
Reducing leakage in power-saving capable caches for
embedded systems by using a filter cache

Roberto Giorgi
University of Siena

Via Roma, 56
53100 Siena - Italy
+39 0577 234630

www.dii.unisi.it

Paolo Bennati
University of Siena

Via Roma, 56
53100 Siena - Italy
+39 0577 233601

www.dii.unisi.it
ABSTRACT
Leakage power in data cache memories represents a sizable
fraction of total power consumption, and many techniques have
been proposed to reduce it. As a matter of fact, during a fixed
period of time, only a small subset of cache lines is used. Previous
techniques put unused lines, for example, to drowsy state or
switch them off completely (cache decay) in order to save power.

Our idea is to adaptively select mostly used cache lines. We found
that this can be achieved automatically by using a tiny cache
acting as a filter “L0” cache. Our main contributions are: i)
evaluation of filter cache to reduce leakage; ii) improvement of
other existing power-saving techniques; iii) providing results to
select the most promising solution.

Our experiments, with complete MiBench suite for ARM based
processor, show (in average) 10% improvement in leakage saving
and 17% in leakage energy-delay versus drowsy-cache; versus
decay-cache we found 6% improvement in leakage saving and
13% in leakage energy-delay.

Categories and Subject Descriptors
B.3.2 [Memory structures]: Design styles – cache memories.

General Terms
Performance, Design, Experimentation.

Keywords
Cache decay; drowsy cache; filter cache; low-power; leakage.

1. INTRODUCTION
Power consumption of cache memories represents a large fraction
of the total power consumption; previous studies have found that
it accounts for about 50% of the total power consumed in
embedded computing systems [1, 2].

The causes for power consumption in cache memories are mainly
due to two factors: dynamic power and static power. Dynamic
switching power is due to the charging and discharging of
parasitic and/or input capacitors. Static power, which is due to
sub-threshold, gate-oxide and reverse biased PN junction leakage,
has increased in importance in recent CMOS technologies.
Leakage depends mainly on the number of transistors and their
features and, as also predicted in many studies [3-6], from the
70nm generation, it constitutes a large part of total power
dissipation.

Recently, many research projects have focused on reducing
leakage power in the cache memories [2, 4, 5, 7-15]. The common
idea is to put unused cache lines into a power-saving state. The
proposals can be broken down into two main categories [15]:
state-preserving and non-state-preserving techniques. When a

cache line is put in a power-saving state, the technique is called
state-preserving if the line content is maintained (although
accessible only after putting it back in normal state) and, on the
other hand, non-state preserving if it is destroyed. State preserving
techniques are mainly based on the circuit technique called
drowsy [5], while non state-preserving techniques utilize the
circuit technique called gated-Vdd [6]. The first has the advantage
that no data is lost (only a wake-up is needed), but the leakage
saving is less than in the second one; the second one provides a
high leakage saving, but unfortunately, data stored in lines are lost
and, in case of cache miss, the cell has to be turned on with a
consequent performance loss.

Both techniques work well if the selection of the lines to put in
power-saving mode is done accurately. It is important to carefully
select which lines to deactivate and when. This is necessary to
avoid performance loss and to achieve enough leakage saving. As
a matter of fact, during a fixed period of time, only a small subset
of cache lines is used [16], so there are a lot of possibilities for
saving power.

In [17], the use of a L0 cache (filter cache), that is very small
relative to the conventional L1 cache, has been proposed to reduce
L1 cache activity. The filter cache works as a buffer to cache
recently accessed cache lines. This approach reduces the activity
of the L1 cache.

In this paper, we propose to reduce the time when cache lines is
actively dissipating power. Initially, we considered several
options to shorten this time by considering, for example, to
dynamically switch between drowsy and decay, as proposed by
Meng et al. [18]. Our idea here is to make lines in L1 “less used”
by using an L0 filter cache. This solution is very effective for the
following reasons: i) an L0 cache can reduce the average access
time as a small cache is faster the a larger L1 power-saving cache;
ii) the additional cost of powering-up an L0 cache is much lower
than the power-saving obtained by the faster powering-down of
less frequently used L1 lines (as showed by experiments
throughout the paper); iii) the additional design efforts to include
an L0 cache is conceptually simple.

