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Abstract 

 
One way to exploit Thread Level Parallelism (TLP) 

is to use architectures that implement novel 
multithreaded execution models, like Scheduled Data-
Flow (SDF). This latter model promises an elegant 
decoupled and non-blocking execution of threads. 
Here we extend that model in order to be used in 
future scalable CMP systems where wire delay 
imposes to partition the design. 

In this paper we describe our approach and 
experiment with different distributed schedulers, 
different number of clusters and processors per cluster 
to show good scalability of our architecture. We 
describe our approach and present initial results on 
system scalability and performance. We suggest design 
choices to improve the scalability of the basic design. 
 
1. Introduction 
 

As the technology improvements have made 
possible to place more than one processor on a chip, 
single-Chip Multi-Processors (CMP) with many 
processing elements have become reality [1].  

The architecture we are introducing is based on the 
Scheduled Data-Flow (SDF) execution paradigm [2] 
[3]. SDF exploits simple yet powerful paradigm that is 
based on coarse grained dataflow and multithreading. 
Program is partitioned in non-blocking threads where 
all memory accesses are decoupled from the execution. 
Each thread is divided into three phases: pre-load 
phase (where thread reads all data), execution phase 
(where thread is executed without performing any 
memory accesses) and post-store phase (where results 
are written back). 

Scheduled Dataflow Architecture (SDA) is the 
original implementation of the SDF execution 
paradigm. Basic SDA processing element contains 
pipelines for thread execution, frame memory and the 
logic to support the lifetime of the threads. Despite its 
simplicity, original SDA faces several problems that 

cause limitations to the usability of the architecture. In 
SDA, each pipeline must be able to communicate with 
local memory, register file and control logic in one 
cycle, and this is a reasonable assumption as long as 
we have a few pipelines in a processor. However, as 
the number of pipelines grows, and with limitation 
imposed by the wire delay problem, it becomes harder 
for all components in the processor to communicate 
with each other in one cycle, and this becomes the 
limiting factor of the SDA scalability  

Our main objective is to exploit the TLP but in 
terms of decoupled access/execute, non-blocking 
threads. We have expanded the SDF architecture in 
order to make it scalable, and tried to improve the 
scalability by clusterizing resources and balancing 
workload among the processing cores. 

The rest of the paper is organized as follows: First 
we introduce the SDF execution paradigm in Section 
2. In Section 3, we describe our idea, Decoupled 
Threaded Architecture (DTA-C, where “c” stands for 
clustered). Section 4 contains experimental results, and 
in sections 5 and 6 we discuss future research and 
present the conclusions. 

 
2. Execution paradigm 
 

In order to explain the execution paradigm, we are 
going to use the example given in Figure 1. In this 
example a program forks four threads. Thread 1 
(TH_1) reads variables a, b and c from the input and 
sends them to other threads. Threads TH_2 and TH_3 
can execute in parallel because calculation of f(a, b) 
and g(a, c) is independent while TH_4 needs the 
results calculated by these two. In order to ensure that 
any thread won’t start executing before all of its data is 
ready, a synchronization count (SC) has been 
associated to each of them.  This synchronization 
count contains the number of input data that thread 
needs in order to run. In our example, TH_2 needs to 
wait for a and b, so its synchronization count is 2. 
When data is stored for a thread, synchronization count 
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is decremented and once it reaches zero that thread is 
ready to execute. 

 
input a
input b
input c

...
x = f(a, b)
...

...
y = g(a, c)
...

...
z = h(x, y, c)
...

a, b a, c

c

x
y

TH_2

TH_1

TH_3

TH_4

Inputs: a, b
SC = 2

Inputs: --
SC = 0

Inputs: a, c
SC = 2

Inputs: x, y, c
SC = 3

 
Figure 1. Example program in SDF. 

 
For communicating data among threads, SDF 

execution model uses frames. When a new thread is 
created, the system assigns it with a fixed size frame 
that can be written by other threads and read only by 
the thread that it belongs to. In implementations of 
SDF paradigm (SDA, DTA-C), a frame is a part of a 
frame memory, which is a small on-chip memory.  

As mentioned in the introduction, each thread in 
SDF is separated into three phases: pre-load phase, 
execution phase and post-store phase. In the pre-load 
phase, data is read from the frame memory, shared data 
is read from the main memory and stored into local 
registers. In the execution phase, thread executes 
without any memory accesses, and uses only the data 
that are in the register file. When the computation is 
finished, thread performs its post-store phase where it 
writes data to other threads’ frames and writes data to 
main memory if needed. 

