
DTA-C: A Decoupled multi-Threaded Architecture for CMP Systems

Roberto Giorgi, Zdravko Popovic, Nikola Puzovic
Faculty of Information Engineering, University of Siena, Italy

{giorgi, popovic, puzovic} @ dii.unisi.it

Abstract

One way to exploit Thread Level Parallelism (TLP)

is to use architectures that implement novel
multithreaded execution models, like Scheduled Data-
Flow (SDF). This latter model promises an elegant
decoupled and non-blocking execution of threads.
Here we extend that model in order to be used in
future scalable CMP systems where wire delay
imposes to partition the design.

In this paper we describe our approach and
experiment with different distributed schedulers,
different number of clusters and processors per cluster
to show good scalability of our architecture. We
describe our approach and present initial results on
system scalability and performance. We suggest design
choices to improve the scalability of the basic design.

1. Introduction

As the technology improvements have made
possible to place more than one processor on a chip,
single-Chip Multi-Processors (CMP) with many
processing elements have become reality [1].

The architecture we are introducing is based on the
Scheduled Data-Flow (SDF) execution paradigm [2]
[3]. SDF exploits simple yet powerful paradigm that is
based on coarse grained dataflow and multithreading.
Program is partitioned in non-blocking threads where
all memory accesses are decoupled from the execution.
Each thread is divided into three phases: pre-load
phase (where thread reads all data), execution phase
(where thread is executed without performing any
memory accesses) and post-store phase (where results
are written back).

Scheduled Dataflow Architecture (SDA) is the
original implementation of the SDF execution
paradigm. Basic SDA processing element contains
pipelines for thread execution, frame memory and the
logic to support the lifetime of the threads. Despite its
simplicity, original SDA faces several problems that

cause limitations to the usability of the architecture. In
SDA, each pipeline must be able to communicate with
local memory, register file and control logic in one
cycle, and this is a reasonable assumption as long as
we have a few pipelines in a processor. However, as
the number of pipelines grows, and with limitation
imposed by the wire delay problem, it becomes harder
for all components in the processor to communicate
with each other in one cycle, and this becomes the
limiting factor of the SDA scalability

Our main objective is to exploit the TLP but in
terms of decoupled access/execute, non-blocking
threads. We have expanded the SDF architecture in
order to make it scalable, and tried to improve the
scalability by clusterizing resources and balancing
workload among the processing cores.

The rest of the paper is organized as follows: First
we introduce the SDF execution paradigm in Section
2. In Section 3, we describe our idea, Decoupled
Threaded Architecture (DTA-C, where “c” stands for
clustered). Section 4 contains experimental results, and
in sections 5 and 6 we discuss future research and
present the conclusions.

2. Execution paradigm

In order to explain the execution paradigm, we are
going to use the example given in Figure 1. In this
example a program forks four threads. Thread 1
(TH_1) reads variables a, b and c from the input and
sends them to other threads. Threads TH_2 and TH_3
can execute in parallel because calculation of f(a, b)
and g(a, c) is independent while TH_4 needs the
results calculated by these two. In order to ensure that
any thread won’t start executing before all of its data is
ready, a synchronization count (SC) has been
associated to each of them. This synchronization
count contains the number of input data that thread
needs in order to run. In our example, TH_2 needs to
wait for a and b, so its synchronization count is 2.
When data is stored for a thread, synchronization count

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.27

263

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.27

263

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

is decremented and once it reaches zero that thread is
ready to execute.

input a
input b
input c

...
x = f(a, b)
...

...
y = g(a, c)
...

...
z = h(x, y, c)
...

a, b a, c

c

x
y

TH_2

TH_1

TH_3

TH_4

Inputs: a, b
SC = 2

Inputs: --
SC = 0

Inputs: a, c
SC = 2

Inputs: x, y, c
SC = 3

Figure 1. Example program in SDF.

For communicating data among threads, SDF

execution model uses frames. When a new thread is
created, the system assigns it with a fixed size frame
that can be written by other threads and read only by
the thread that it belongs to. In implementations of
SDF paradigm (SDA, DTA-C), a frame is a part of a
frame memory, which is a small on-chip memory.