Power-saving caches are typically used at the first level in the
hierarchy. Our findings demonstrate that not only a speed-up can
be achieved by using another small cache level (the total amount
of cache memory is increased) but it also provides benefits in
power-saving. This is due to the fact that the filter cache
introduces itself a negligible leakage consumption (it is very tiny
relative to the lower level) and the leakage in the conventional
power-saving cache at the lower level is reduced because that
level works for a smaller period of time. Indeed, the ratio of lines
that are in power-saving state is not reduced and the number of

transitions between the two level (high-power to low-power and
viceversa) is smaller.

95,23%
86,70%

93,50%

83,58%

0%

20%

40%

60%

80%

100%

Ideal decay Decay Ideal drowsy Drowsy

le
ak
ag
e
sa
vi
ng

Comparing leakage saving
of decay/drowsy with the ideal cases

(L1: 16KB‐2ways; L0: 128B‐D)

Figure 1. Comparison of leakage saving of decay/drowsy with
theoretical ideal cases (full Mibench suite average).

95,23%

84,82%
93,50%

83,97%

0%

20%

40%

60%

80%

100%

Ideal decay Decay Ideal drowsy Drowsy
le
ak
ag
e
en

er
gy

‐d
el
ay
 sa

vi
ng

Comparing leakage energy‐delay saving
of decay/drowsy with the ideal cases

(L1: 16KB‐2ways; L0: 128B‐DM)

Figure 2. Comparison of leakage energy-delay saving of
decay/drowsy with theoretical ideal cases (full Mibench suite
average).

0%

5%

10%

15%

20%

Drowsy Fast‐drowsy Decay Fast‐decay

no
rm

al
iz
ed

 le
ak
ag
e

Leakage breakdown
(L1: 16KB‐2ways; L1: 128B‐DM)

L1 L0

Figure 3. Leakage breakdown for tiffdither. The baseline
(100%) is the leakage spent in standard cache (L1 cache
without power-saving technique).

Substantially we show that the addition of a filter cache before
conventional power-saving caches provides advantages for both
leakage-saving and performance (the IPC increments).

The remainder of the paper is organized as follows. In the next
section we give our motivation for introducing L0. In Section 3
the details of our proposal are presented. In Section 4, we explain
the methodology we used for our experiments. Then we discuss,
in Section 5, the results we have obtained, we evaluate the
additional leakage saving achieved and the performance
improvements versus other literature proposals for power-saving
caches. Section 6 illustrates some recent related works. We finally
conclude in Section 7.

2. MOTIVATION
In order to motivate our investigation, we analyzed the results
with respect to the cases that can be considered as ideal theoretical
cases.

For a standard drowsy-cache, the best theoretical situation that can
be achieved is when during each cycle only a line (the currently
accessed line) is in high-power state while the others are in
drowsy state. This ideal case could be obtained with the perfect
knowledge of the access pattern, so that the power-saving
technique is able to wake up the line in time and there is no
possibility of accessing a drowsy line. We refer to this case as
Ideal drowsy (versus Drowsy). An analogue situation can be
considered the ideal theoretical case for decay-cache. Ideally, if
the access pattern is perfectly known, only one line (the currently
accessed one) could be kept on, while all the others are
completely gated-off. We refer to this case as Ideal decay (versus
Decay). We consider as ideal case a situation where just the
currently accessed line is on (maximum saving) and the next line
to be accessed is available immediately (no delay). This
hypothesis is really very near to the ideal situation (more ideal, for
example, than the oracle predictor presented in [19]).

The behaviour for the leakage-saving (how much leakage can be
saved by using the power-saving technique) of each approach,
compared to the ideal cases, is shown in Figure 1.

Both drowsy and decay techniques are effective for leakage
saving, but there is a lot of distance that can be filled between the
real and the ideal case. There is about a 10% of additional leakage
saving that can be achieved and we are proposing a solution that
try to reduce this distance. Looking at the performance, drowsy
cache almost doesn’t impact the IPC (there is a reduction less than
0.5%), while the performance loss for decay cache is higher
(about 20%).