 
 
3. DTA-C description 
 

DTA-C (Decoupled Threaded Architecture - 
Clustered) is based on the execution paradigm of SDF. 
DTA-C adds the concept clusterizing resources. Each 
cluster in the architecture has the same structure and 
can be considered as a high-level tile. Figure 2 shows 
the overall DTA-C. 

A cluster consists of one or more Processing 
Elements (PEs) and a Distributed Scheduler Element 
(DSE). The set of all DSEs constitutes the Distributed 
Scheduler (DS). The amount of resources (in particular 
the number of PEs) that can be placed in one cluster is 
defined by the fact that we want all resources within a 

cluster (e.g., PEs) to be accessible in one clock cycle. 
This property of the cluster logically leads to the use of 
a fast interconnection network inside the cluster (intra-
cluster network), and the use of a slower but more 
complex network for connecting all clusters (inter-
cluster network). The actual amount of processing 
elements that can fit into one cluster will depend on the 
technology that is used. 

 
Cluster Cluster

Cluster Cluster

Inter-cluster network

…

…

PE PE

Distributed Scheduler Element
(DSE)

Intra-cluster network

…

High-level view of the DTA-C 
architecture. 

Internal organization of one 
cluster in DTA-C

 
Figure 2 Architecture organization. 

 
Each processing element in the architecture has its 

Unique Processing-element Identifier (UPI), which 
consists of pair: cluster id – CID, processing element 
id – PID. Also, each frame in the architecture has its 
Unique Frame Identifier (UFI), which is defined by the 
triplet: CID, PID, and frame number – FN. Here, CID 
and PID are designating the cluster and processing 
element where the frame resides, and FN is the number 
of the frame in the local frame memory. The amount of 
threads assigned to one PE is also limited by the fact 
that the frames of all assigned threads are stored in the 
local frame memory, which has a limited capacity. 
When data is sent to a frame, stores are sent to the 
inter-cluster network only if CID is different from the 
CID of the sender. This simplifies the routing and 
reduces bandwidth requirements (described in Section 
3.2). 

 
3.1 PE Architecture 
 

Figure 3 shows the structure of a processing 
element in DTA-C tile. Each processing element 
contains pipelines, frame memory, register file and 
local scheduler. There are two pipelines: 
synchronization pipeline (SP) that is responsible for 
executing pre-load and post-store phases and execution 
pipeline (XP) that is responsible for the execution 
phase of the thread. Both pipelines share the same 
register set, so that thread can change pipelines without 
context switching. 
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The Local Scheduler (LS) is responsible for 
communicating with other processors and clusters. 
When we refer that a PE is communicating with 
someone, it actually means that the communication is 
done by the local scheduler of that PE. This is just to 
avoid the confusion between local and distributed 
scheduler. Local scheduler serves the requests for new 
resources and for data communication (Section 3.2). 
Frame memory is a fast word–addressable memory 
that holds frames for the threads assigned to this 
processor. 

 

SP

XP

LSRF FM

Figure 3. The structure of the processing 
element. 

 
3.2 Scheduling 
 

We have a two level scheduling: i) handled by the 
Local Scheduler (LS) inside each PE and ii) handled 
by the Distributed Scheduler Element (DSE) inside 
each cluster. 

The Distributed Scheduler Element (DSE) consists 
of a list, that we call FFT (Free Frame Table), which 
contains information about the number of available 
frames in its cluster (ordered by the availability) and a 
FALLOC Request Queue (FRQ), which accounts for 
Frame Allocation (FALLOC) requests. The Local 
Scheduler and the Distributed Scheduler are 
responsible for assigning resources (i.e., continuations 
and frames) to the threads and for keeping track of 
processor usage in order to balance the load in the 
system. The main control data is packed into (what we 
call) a Continuation. The Continuation is a placeholder 
for the information needed to handle the lifetime of the 
thread, similar to [3], and a frame is the storage for the 
data needed for thread execution. The requests for 
obtaining new frames for the threads are sent from the 
PEs to the DSE and data and control information can 
be exchanged even between PEs, if they are in the 
same cluster, otherwise it must be done through the 

DSE that can do the inter-cluster routing. The DSE 
serves requests by sending the Continuation containing 
the information about the frame pointer of the assigned 
frame. The communication among PEs in the same 
cluster, PEs and their DSE and among DSEs of 
different clusters is all done via messages. 