As mentioned in the introduction, each thread in
SDF is separated into three phases: pre-load phase,
execution phase and post-store phase. In the pre-load
phase, data is read from the frame memory, shared data
is read from the main memory and stored into local
registers. In the execution phase, thread executes
without any memory accesses, and uses only the data
that are in the register file. When the computation is
finished, thread performs its post-store phase where it
writes data to other threads’ frames and writes data to
main memory if needed.

3. DTA-C description

DTA-C (Decoupled Threaded Architecture -
Clustered) is based on the execution paradigm of SDF.
DTA-C adds the concept clusterizing resources. Each
cluster in the architecture has the same structure and
can be considered as a high-level tile. Figure 2 shows
the overall DTA-C.

A cluster consists of one or more Processing
Elements (PEs) and a Distributed Scheduler Element
(DSE). The set of all DSEs constitutes the Distributed
Scheduler (DS). The amount of resources (in particular
the number of PEs) that can be placed in one cluster is
defined by the fact that we want all resources within a

cluster (e.g., PEs) to be accessible in one clock cycle.
This property of the cluster logically leads to the use of
a fast interconnection network inside the cluster (intra-
cluster network), and the use of a slower but more
complex network for connecting all clusters (inter-
cluster network). The actual amount of processing
elements that can fit into one cluster will depend on the
technology that is used.

Cluster Cluster

Cluster Cluster

Inter-cluster network

…

…

PE PE

Distributed Scheduler Element
(DSE)

Intra-cluster network

…

High-level view of the DTA-C
architecture.

Internal organization of one
cluster in DTA-C

Figure 2 Architecture organization.

Each processing element in the architecture has its

Unique Processing-element Identifier (UPI), which
consists of pair: cluster id – CID, processing element
id – PID. Also, each frame in the architecture has its
Unique Frame Identifier (UFI), which is defined by the
triplet: CID, PID, and frame number – FN. Here, CID
and PID are designating the cluster and processing
element where the frame resides, and FN is the number
of the frame in the local frame memory. The amount of
threads assigned to one PE is also limited by the fact
that the frames of all assigned threads are stored in the
local frame memory, which has a limited capacity.
When data is sent to a frame, stores are sent to the
inter-cluster network only if CID is different from the
CID of the sender. This simplifies the routing and
reduces bandwidth requirements (described in Section
3.2).

3.1 PE Architecture

Figure 3 shows the structure of a processing
element in DTA-C tile. Each processing element
contains pipelines, frame memory, register file and
local scheduler. There are two pipelines:
synchronization pipeline (SP) that is responsible for
executing pre-load and post-store phases and execution
pipeline (XP) that is responsible for the execution
phase of the thread. Both pipelines share the same
register set, so that thread can change pipelines without
context switching.

264264

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

The Local Scheduler (LS) is responsible for
communicating with other processors and clusters.
When we refer that a PE is communicating with
someone, it actually means that the communication is
done by the local scheduler of that PE. This is just to
avoid the confusion between local and distributed
scheduler. Local scheduler serves the requests for new
resources and for data communication (Section 3.2).
Frame memory is a fast word–addressable memory
that holds frames for the threads assigned to this
processor.

SP

XP

LSRF FM

Figure 3. The structure of the processing
element.

3.2 Scheduling

We have a two level scheduling: i) handled by the
Local Scheduler (LS) inside each PE and ii) handled
by the Distributed Scheduler Element (DSE) inside
each cluster.

The Distributed Scheduler Element (DSE) consists
of a list, that we call FFT (Free Frame Table), which
contains information about the number of available
frames in its cluster (ordered by the availability) and a
FALLOC Request Queue (FRQ), which accounts for
Frame Allocation (FALLOC) requests. The Local
Scheduler and the Distributed Scheduler are
responsible for assigning resources (i.e., continuations
and frames) to the threads and for keeping track of
processor usage in order to balance the load in the
system. The main control data is packed into (what we
call) a Continuation. The Continuation is a placeholder
for the information needed to handle the lifetime of the
thread, similar to [3], and a frame is the storage for the
data needed for thread execution. The requests for
obtaining new frames for the threads are sent from the
PEs to the DSE and data and control information can
be exchanged even between PEs, if they are in the
same cluster, otherwise it must be done through the

DSE that can do the inter-cluster routing. The DSE
serves requests by sending the Continuation containing
the information about the frame pointer of the assigned
frame. The communication among PEs in the same
cluster, PEs and their DSE and among DSEs of
different clusters is all done via messages.