In order to clearly understand the effectiveness of the techniques
for both power-saving and performance, a metric that is able to
combine them together is useful. We evaluate the leakage energy-
delay product in a way that is appropriate for our study [20]. Since
we are interested in the leakage, we calculated the product as:
leakage energy * execution time (Figure 2). With this metric, we
can see that drowsy and decay are almost equivalent: decay

provides better leakage saving while drowsy produces less
performance loss, but considering these two factors together the
techniques are very similar. However they are both far from their
theoretical ideal case (more than 10% of difference).

Figure 3 shows the leakage breakdown. A benchmark is presented
as a case study. As shown, the additional leakage introduced by
L0 is negligible. It accounts for about 1% of total leakage. This is
actually the extra leakage in which our proposal incurs. However,
since the reduction in L1 leakage is considerable, the total leakage
(the sum of the leakage in L0 and in L1), is reduced.
Results presented in this section show that there are a lot of
possibilities for saving more power without penalizing
performance.

3. FAST POWER-SAVING CACHE
HIERARCHY
We considered an embedded system architecture based on an
ARM processors and in this scenario our proposal addresses the
problem of low-power data cache memories. A simple solution
that has not been evaluated, as of our knowledge, for reducing
leakage is based on a filter cache placed between CPU and a
convention first level cache with power-saving capabilities
(drowsy/decay). We call this scheme fast-drowsy/decay.

Many different approaches can be used to reduce leakage in cache
[2, 4, 5, 7-15]. We have focused on the following two techniques:
drowsy cache [5] for the state-preserving category, and cache
decay [19] for the non-state-preserving one.

L0 cache is a very tiny (e.g. 128B) and fast cache [17], therefore
the latency between L0 and CPU could be, for example, 1 cycle.
We considered a typical size for an L1 power-saving cache for
embedded systems (e.g. 16 KB) Due to the power saving
techniques and larger size, this cache can experience a longer
latency (e.g. 2 cycles).

Our proposal aims to reduce leakage while not reducing
performance. The addition of a new level of cache provides faster
execution, but we show in this paper that this solution has many
benefits also when the concern is the leakage saving.

In order to understand the improvement we propose, we present
Figure 4; it shows in detail the transitions between high-power
and low-power states, comparing our proposal versus the
conventional scheme. Power-saving techniques can select the
lines to put into the low-power state by using many different
policies [5, 12, 13]. The simplest policy that can be considered is
one where, periodically all the lines in the cache are put into low-
power mode and a line is waken up only when it is accessed
again. This policy is called Simple policy and it requires only a
single global counter as additional hardware (apart from the
circuitry for the voltage reduction).

This behaviour (conventional scheme) is shown in Figure 4 (a):
the power-saving technique with simple policy [5] put all the lines

into the low-power state (e.g. drowsy or decay state) when the
global counter saturates. At the next access, the accessed line must
be waken up. This translates into a performance loss and also into
a dynamic power cost.

Figure 4 (b) shows how our proposal (fast scheme) acts. We
propose to avoid to uselessly waking-up of lines by adding a filter
“L0” cache before the L1 power-saving capable cache. L0 cache
captures the most recently used accesses. Lines can remain off in
L1 since the last used data are stored also in L0 and an hit in the
filter cache solves the access. Being L0 small and fast it
introduces negligible additional leakage.
The main contributions of the addition of L0 are: i) lines get older
faster (accesses can be solved in L0 without waking-up lines again
in L1); ii) the number of switching between low-power and high-
power state are reduced (with the consequent reduction of the
related dynamic power).
This unexplored solution has several advantages:

• It mitigates the IPC degradation power-saving caches
suffer;

• It requires just simple SRAM cache;
• It consumes a negligible fraction of a low-power L1

cache (e.g. drowsy or decay);
• It adapts to programs behaviour without any special

effort.

L0 adapts to programs behaviour without any special effort,
providing an automatic static filtering operation for the accesses
into L1; if a program needs more than the size of L0 allows, the
L1 will work as a conventional power-saving cache, otherwise, L1
can reduce the switching between low-leakage state and high-
power state and it can maintain lines into power-saving state for a
longer time.

The additional cost of this solution can be less than 1% of the L1
cost. The size of L0 is considerably small and it is negligible
relative to the full size of the data cache memory hierarchy. In
addition, L0 doesn’t have any additional circuitry for power-
saving (such as additional bit, voltage supply, control).