There are six types of messages: FallocRequest 
(request for the new frame allocation by sending the 
continuation), FallocResponse (response to frame 
allocation sending the continuation with the frame 
identifier assigned), FFree (request to release the 
frame), Broadcast (availability request to other 
clusters), BroadcastResponse (availability response) 
and DataStore (sending data to other threads). All 
messages except for DataStore are dealing with 
resource assignment – creation and release of 
continuations. 

 

intra cluster
network

FALLOC
REQUEST

FREE

BROADCAST

BROADCAST
RESPONSE

fft lookup

FRQ

DISTRIBUTED  SCHEDULER ELEMENT

inter cluster
network

update
fft

DATA
RESPONSE

available

busy

push

FALLOC
REQUEST

FALLOC
REQUEST

if (!empty) pop

FALLOC
REQUEST

FALLOC
RESPONSE

DATA
RESPONSE

FALLOC
RESPONSE

forward

if (!empty) pop

forward

1

2a

2b

3a

3b
4a

4b

 
Figure 4. Algorithm of Distributed Scheduler 
Element – phases in the operation of DSE are 

numbered from 1 to 4. 
 
Sending, receiving and processing of messages are 

done in schedulers, both local and distributed ones. 
The Distributed Scheduler Element is forwarding 
messages from one processing element to another and 
makes decision about where the new thread is going to 
be executed (Figure 4). When the DSE receives a new 
FallocRequest message, it checks the availability list 
for available frames in the local cluster. If there is any 
that is available, it forwards the message to the 
processing element that has the lowest number of 
threads assigned to it (inside that cluster). If all of them 
are busy and without any more available frames, it puts 
the message in FRQ and sends a Broadcast message to 
all the other clusters. Messages can be removed from 
the queue in two cases: i) when Ffree message arrives; 
this means that some thread has finished its execution 
on one of the local PEs and therefore has execution 
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resources available or ii) when BroadcastResponse 
message arrives from some other cluster that can 
execute new thread. In the first case, DSE just 
forwards the message from the FRQ to the local PE 
that sent Ffree message. In the second case the 
message is forwarded to (remote) DSE of another 
cluster, which then forwards the message to a PE in its 
cluster. Other messages (DataStore message and 
FallocResponse message) are simply forwarded to 
their destination.  

The Local Scheduler operates as described in 
Figure 5. When it receives a FallocRequest message, it 
dedicates one free frame for the execution of the new 
thread and then sends a FallocResponse message to the 
processing element that issued the request. When a 
FallocResponse message is received, it means that a 
threads’ continuation has a frame identifier assigned to 
it, and a PE inside that cluster can continue the 
execution. A DataStore message is sent for each 
STORE instruction and, upon the reception of this 
message, the related data is stored in the destination 
frame. If multiple STOREs need to be sent to one 
destination, we can group them into one DataStore 
message. If the destination frame is in the same 
processing element, no message is sent and the store is 
done locally. When all the data for a thread is stored, 
that thread can start execution (Synchronization Count 
equal to zero).  

pipelines

FALLOC

STORE

FREE

FALLOC
REQUEST

DATA
STORE

FREE

FALLOC
REQUEST

FALLOC
RESPONSE

network

group by 
destination

wait for 
all the data

LOCAL SCHEDULER

DATA
STORE

take new free frame

FALLOC
RESPONSE

write back frame number

start
thread

1

2

3

4

5 6

 
Figure 5.  Algorithm of  Local Scheduler – 

phases in the operation of LS are numbered 
from 1 to 6. 

With this algorithm for allocating new frames, we 
have introduced additional delay for frame allocation 
(FALLOC) instructions that was not present in original 
SDF architecture. This comes from the need to 
distribute threads across many processors and to 
achieve parallel execution. However, we try to 
eliminate this delay by a technique which is described 
in the next section.  

 
 
 

3.3 Non-blocking frame assignment 
 
Figure 6 shows the situation that occurs when a 

request for a new thread is issued. On the left, we can 
see that the pipeline executing current thread blocks 
and waits for the response from the Distributed 
Scheduler. In order to overcome this problem, we are 
introducing two new tables that will reside in the local 
scheduler - Map Table and Store Buffer (Figure 6 on 
the right). When the request is sent to the DSE, the 
processor continues the execution of the current thread 
without stopping. Instead of a real frame pointer, it 
receives a virtual frame pointer (VFP), which is unique 
for each thread, and is generated locally by the 
processor. At the same time, a new entry with 
generated VFP is added in the map table. When the 
response from scheduler arrives the map table entry 
with corresponding VFP is updated with a real frame 
pointer (a Unique Frame Identifier or UFI), and the 
actual location of the frame is associated with the VFP.  

