
Core Design and Scalability of Tiled SDF
Architecture

Roberto Giorgi, Zdravko Popovic

Dept. Of Information Engineering, University of Siena, Via Roma 56, 53100 Siena, Italy

Abstract

Embedded systems are using more extensively multi-core chips to reach high
performance goals. While current systems contain only a few cores, present trends and
commercial/research roadmaps foresee that in a near future many cores will be
integrated on the same chip to achieve the best tradeoff between power consumption
and performance. At the same time, centralized designs are progressively abandoned in
favour of more modular and scalable approaches that address explicitly wire delay
problem and aim to exploit application parallelism. Such designs are often referred as
tiled architectures. Here we present our idea how the tiled paradigm can be applied on
the SDF architecture.

KEYWORDS: multiprocessor architectures, scalability, wire delay, chip multiprocessors

1 Introduction and motivation

The main reason for creating tiled architectures is to achieve better scalability than current
modern Chip Multiprocessors, while addressing wire-delay [1] [2] [3]. One of the main
limitations to scalability is wire delay. In the recent past there were several proposals for
tiled architectures, such as: Raw [4], Smart Memories [5], Synchroscalar [6], TRIPS [7], and
WaveScalar [8]. These proposals are different in terms of number and type of tiles,
computational power of processing elements, memory organization, interconnection
network and programming model.
Our proposal is based on the SDF architecture [9] [10]. SDF exploits a simple paradigm
that is based on dataflow and multithreading. Program is partitioned into non-blocking
execution threads and all memory accesses are decoupled from program execution. Each
thread is partitioned into preload phase (data that is needed in execution is fetched into
the local registers), execution phase (thread is executed without any memory access) and
post-store phase (results are stored back into the memory). In this way, decoupling
memory access from execution is achieved. There are two pipeline types in the
architecture, one for preload and post-store thread phases (synchronization pipeline) and
one for execution phase (execution pipeline).
We have performed some tests in order to demonstrate scaling possibilities of the SDF
with large number of pipelines, and used two hand-coded benchmarks for that: bit-count
from MiBench and radix sort from SPLASH2. They showed that when working with up to
256 pipelines, SDF can achieve almost linear scaling (figure 1). The purpose of these
experiments was to see if limitations to scalability were coming from the proposed

roberto
Casella di testo
145

architecture or from the program. We found that both for Mibench-bitcnt and SPLASH2-
radix the proposed architecture can scale of a factor at least 100x.
Saturation for bitcount occurs because the loop unrolling was done for 64 registers in a
register set. If we have supposed bigger number of registers, even higher scalability could
have been achieved. The scalability of radix sort algorithm can be improved by forking
more threads for sorting and merging the array. In this case we forked 1024 threads, and
saturation is reached for this number of pipeline pairs (it is almost linear up to 200, and
above it’s not because there are prts of algorithm that can’t be parallelized).

Figure 1. - Scalability of the SDF architecture (speedup is calculated by measuring the number of cycles needed for

program execution)

2 The proposal

In the basic SDF architecture if we have a lot of pipelines, they can’t communicate with the
memory all in one cycle. That is one of the reasons why we have to clusterize the resources
in some way to exploit the parallel potential of the architecture, besides the classical wire-
delay problem. We propose a new tiled architecture based on the SDF architecture [11].
We want to have a lot of threads running in parallel, while keeping most of the data
accesses to local resources, not the shared one. Programs can remain the same as in the
basic SDF architecture.
The whole chip is divided into clusters (figure 2). Every cluster is the same and can be
considered as high level tile. Inside each cluster there are two (low level) tile types, one
execution and one control. Control tile, we call it the Distributed Scheduler (DS), takes
care of scheduling the threads onto relatively small group of execution tiles, and
everything else is done in the execution tile. Control tile consists of Falloc Request Queue
(FRQ) with all the threads that wait to be assigned for execution onto some tile, Free
Frame Table (FFT) with the number of available frames in each execution tile of the cluster
and control logic. This tile can communicate also with other DS tiles, and eventually
schedule some threads on the other clusters.

Scalability of radix sort algorithm

0

200

400

600

800

1000

1200

0 150 300 450 600 750 900 1050

Number of pipeline pairs

Sp
ee

du
p

ideal

radix sort for 1M keys

Scalability of bitcount program

0

50

100

150

200

250

0 50 100 150 200

Number of pipeline pairs

Sp
ee

du
p

ideal

bitcount for 200.000
iterations

roberto
Casella di testo
146

Execution tiles are similar to SDF processors, and they are able to completely execute
threads. In each of the execution tiles there is a local scheduler, which takes care about
continuation management once the thread is scheduled to the tile. Each thread has its
dedicated frame (portion o f memory in execution tile) from which it reads the input data.
New thread is created with the FALLOC instruction.