……
6800
6804
8100
8104
6800
6800
8100
……

Cycle
4000

ON

Cycle 3999

Lines must be
waked up

OFF

Cycle 4000

OFF ON

ON

HIT

HIT

L1

t1 t2 t3

Cycle 8000

t4
low

high

CONVENTIONAL SCHEME

All lines into
power-saving

state

MISS

MISS

L1

HIT

HIT

L1
ON

 (a)

……
6800
6804
8100
8104
6800
6800
8100
……

Cycle
4000

ON

Cycle 3999

No need to
wake-up lines

OFF

Cycle 4000

OFF OFF

OFF
L1

t1 t2 t3

Cycle 8000

t4
low

high

FAST SCHEME

All lines into
power-saving

state

L1L1
ON

HIT
HIT
L0

HIT
HIT
L0

(b)
Figure 4. Comparison between power-saving schemes. (a) Conventional power-saving scheme with Simple-policy; (b) Fast power-
saving scheme (our proposal). Two assumptions have been done: i) global counter saturates every 4000 cycles; ii) block size is
8kbytes.

Substantially our technique provides a faster program execution
maintaining the same ratio of line in power-saving state in L1.
Since the activity time is reduced, the total leakage consumption
is reduced. The overhead of the additions we propose is negligible
(L0 is very small and it consumes very poor leakage), so the total
leakage is reduced, as we are going to show in the experiments
presented in §5.

4. SIMULATION SETUP
All simulations have been performed with HotLeakage [21]
simulator, as in [4, 8, 11, 13, 15, 18, 22] retargeted for ARM
based processor and modified in order to implement our
configuration. For technology parameters, we use values for a
70nm process with Vdd=0.9V (Table 1) as presented in several
current studies [13] [15]. This choice can provide a more direct
comparison with such studies.

In this work we analyze a fixed configuration for the power-

ed the entire suite of MiBench [23] benchmark suite

e without filter cache

ithout filter cache

ter cache

r cache

lter cache

ulated. L0

ynamic energy, that each

saving technique (simple policy with 4000 cycles update
window).

We simulat
for an ARM based processor. We compared conventional leakage
power-saving caches with the scheme we propose and we also
compared them with a standard cache (without power-saving

capabilities) in order to have a common baseline. To be more
clear, let consider the following acronyms:

• standard cache: level 1 (L1) data cach

Table 2: Configuration of the caches
 L0 L1

Cache size 128B 16KB
Block size 16B 16B

Associativity Direct mapped 2
Latency 1 cycle 2 cycles

(L0); no power-saving technique applied;
• drowsy cache: level 1 (L1) data cache w

(L0); drowsy cache technique applied to L1 cache;
• decay cache: level 1 (L1) data cache without fil

(L0); decay cache technique applied to L1 cache;
• fast-drowsy cache: level 1 (L1) data cache with filte

(L0); drowsy cache technique applied to L1 cache;
• fast-decay cache: level 1 (L1) data cache with fi

(L0); decay cache technique applied to L1 cache;
Table 2 shows the configuration of the caches we sim
cache size is closest its typical size [17, 24, 25] and the other
parameters are closest to common ARM XScale processor [26].

For the leakage evaluation, we take into account all the extra
power consumptions, in particular the d
power-saving technique introduces; in other terms, we consider
the total leakage, where we account for the contributions from
activity in the counters the power-saving techniques use to
periodically put lines into low-power state, the leakage of extra
circuitry and we consider also the dynamic power of such extra
circuitry (as an additional cost to implement the low-power
technique). The leakage, for the configuration where L0 is
included, accounts for the L0 contribution: the total leakage
considered is the sum of the leakage spent in L0 and the leakage
spent in L1.