 
Thread

new frame request

frame assigned
scheduler

ex
ec

ut
io

n
Thread

ex
ec

ut
io

n

Map Table

Store Buffer

new frame request

frame
assigned

send data for new thread

stores for 
new thread

continue 
immediately

scheduler

Blocking frame assignment Non-blocking frame assignment

waiting time

 
Figure 6.  Non blocking resource assignment. 

 
The only instructions that actually use a Unique 

Frame Identifier are STORE instructions, which store 
data to the frame of the new thread. Since execution 
continues immediately after the request is issued, it 
may happen that a STORE instruction executes before 
the response has arrived. In that case, we put the VFP 
of the new thread together with the frame offset and 
data to be stored into the Store Buffer. When the 
response arrives, we update the Map Table and 
associate the newly received Unique Frame Identifier 
to the appropriate VFP. In case that there are pending 
STOREs in the Store Buffer, we map their VFP to the 
real Unique Frame Identifier (only for the one that just 
arrived) and send the data to the appropriate location. 
In the other case, when a STORE occurs after the 
response, we already have the real Unique Frame 
Identifier for the new thread, so we can perform 
mapping immediately and send the data to its location. 

With this approach, processor is free to continue the 
execution, while waiting for the frame response is 
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done in parallel, so no blocking due to frame 
assignment occurs during the execution of the thread. 
Even in the case when response doesn’t arrive before 
the thread finishes its execution, we don’t need to wait 
for it and processor can take some other thread and 
start to execute it. When the response arrives, all 
pending stores in the Store Buffer will be resolved and 
data will be sent to the appropriate frames. Of course, 
if the Map Table becomes full, we will still suffer from 
blocking, but the chances of that to happen are small 
unless we have a huge network contention and a big 
number of newly created threads at the same time. This 
approach is evaluated in Section 4.3. 

 
4. DTA-C Experiments 
 

For the evaluation of DTA-C, we have developed a 
cycle-accurate simulator in C++. This simulator 
implements the DTA-C as described in the previous 
section and uses the perfect memory model. Our initial 
goal was to estimate the scalability and different 
scheduling algorithms, so the assumption that the main 
memory can be accessed in one cycle is acceptable for 
this purpose.  

Since compiler is still an open research issue, we 
had a limited choice of benchmarks to work with. Our 
analysis were performed with radix-sort (SPLASH2, 
[4]) and bitcnt (MiBench, [5]), both of which were 
hand-coded.  
 
4.1 Scalabilty 

 
Figure 7 shows the speedups (where the baseline is 

the number of execution cycles on one processing 
element) for radix-sort benchmark. Number of clusters 
is represented on the x-axis, and speedup is on the y-
axis. In all the Figures, the number of Processing 
Elements Per Cluster (PEPC in Figures 7, 8, 9, 10, 12) 
is constant along one line, and number of clusters is 
varied in order to demonstrate the scalability of the 
architecture. 

In this configuration, radix sort benchmark forks 
512 threads that sort the data. Since the time to fork all 
threads is significantly smaller then the execution time 
of each of them, we can assume that all threads can run 
at the same time (if there are enough processing 
elements to execute them all). We can see from this 
Figure that scaling is almost perfect (e.g., speedup of 
57 for 64 processing elements, (i.e. 16 PEPC and 4 
clusters). 

Bitcnt benchmark exhibits slightly different 
behavior. Running time of each forked thread (that 
serves for counting) is comparable with the time 

needed to fork all of the unrolled threads. In 
comparison with radix sort, this benchmark has also 
more pre-load/post-store communication, so network 
bandwidth is a limiting factor here. Speedup for this 
benchmark is shown in the Figure 8. 

Speedup (radix sort benchmark)

1

10

100

1 2 4

Number of clusters

Sp
ee

du
p

1 PEPC 2 PEPC 4 PEPC 8 PEPC 16 PEPC

 
Figure 7. Scalability of radix-sort benchmark. 
PEPC is the number of Processing Elements 

Per Cluster. 
 

Speedup (bitcnt benchmark)
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1 2 4 8
Number of clusters

Sp
ee

du
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1 PEPC 2 PEPC 4 PEPC 8 PEPC 16 PEPC

 
Figure 8: Scalability of the bitcnt benchmark. 