Figure 2. – Architecture

3 How the machine works

Here we briefly describe algorithms of both Distributed and Local schedulers.
Distributed scheduler serves to forward messages from one processing element to another
and to make decision where the new thread is going to be executed. When the DS receives
new Falloc Request Message it
looks up for available frames in the local cluster. If there is any, forwards the message to
the chosen processing element. In all of them are busy, it puts the message in FRQ and
send broadcast message to all other clusters. Message can be removed from the queue in
two cases: 1) when Ffree Message arrives; this means that one of the local PEs has finished
the execution of some thread and therefore has the resources available and 2) when
Broadcast Response Message arrives from some other cluster that can execute new thread.
In both cases DS just forwards the message from the FRQ. Other messages (Data Response
Message and Falloc Response Message) are simply forwarded to their destination.
Local scheduler operates in a simple manner. When it receives a Falloc Request Message,
dedicates one free frame for the execution of the new thread and sends Falloc Response
Message (that contains frame number of dedicated frame) to the processing element that
issued this request. When Falloc Response Message is received it stores the frame number
in the destination register of the Falloc instruction. Data Response Message is sent for each
store instruction (can be grouped for the same destination) and upon the reception of this

I$
LS
&

CC

LFM

LRF

PLP

I-Structure
memory

XP

PSP

FNPID
FFTControl

logic

falloc request queue

T1

T2

T1

T1

TSDF
up left – chip divided into clusters
middle left – cluster ogranization; T1 - execution core, T2 -
distributed scheduler
down left - control tile; FFT - free frames table, PID – proc element
id;
FN - free frame number
down right - single processing tile;
PLP - pre-load synchronization pipeline, XP - execution pipeline,
PSP - post-store synchronization pipeline,
LRF - local register file, LFM - local frame memory, LS&CC -
local scheduler & communication control

roberto
Casella di testo
147

message sent data is stored in the destination frame. If the destination frame is in the same
processing element, no message is sent and the store is done locally. When all the data is
stored, thread can start execution.
Each tile in the architecture has its unique address which consists of pair (cluster id – CID,
processing element id – PID). Also, each frame number in the architecture is unique, and
defined by the triplet (CID, PID, frame number – FN). This simplifies the routing of the
messages in the way that the messages are sent to the intra-cluster network just if CID
field is different from the local CID.

4 Future work
Further research will proceed on several issues. One is to investigate the impact of the
structure of the execution tiles regarding the number of pipelines inside, size of frame
memory and other structures. Other is to search for optimal number, structure and usage
of the messages in the system. Also, we will try to find the placement of elements inside a
single core which minimizes used area.

References

[1] R. Ho, K. Mai, M. Horowitz, “The future of wires”, Proceedings of the IEEE, Vol. 89, No.4, pp. 490--504, 2001.

[2] B. M. Beckmann, D. A. Wood, “Managing Wire Delay in Large Chip-Multiprocessor Caches,” Proceedings of the 37th annual

IEEE/ACM International Symposium on Microarchitecture, pp. 319-330, 2004.

[3] S.W. Keckler, Doug Burger, C.R. Moore, R. Nagarajan, K. Sankaralingam, V. Agarwal, M.S. Hrishikesh, N. Ranganathan, P.

Shivakumar, "A Wire-Delay Scalable Microprocessor Architecture for High Performance Systems," International Solid-State Circuits

Conference (ISSCC), pp. 1068-1069, February, 2003.

[4] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffmann, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf,

M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, A. Agarwal, “The Raw Microprocessor: A Computational Fabric for Software

Circuits and General Purpose Programs,“ IEEE Micro vol.22 Issue 2, pp. 25-35, Mar/Apr 2002.

[5] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, M. Horowitz, “Smart Memories: A Modular Reconfigurable Architecture,” 27th Int’l

Symp. on Computer Architecture, pp. 161-171, ACM Press, June 2000.

[6] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czemikowski, L. W. Jones IV, D. Franklin, V. Akella, F. T. Chong, “Synchroscalar: A

Multiple Clock Domain, Power-aware, Tile-based Embedded Processor,” 31st Int’l Symp. on Computer Architecture, pp. 150-161. IEEE

CS, June 2004.

[7] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, C. R. Moore, “Exploiting ILP, TLP and DLP with the

Polymorphous TRIPS Architecture,” 30th Int’l Symp. on Computer Architecture, pp. 422-433. ACM Press, June 2003.

[8] S. Swanson, K. Michelson, A. Schwerin, M. Oskin, “WaveScalar,” in the 36th Proc. Int’l Symp. on Microarchitecture (MICRO-36),

pp. 291-302. IEEE Press, Dec. 2003.

[9] Krishna M. Kavi, Roberto Giorgi, Joseph Arul, ”Scheduled Dataflow: Execution Paradigm, Architecture, and Performance

Evaluation,” IEEE Trans. Computers, ISSN:0018-9340, Los Alamitos, CA, USA, vol. 50, no. 8, Aug. 2001, pp. 834-846.

[10] K. Kavi, J. Arul, R. Giorgi, ”Execution and Cache Performance of the Scheduled Dataflow Architecture,” SPRINGER Journal of

Universal Computer Science, ISSN:0948-6968, New York, NY, (USA), vol. 6, no. 10, Oct. 2000, pp. 948-967, Special Issue on Multithreaded

Processors and Chip Multiprocessors.

[11] S. Bartolini, R. Giorgi, E. Martinelli, Z. Popovic, ”Recent Proposals for Tiled Architectures,” ACACES 2005 POSTER

ABSTRACTS, L'Aquila, Italy, July 2005, pp. 47-50.

roberto
Casella di testo
148