There are six types of messages: FallocRequest
(request for the new frame allocation by sending the
continuation), FallocResponse (response to frame
allocation sending the continuation with the frame
identifier assigned), FFree (request to release the
frame), Broadcast (availability request to other
clusters), BroadcastResponse (availability response)
and DataStore (sending data to other threads). All
messages except for DataStore are dealing with
resource assignment – creation and release of
continuations.

intra cluster
network

FALLOC
REQUEST

FREE

BROADCAST

BROADCAST
RESPONSE

fft lookup

FRQ

DISTRIBUTED SCHEDULER ELEMENT

inter cluster
network

update
fft

DATA
RESPONSE

available

busy

push

FALLOC
REQUEST

FALLOC
REQUEST

if (!empty) pop

FALLOC
REQUEST

FALLOC
RESPONSE

DATA
RESPONSE

FALLOC
RESPONSE

forward

if (!empty) pop

forward

1

2a

2b

3a

3b
4a

4b

Figure 4. Algorithm of Distributed Scheduler
Element – phases in the operation of DSE are

numbered from 1 to 4.

Sending, receiving and processing of messages are

done in schedulers, both local and distributed ones.
The Distributed Scheduler Element is forwarding
messages from one processing element to another and
makes decision about where the new thread is going to
be executed (Figure 4). When the DSE receives a new
FallocRequest message, it checks the availability list
for available frames in the local cluster. If there is any
that is available, it forwards the message to the
processing element that has the lowest number of
threads assigned to it (inside that cluster). If all of them
are busy and without any more available frames, it puts
the message in FRQ and sends a Broadcast message to
all the other clusters. Messages can be removed from
the queue in two cases: i) when Ffree message arrives;
this means that some thread has finished its execution
on one of the local PEs and therefore has execution

265265

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

resources available or ii) when BroadcastResponse
message arrives from some other cluster that can
execute new thread. In the first case, DSE just
forwards the message from the FRQ to the local PE
that sent Ffree message. In the second case the
message is forwarded to (remote) DSE of another
cluster, which then forwards the message to a PE in its
cluster. Other messages (DataStore message and
FallocResponse message) are simply forwarded to
their destination.

The Local Scheduler operates as described in
Figure 5. When it receives a FallocRequest message, it
dedicates one free frame for the execution of the new
thread and then sends a FallocResponse message to the
processing element that issued the request. When a
FallocResponse message is received, it means that a
threads’ continuation has a frame identifier assigned to
it, and a PE inside that cluster can continue the
execution. A DataStore message is sent for each
STORE instruction and, upon the reception of this
message, the related data is stored in the destination
frame. If multiple STOREs need to be sent to one
destination, we can group them into one DataStore
message. If the destination frame is in the same
processing element, no message is sent and the store is
done locally. When all the data for a thread is stored,
that thread can start execution (Synchronization Count
equal to zero).

pipelines

FALLOC

STORE

FREE

FALLOC
REQUEST

DATA
STORE

FREE

FALLOC
REQUEST

FALLOC
RESPONSE

network

group by
destination

wait for
all the data

LOCAL SCHEDULER

DATA
STORE

take new free frame

FALLOC
RESPONSE

write back frame number

start
thread

1

2

3

4

5 6

Figure 5. Algorithm of Local Scheduler –

phases in the operation of LS are numbered
from 1 to 6.

With this algorithm for allocating new frames, we
have introduced additional delay for frame allocation
(FALLOC) instructions that was not present in original
SDF architecture. This comes from the need to
distribute threads across many processors and to
achieve parallel execution. However, we try to
eliminate this delay by a technique which is described
in the next section.

3.3 Non-blocking frame assignment

Figure 6 shows the situation that occurs when a

request for a new thread is issued. On the left, we can
see that the pipeline executing current thread blocks
and waits for the response from the Distributed
Scheduler. In order to overcome this problem, we are
introducing two new tables that will reside in the local
scheduler - Map Table and Store Buffer (Figure 6 on
the right). When the request is sent to the DSE, the
processor continues the execution of the current thread
without stopping. Instead of a real frame pointer, it
receives a virtual frame pointer (VFP), which is unique
for each thread, and is generated locally by the
processor. At the same time, a new entry with
generated VFP is added in the map table. When the
response from scheduler arrives the map table entry
with corresponding VFP is updated with a real frame
pointer (a Unique Frame Identifier or UFI), and the
actual location of the frame is associated with the VFP.