Table 1: Energy parameters

Leakage control technique Drowsy Decay
Time for low to high switch 3 cycles 3 cycles
Time for high to low switch 3 cycles 30 cycles

Low to high switch cost 0.0003 nJ 0.0003 nJ
High to low switch cost 0.0001 nJ 0.0001 nJ

Extra latency in low leak mode 1 cycle 0 cycle
Policy Simple

Update window 4000 cycles

0,8

0,9

1

1,1

1,2

ba
si
cm

at
h

bi
tc
ou

nt

qu
ic
ks
or
t

su
sa
nc
or
ne

r

su
sa
ne

dg
e

su
sa
ns
m
oo

th

jp
eg
de

co
de

jp
eg
en

co
de

la
m
e

m
ad

ti
ff2

bw

ti
ff2

rg
ba

ti
ffd

it
he

r

ti
ffm

ed
ia
n

ty
pe

se
t

di
jk
st
ra

pa
tr
ic
ia

gh
os
ts
cr
ip
t

is
pe

ll

rs
yn
th

st
ri
ng
se
ar
ch

bl
ow

fis
hd

ec
od

e

bl
ow

fis
he

nc
od

e

pg
pd

ec
od

e

pg
pe

nc
od

e

ri
jn
da
el
en
co
de

ri
jn
da
el
de
co
de sh
a

CR
C3

2

FF
T

IF
FT

AD
PC

M
en

co
de

AD
PC

M
de

co
de

gs
m
en

co
de

gs
m
de

co
de

Auto./indust Consumer Network Office Security Telecomm. Avg

no
rm

al
iz
ed

 le
ak
ag
e
sa
vi
ng

Comparing leakage saving of drowsy and fast‐drowsy
(L1: 16KB‐2ways; L1: 128B‐DM)

(a)

0,8

0,9

1

1,1

1,2

ba
si
cm

at
h

bi
tc
ou

nt

qu
ic
ks
or
t

su
sa
nc
or
ne

r

su
sa
ne

dg
e

su
sa
ns
m
oo

th

jp
eg
de

co
de

jp
eg
en

co
de

la
m
e

m
ad

ti
ff2

bw

ti
ff2

rg
ba

ti
ffd

it
he

r

ti
ffm

ed
ia
n

ty
pe

se
t

di
jk
st
ra

pa
tr
ic
ia

gh
os
ts
cr
ip
t

is
pe

ll

rs
yn
th

st
ri
ng
se
ar
ch

bl
ow

fis
hd

ec
od

e

bl
ow

fis
he

nc
od

e

pg
pd

ec
od

e

pg
pe

nc
od

e

ri
jn
da
el
en
co
de

ri
jn
da
el
de
co
de sh
a

CR
C3

2

FF
T

IF
FT

AD
PC

M
en

co
de

AD
PC

M
de

co
de

gs
m
en

co
de

gs
m
de

co
de

Auto./indust Consumer Network Office Security Telecomm. Avg

no
rm

al
iz
ed

 le
ak
ag
e
sa
vi
ng

Comparing leakage saving of decay and fast‐decay
(L1: 16KB‐2ways; L1: 128B‐DM)

 (b)
Figure 5. Leakage-saving across MiBench suite: higher is better. (a) Comparison of leakage-saving in fast-drowsy and drowsy:
baseline is the leakage-saving achieved with drowsy (drowsy itself in average produces a leakage-saving of 83.58% relative to the
case.

5. RESULTS
The main objective of this work is to reduce leakage in data cache

penalizing performance. In order to

ows the leakage saving achievable with our proposal in
chniques. Figures 4, 6, 7 show the

to

apabilities. With this assumption,
monstrate how our solution addresses this challenge,

eases the IPC.

ced by decay technique. For the

memories without
demonstrate the effectiveness of our proposal, we studied mainly
three metrics: leakage, IPC and energy-delay product (as
introduced in § 2.1). In the following, these metrics are analyzed
in detail and the results obtained across MiBench suite [23] are
presented.

5.1 Leakage saving
Figure 5 sh
comparison with standard te
behaviour of our proposal across all the benchmarks of the
MiBench suite [23].
Figure 5 (a) shows the comparison of the leakage saving obtained
with fast-drowsy and with a drowsy-cache (used as baseline). As
shown, fast-drowsy is always better than drowsy-cache and the
behaviour is almost regular. The reduction in leakage (or
improvement in leakage-saving) varies from a minimum of 2% to
a maximum of 19% and in average, fast-drowsy reduces the
leakage, in comparison with drowsy-cache, of about 10%.
The same results for fast-decay are presented in Figure 5 (b) in
comparison to the decay-cache. For this technique the benefits for
leakage saving are less significant. This is not surprising, because
the decay technique itself already provides a very powerful
leakage saving, higher than drowsy. For a few benchmarks
(quicksort, tiff2bw, tiff2rgba and rijndael) fast-decay is even
worse, even though the loss is minimal (less than 2%). The main
problem for these benchmarks should be the size of L1 because on
it there is a huge amount of conflict miss that can’t be eliminated.
However, preliminary simulations with a bigger cache (e.g.
64KB) show this problem can be overcome and that fast-decay

