction (can be grouped for the same destination) and upon the reception of this 
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message sent data is stored in the destination frame. If the destination frame is in the same 
processing element, no message is sent and the store is done locally. When all the data is 
stored, thread can start execution.  
Each tile in the architecture has its unique address which consists of pair (cluster id – CID, 
processing element id – PID). Also, each frame number in the architecture is unique, and 
defined by the triplet (CID, PID, frame number – FN). This simplifies the routing of the 
messages in the way that the messages are sent to the intra-cluster network just if CID 
field is different from the local CID.  

4   Future work 
Further research will proceed on several issues. One is to investigate the impact of the 
structure of the execution tiles regarding the number of pipelines inside, size of frame 
memory and other structures. Other is to search for optimal number, structure and usage 
of the messages in the system. Also, we will try to find the placement of elements inside a 
single core which minimizes used area.  
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