Thread

new frame request

frame assigned
scheduler

ex
ec

ut
io

n
Thread

ex
ec

ut
io

n

Map Table

Store Buffer

new frame request

frame
assigned

send data for new thread

stores for
new thread

continue
immediately

scheduler

Blocking frame assignment Non-blocking frame assignment

waiting time

Figure 6. Non blocking resource assignment.

The only instructions that actually use a Unique

Frame Identifier are STORE instructions, which store
data to the frame of the new thread. Since execution
continues immediately after the request is issued, it
may happen that a STORE instruction executes before
the response has arrived. In that case, we put the VFP
of the new thread together with the frame offset and
data to be stored into the Store Buffer. When the
response arrives, we update the Map Table and
associate the newly received Unique Frame Identifier
to the appropriate VFP. In case that there are pending
STOREs in the Store Buffer, we map their VFP to the
real Unique Frame Identifier (only for the one that just
arrived) and send the data to the appropriate location.
In the other case, when a STORE occurs after the
response, we already have the real Unique Frame
Identifier for the new thread, so we can perform
mapping immediately and send the data to its location.

With this approach, processor is free to continue the
execution, while waiting for the frame response is

266266

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

done in parallel, so no blocking due to frame
assignment occurs during the execution of the thread.
Even in the case when response doesn’t arrive before
the thread finishes its execution, we don’t need to wait
for it and processor can take some other thread and
start to execute it. When the response arrives, all
pending stores in the Store Buffer will be resolved and
data will be sent to the appropriate frames. Of course,
if the Map Table becomes full, we will still suffer from
blocking, but the chances of that to happen are small
unless we have a huge network contention and a big
number of newly created threads at the same time. This
approach is evaluated in Section 4.3.

4. DTA-C Experiments

For the evaluation of DTA-C, we have developed a
cycle-accurate simulator in C++. This simulator
implements the DTA-C as described in the previous
section and uses the perfect memory model. Our initial
goal was to estimate the scalability and different
scheduling algorithms, so the assumption that the main
memory can be accessed in one cycle is acceptable for
this purpose.

Since compiler is still an open research issue, we
had a limited choice of benchmarks to work with. Our
analysis were performed with radix-sort (SPLASH2,
[4]) and bitcnt (MiBench, [5]), both of which were
hand-coded.

4.1 Scalabilty

Figure 7 shows the speedups (where the baseline is

the number of execution cycles on one processing
element) for radix-sort benchmark. Number of clusters
is represented on the x-axis, and speedup is on the y-
axis. In all the Figures, the number of Processing
Elements Per Cluster (PEPC in Figures 7, 8, 9, 10, 12)
is constant along one line, and number of clusters is
varied in order to demonstrate the scalability of the
architecture.

In this configuration, radix sort benchmark forks
512 threads that sort the data. Since the time to fork all
threads is significantly smaller then the execution time
of each of them, we can assume that all threads can run
at the same time (if there are enough processing
elements to execute them all). We can see from this
Figure that scaling is almost perfect (e.g., speedup of
57 for 64 processing elements, (i.e. 16 PEPC and 4
clusters).

Bitcnt benchmark exhibits slightly different
behavior. Running time of each forked thread (that
serves for counting) is comparable with the time

needed to fork all of the unrolled threads. In
comparison with radix sort, this benchmark has also
more pre-load/post-store communication, so network
bandwidth is a limiting factor here. Speedup for this
benchmark is shown in the Figure 8.

Speedup (radix sort benchmark)

1

10

100

1 2 4

Number of clusters

Sp
ee

du
p

1 PEPC 2 PEPC 4 PEPC 8 PEPC 16 PEPC

Figure 7. Scalability of radix-sort benchmark.
PEPC is the number of Processing Elements

Per Cluster.