 
It can be seen that speedups for the configuration 

with 8 processing elements per cluster and the 
configuration with 16 processing elements per cluster 
are almost the same. This saturation occurs because 
intra-cluster bus is not very large (128 bits wide) and 
messages are transferred only at a rate of one at each 
bus cycle. When we enable the intra-cluster network to 
send two messages in one cycle (by using a double 
issue bus) scalability improves.  

Figure 9 compares the configurations with a double 
issue bus (Double Speed - DS) and the configurations 
with a baseline bus (Single Speed - SS). We can see 
that when using faster interconnection, the architecture 
scales well as we increase the number of Processing 
Elements Per Cluster (PEPC) from 8 to 16. It can also 
be seen that the configurations with faster network 
perform much better then the ones with regular 
network. The configuration with 8 processing elements 
and a double issue bus is faster than the corresponding 
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configuration with regular bus, and also faster than the 
configuration with 16 Processing Elements Per Cluster 
and a baseline bus. 

Single Speed Bus vs Double Speed Bus (bitcnt benchmark)

0
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40

1 2 4 8
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ee
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2 PEPC - SSB 8 PEPC - SSB 16 PEPC - SSB
2 PEPC - DSB 8 PEPC - DSB 16 PEPC - DSB

8 PEPC

16 PEPC

 
Figure 9. Scalability of bitcnt benchmark with 

faster intra-cluster network. 
 
4.2 Improving the scheduling 

 
In order to determine the best scheduling algorithm 

for the distributed scheduler, we have experimented 
with several different scheduling algorithms. 

The simple scheduling algorithm, originally 
implemented in the architecture always tries to allocate 
a new frame in the current cluster, and forwards the 
request to the remote cluster only if there is a lack of 
resources. However, this may not be an optimal 
approach, because it doesn’t consider the dependencies 
among the threads, thus we have considered (what we 
call) ISA-helped scheduling as an alternative. This 
approach is similar to a “coarse” level scheduling for 
WaveScalar architecture [6],  presented in [7].  

The idea is that the program can give scheduling 
hints to the hardware by using modified instructions 
for new frame creation. One new instruction was 
added to forces the Distributed Scheduler Element to 
send a request for new frame to a remote cluster, while 
in the case of a regular FALLOC instruction the 
behavior remains the same (trying to serve the request 
within the cluster where it originated). Hardware cost 
of this solution is negligible – e.g., a single counter to 
keep track of the next cluster that will serve the 
request. 

 Figure 10 shows the comparison between simple 
and ISA-helped scheduling. We have modified the 
bitcnt benchmark to force the forking of all threads 
that execute one function to the same cluster (a 
different cluster for each function if possible). In all 
configurations, ISA-helped scheduling outperforms the 
simple scheduling algorithm. With bigger number of 
clusters, ISA-helped “affinity” scheduling achieves 

better distribution in workload balance among clusters, 
and outperforms the simple scheduling almost by a 
factor of 2. 

Simple vs ISA-helped scheduling (bitcnt benchmark)
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Figure 10. Simple vs. ISA-helped scheduling. 

 
4.3 Non-blocking resource assignment 

 
Figure 11 shows the comparison between the 

blocking and non-blocking resource assignment.  
 

Blocking vs non-blocking resource assignment
fib(15) benchmark
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Figure 11. Blocking vs non-blocking resource 

assignment. 
 

All results were normalized to the number of 
execution cycles for the configuration with blocking 
resource assignment (vertical value of 1), and the 
number of processing element was varied. In order to 
obtain these results, we have used double issue bus as 
interconnection (to eliminate the saturation caused by 
the network). Simple recursive version of the 
Fibonacci(N) program was used (N=15). As the graph 
shows, non-blocking approach is always faster, with 
performance improvements ranging from 5.2% to 
23.6%. 
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4.4 Comparison with TMS320C6711 
 
In order to compare the DTA-C with a real world 

system, we have compared it with TMS320-C6711 
(TMS) [8]. This processor is a VLIW with 6 ALUs (2 
integer and 4 floating-point) and 2 multipliers. Figure 
12 shows this comparison. 

 
DTA-C vs TMS (bitcnt benchmark, 50000 iterations)
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Figure 12. Comparison of DTA-C and TMS320-

C6711. 
 
Since TMS has eight execution units, we have 

compared it with DTA-C configurations that are the 
most similar to it. Each configuration had up to 4 
processing elements (total of 8 pipelines) distributed in 
1, 2 or 4 clusters, and each of them used simple 
scheduling and prefect memory. All configurations 
outperform TMS by the factor ranging from 9 up to 35. 
This comes from the fact that bitcnt benchmark for 
DTA-C is hand-parallelized and a lot of TLP is 
exposed in it while for TMS we used a TMS320C6000 
C/C++ compiler. Another reason is that bitcnt is an 
integer benchmark, and doesn’t use any of the 
available floating-point units. 