Speedup (bitcnt benchmark)

1

10

100

1 2 4 8
Number of clusters

Sp
ee

du
p

1 PEPC 2 PEPC 4 PEPC 8 PEPC 16 PEPC

Figure 8: Scalability of the bitcnt benchmark.

It can be seen that speedups for the configuration

with 8 processing elements per cluster and the
configuration with 16 processing elements per cluster
are almost the same. This saturation occurs because
intra-cluster bus is not very large (128 bits wide) and
messages are transferred only at a rate of one at each
bus cycle. When we enable the intra-cluster network to
send two messages in one cycle (by using a double
issue bus) scalability improves.

Figure 9 compares the configurations with a double
issue bus (Double Speed - DS) and the configurations
with a baseline bus (Single Speed - SS). We can see
that when using faster interconnection, the architecture
scales well as we increase the number of Processing
Elements Per Cluster (PEPC) from 8 to 16. It can also
be seen that the configurations with faster network
perform much better then the ones with regular
network. The configuration with 8 processing elements
and a double issue bus is faster than the corresponding

267267

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

configuration with regular bus, and also faster than the
configuration with 16 Processing Elements Per Cluster
and a baseline bus.

Single Speed Bus vs Double Speed Bus (bitcnt benchmark)

0

10

20

30

40

1 2 4 8

Number of Clusters

Sp
ee

du
p

2 PEPC - SSB 8 PEPC - SSB 16 PEPC - SSB
2 PEPC - DSB 8 PEPC - DSB 16 PEPC - DSB

8 PEPC

16 PEPC

Figure 9. Scalability of bitcnt benchmark with

faster intra-cluster network.

4.2 Improving the scheduling

In order to determine the best scheduling algorithm

for the distributed scheduler, we have experimented
with several different scheduling algorithms.

The simple scheduling algorithm, originally
implemented in the architecture always tries to allocate
a new frame in the current cluster, and forwards the
request to the remote cluster only if there is a lack of
resources. However, this may not be an optimal
approach, because it doesn’t consider the dependencies
among the threads, thus we have considered (what we
call) ISA-helped scheduling as an alternative. This
approach is similar to a “coarse” level scheduling for
WaveScalar architecture [6], presented in [7].

The idea is that the program can give scheduling
hints to the hardware by using modified instructions
for new frame creation. One new instruction was
added to forces the Distributed Scheduler Element to
send a request for new frame to a remote cluster, while
in the case of a regular FALLOC instruction the
behavior remains the same (trying to serve the request
within the cluster where it originated). Hardware cost
of this solution is negligible – e.g., a single counter to
keep track of the next cluster that will serve the
request.

 Figure 10 shows the comparison between simple
and ISA-helped scheduling. We have modified the
bitcnt benchmark to force the forking of all threads
that execute one function to the same cluster (a
different cluster for each function if possible). In all
configurations, ISA-helped scheduling outperforms the
simple scheduling algorithm. With bigger number of
clusters, ISA-helped “affinity” scheduling achieves

better distribution in workload balance among clusters,
and outperforms the simple scheduling almost by a
factor of 2.

Simple vs ISA-helped scheduling (bitcnt benchmark)

Number of Clusters

SIMPLE Scheduling ISA-helped Scheduling

0

5

10

15

20

25

30

35

40

1 2 4 8

Sp
ee

du
p

8 PEPC

4 PEPC

1 PEPC

Figure 10. Simple vs. ISA-helped scheduling.

4.3 Non-blocking resource assignment

Figure 11 shows the comparison between the

blocking and non-blocking resource assignment.

Blocking vs non-blocking resource assignment
fib(15) benchmark

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8
Number of processors

Sp
ee

du
p

Blocking Non-blocking

Figure 11. Blocking vs non-blocking resource

assignment.

All results were normalized to the number of
execution cycles for the configuration with blocking
resource assignment (vertical value of 1), and the
number of processing element was varied. In order to
obtain these results, we have used double issue bus as
interconnection (to eliminate the saturation caused by
the network). Simple recursive version of the
Fibonacci(N) program was used (N=15). As the graph
shows, non-blocking approach is always faster, with
performance improvements ranging from 5.2% to
23.6%.

268268

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

4.4 Comparison with TMS320C6711

In order to compare the DTA-C with a real world

system, we have compared it with TMS320-C6711
(TMS) [8]. This processor is a VLIW with 6 ALUs (2
integer and 4 floating-point) and 2 multipliers. Figure
12 shows this comparison.

DTA-C vs TMS (bitcnt benchmark, 50000 iterations)

0

10

20

30

40

1 2 4

Number of Clusters

Sp
ee

du
p

1 PEPC 2 PEPC 4 PEPC VLIW

Figure 12. Comparison of DTA-C and TMS320-

C6711.

Since TMS has eight execution units, we have

compared it with DTA-C configurations that are the
most similar to it. Each configuration had up to 4
processing elements (total of 8 pipelines) distributed in
1, 2 or 4 clusters, and each of them used simple
scheduling and prefect memory. All configurations
outperform TMS by the factor ranging from 9 up to 35.
This comes from the fact that bitcnt benchmark for
DTA-C is hand-parallelized and a lot of TLP is
exposed in it while for TMS we used a TMS320C6000
C/C++ compiler. Another reason is that bitcnt is an
integer benchmark, and doesn’t use any of the
available floating-point units.

The configuration with only one cluster shows the
best performance because all communication is going
trough intra-cluster network. On the other hand,
configurations with more clusters are less efficient
because part of the communication needs to go trough
the slower inter-cluster network, but still, they are
better than TMS.

5. Related Research

Decoupled architectures have been studied for a
long time. Among the first decoupled processors was
Astronautics ZS-1 [9] processor that had separated
instructions into two streams, one for fixed-
point/memory address computation and other one for

floating point calculations, and two streams were
executed in parallel. More recently, several new
decoupled architectures have appeared. Speculative
Data-Driven Multithreading (DDMT) [10] is an
architecture that is based on decoupling principle. This
architecture identifies miss streams, i.e. streams of
instructions that are likely to cause cache misses and
executes them in a multithreaded fashion in order to
perform prefetching. HiDisc (Hierarchical Decoupled
Instruction Stream Computer) [11] is an architecture
that reduces memory latency by prefetching at both
hardware and software level. Prefetching is
accomplished by separating the instruction stream into
one for regular execution and one for memory
accesses.

The main difference between DTA-C and above
mentioned decoupled architectures is that DTA-C fully
exposes its programming model to the programmer
who can exploit the available TLP. Also, all threads in
DTA-C are explicitly separated into phases, and
decoupling of memory accesses is complete.

MLCA [12] is a paradigm for parallel architectures
that exploits parallelism at the task level using similar
techniques that are used in a modern superscalar
processors for exploiting ILP – register renaming and
out-of-order execution. Similar to DTA-C is that
implicitly this architecture uses dataflow at the task
level but the programming model is still sequential.

One of the possible solutions for CMP systems are
tiled architectures. Tiled architectures have some
number of tiles (e.g. resources like processing
elements, memory modules, register files, etc.) that are
replicated on the chip and connected via on-chip
network. Several recent proposals for CMPs are in fact
tiled architectures: RAW [13], TRIPS [14],
WaveScalar [6]. All of these architectures show good
scalability but they are different in terms of how do
they exploit the available parallelism in programs.

RAW architecture [12] is a multiprocessor
architecture that tries to overcome the wire delay
problem by using very simple in-order MIPS
processors as tiles. Since processing elements are small
and connected only to their neighbors, it is ensured that
all wires are shorter than the length or width of a tile.
This architecture is similar to DTA-C in sense that its
resource division is performed based on what can be
reached in one cycle, but it employs a conventional
programming model that may not be suitable for future
parallel systems and applications.

TRIPS [13] uses “medium size” tiling by allowing
several different types of tiles for processing elements,
memory, cache (instruction and data) and registers.
Some of the above mentioned tiles can be reconfigured
in order to exploit different types of parallelism. While

269269

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

DTA-C employs dataflow execution at the thread
level, and control flow-like execution inside the thread,
TRIPS does the opposite by employing control flow
execution at the thread level and dataflow execution
inside the thread.

WaveScalar [6] has a huge number of simple
processing elements, which communicate operands in
such a way to employ dataflow execution model. This
architecture employs real dataflow execution at the
instruction level, and unlike DTA-C doesn’t target
TLP.