The configuration with only one cluster shows the 
best performance because all communication is going 
trough intra-cluster network. On the other hand, 
configurations with more clusters are less efficient 
because part of the communication needs to go trough 
the slower inter-cluster network, but still, they are 
better than TMS. 
 
5. Related Research 
 

Decoupled architectures have been studied for a 
long time. Among the first decoupled processors was 
Astronautics ZS-1 [9] processor that had separated 
instructions into two streams, one for fixed-
point/memory address computation and other one for 

floating point calculations, and two streams were 
executed in parallel. More recently, several new 
decoupled architectures have appeared. Speculative 
Data-Driven Multithreading (DDMT) [10] is an 
architecture that is based on decoupling principle. This 
architecture identifies miss streams, i.e. streams of 
instructions that are likely to cause cache misses and 
executes them in a multithreaded fashion in order to 
perform prefetching. HiDisc (Hierarchical Decoupled 
Instruction Stream Computer) [11] is an architecture 
that reduces memory latency by prefetching at both 
hardware and software level. Prefetching is 
accomplished by separating the instruction stream into 
one for regular execution and one for memory 
accesses.  

The main difference between DTA-C and above 
mentioned decoupled architectures is that DTA-C fully 
exposes its programming model to the programmer 
who can exploit the available TLP. Also, all threads in 
DTA-C are explicitly separated into phases, and 
decoupling of memory accesses is complete. 

MLCA [12] is a paradigm for parallel architectures 
that exploits parallelism at the task level using similar 
techniques that are used in a modern superscalar 
processors for exploiting ILP – register renaming and 
out-of-order execution. Similar to DTA-C is that 
implicitly this architecture uses dataflow at the task 
level but the programming model is still sequential. 

One of the possible solutions for CMP systems are 
tiled architectures. Tiled architectures have some 
number of tiles (e.g. resources like processing 
elements, memory modules, register files, etc.) that are 
replicated on the chip and connected via on-chip 
network. Several recent proposals for CMPs are in fact 
tiled architectures: RAW [13], TRIPS [14], 
WaveScalar [6]. All of these architectures show good 
scalability but they are different in terms of how do 
they exploit the available parallelism in programs.  

RAW architecture [12] is a multiprocessor 
architecture that tries to overcome the wire delay 
problem by using very simple in-order MIPS 
processors as tiles. Since processing elements are small 
and connected only to their neighbors, it is ensured that 
all wires are shorter than the length or width of a tile. 
This architecture is similar to DTA-C in sense that its 
resource division is performed based on what can be 
reached in one cycle, but it employs a conventional 
programming model that may not be suitable for future 
parallel systems and applications.  

TRIPS [13] uses “medium size” tiling by allowing 
several different types of tiles for processing elements, 
memory, cache (instruction and data) and registers. 
Some of the above mentioned tiles can be reconfigured 
in order to exploit different types of parallelism. While 
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DTA-C employs dataflow execution at the thread 
level, and control flow-like execution inside the thread, 
TRIPS does the opposite by employing control flow 
execution at the thread level and dataflow execution 
inside the thread.  

WaveScalar [6] has a huge number of simple 
processing elements, which communicate operands in 
such a way to employ dataflow execution model. This 
architecture employs real dataflow execution at the 
instruction level, and unlike DTA-C doesn’t target 
TLP.  
 
6. Conclusions 

 
DTA-C uses a paradigm that is based on a non-

blocking execution of threads and decoupling of 
memory accesses. Since threads communicate in a 
dataflow-like manner, this communication is used also 
for the synchronization among the threads. In this way, 
we are reducing the need for the use of regular 
synchronization primitives inside the threads and 
enable the non-blocking execution. Uniform tiles with 
simple processing elements enable us to clusterize 
resources in order to achieve better usage of the 
available transistors on the chip and obtain good 
scalability of the architecture. 

With selected benchmarks from MiBench and 
SPLASH-2 benchmark suites we have shown that the 
architecture is scalable and identified the bottlenecks in 
our architecture. We have shown that by increasing the 
speed of the interconnection network, and by using 
advanced scheduling algorithm (both of which were 
identified as bottlenecks) we can increase the 
scalability even further.  
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