6. Conclusions

DTA-C uses a paradigm that is based on a non-

blocking execution of threads and decoupling of
memory accesses. Since threads communicate in a
dataflow-like manner, this communication is used also
for the synchronization among the threads. In this way,
we are reducing the need for the use of regular
synchronization primitives inside the threads and
enable the non-blocking execution. Uniform tiles with
simple processing elements enable us to clusterize
resources in order to achieve better usage of the
available transistors on the chip and obtain good
scalability of the architecture.

With selected benchmarks from MiBench and
SPLASH-2 benchmark suites we have shown that the
architecture is scalable and identified the bottlenecks in
our architecture. We have shown that by increasing the
speed of the interconnection network, and by using
advanced scheduling algorithm (both of which were
identified as bottlenecks) we can increase the
scalability even further.

7. Acknowledgements

This work was supported by the European
Commission in the context of the SARC integrated
project #27648 (FP6).

References

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K.
Wilson, and K. Chang, "The case for a single-chip
multiprocessor," in Proceedings of the seventh international
conference on Architectural support for programming
languages and operating systems. Cambridge,
Massachusetts, United States: ACM Press, pp. 2-11, 1996.
[2] K. Kavi, J. Arul, and R. Giorgi, "Execution and
Cache Performance of the Scheduled Dataflow
Architecture," SPRINGER Journal of Universal Computer
Science, vol. 6, pp. 948-967, 2000.
[3] K. M. Kavi, R. Giorgi, and J. Arul, "Scheduled
Dataflow: Execution Paradigm, Architecture, and

Performance Evaluation," IEEE Transaction on Computers,
vol. 50, pp. 834-846, 2001.
[4] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, "The SPLASH-2 programs: characterization and
methodological considerations," in Proceedings of the 22nd
annual international symposium on Computer architecture.
S. Margherita Ligure, Italy: ACM Press, pp. 24-36, 1995.
[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown, "MiBench: A free,
commercially representative embedded benchmark suite," in
Proceedings of the Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop on - Volume 00: IEEE
Computer Society, pp. 3-14, 2001.
[6] S. Swanson, K. Michelson, A. Schwerin, and M.
Oskin, "WaveScalar," in Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture.
San Diego, CA, USA: IEEE Computer Society, pp. 291,
2003.
[7] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam,
A. Schwerin, M. Oskin, and S. J. Eggers, "Instruction
scheduling for a tiled dataflow architecture," in Proceedings
of the 12th international conference on Architectural support
for programming languages and operating systems. San
Jose, California, USA: ACM Press, pp. 141-150, 2006
[8] "Texas Instruments TMS320C6711 Datasheet."
[9] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D.
Klinger, C. M. Rozewski, D. L. Fowler, K. R. Scidmore, and
J. P. Laudon, "The Astronautics ZS-1 processor," in 1988.
ICCD '88., Proceedings of the 1988 IEEE International
Conference on Computer Design: VLSI in Computers and
Processors. Rye Brook, NY pp. 307-310, 1988
[10] A. Roth and G. S. Sohi, "Speculative Data-Driven
Multithreading," in Proceedings of the 7th International
Symposium on High-Performance Computer Architecture.
Monterrey, MEXICO: IEEE Computer Society, pp. 37, 2001.
[11] W. W. Ro, S. P. Crago, A. M. Despain, and J.-L.
Gaudiot, "Design and evaluation of a hierarchical decoupled
architecture," The Journal of Supercomputing, vol. 38, pp.
237-259, 2006.
[12] T. Abdelrahman, A. Abdelkhalek, U. Aydonat, D.
Capalija, D. Han, I. Matosevic, K. Stewart, F. Karim, and A.
Mellan, "The MLCA: A Solution Paradigm for Parallel
Programmable SoCs," in 2006 IEEE North-East Workshop
on Circuits and Systems: pp. 253, 2006
[13] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F.
Ghodrat, B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee,
W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V.
Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, "The
Raw Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs," IEEE Micro, vol.
22, pp. 25-35, 2002.
[14] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, D. Burger, S. W. Keckler, and C. R. Moore,
"Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture," in Proceedings of the 30th annual
international symposium on Computer architecture. San
Diego, California: ACM Press, pp. 422-433, 2003.

270270

Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on November 29, 2008 at 18:36 from IEEE Xplore. Restrictions apply.