should produces benefits some benefits also for them. In average,
fast-decay reduces the leakage of about 6% in comparison to
decay-cache.
If the leakage spent by a standard cache (without power-saving
technique) is assumed as baseline (it is not shown in figures)
drowsy-cache reduces leakage to 16.4% while fast-drowsy
14.7% (in average) and decay-cache reduces leakage to 13.3%
while fast-decay 12.8%. Anyway, it is more appropriate to
compare this solutions in terms of leakage energy-delay as
discussed below.

5.2 IPC
We wish to adopt a solution that at the same time guarantees

r power-saving cperfo mance and
in order to de
we investigated the performance in terms of number of instruction
executed during a cycle (IPC). The filter cache, in average,
improves the IPC both for drowsy cache and decay cache. It
provides faster access to the mostly used data and this increments
the number of instruction executed during a cycle.

Figure 6 (a) shows results for drowsy technique. The IPC for fast-
drowsy is compared to the IPC for drowsy-cache (used as
baseline). For each benchmark, the filter cache incr
The drowsy technique itself doesn’t suffered too much of
performance loss, but with the addition of a tiny filter cache, an
additional speed-up is possible. We found an IPC increment up to
11.5%; in average the increment is about 5%.
In Figure 6 (b) the benefits introduced by fast-decay are shown.
Except for few benchmarks (lame, tiff2bw, pgpencode and
rijndaelencode) the filter cache is powerful in reducing the
additional latency introdu
benchmarks with different behaviour, preliminary results with a

0,8

0,9

1

1,1

1,2

ba
si
cm

at
h

bi
tc
ou

nt

qu
ic
ks
or
t

su
sa
nc
or
ne

r

su
sa
ne

dg
e

su
sa
ns
m
oo

th

jp
eg
de

co
de

jp
eg
en

co
de

la
m
e

m
ad

ti
ff2

bw

ti
ff2

rg
ba

ti
ffd

it
he

r

ti
ffm

ed
ia
n

ty
pe

se
t

di
jk
st
ra

pa
tr
ic
ia

gh
os
ts
cr
ip
t

is
pe

ll

rs
yn
th

st
ri
ng
se
ar
ch

bl
ow

fis
hd

ec
od

e

bl
ow

fis
he

nc
od

e

pg
pd

ec
od

e

pg
pe

nc
od

e

ri
jn
da
el
en
co
de

ri
jn
da
el
de
co
de sh
a

CR
C3

2

FF
T

IF
FT

AD
PC

M
en

co
de

AD
PC

M
de

co
de

gs
m
en

co
de

gs
m
de

co
de

Auto./indust Consumer Network Office Security Telecomm. Avg

no
rm

al
iz
ed

 IP
C

Comparing IPC of drowsy and fast‐drowsy
(L1: 16KB‐2ways; L1: 128B‐DM)

(a)

0,8

0,9

1

1,1

1,2

ba
si
cm

at
h

bi
tc
ou

nt

qu
ic
ks
or
t

su
sa
nc
or
ne

r

su
sa
ne

dg
e

su
sa
ns
m
oo

th

jp
eg
de

co
de

jp
eg
en

co
de

la
m
e

m
ad

ti
ff2

bw

ti
ff2

rg
ba

ti
ffd

it
he

r

ti
ffm

ed
ia
n

ty
pe

se
t

di
jk
st
ra

pa
tr
ic
ia

gh
os
ts
cr
ip
t

is
pe

ll

rs
yn
th

st
ri
ng
se
ar
ch

bl
ow

fis
hd

ec
od

e

bl
ow

fis
he

nc
od

e

pg
pd

ec
od

e

pg
pe

nc
od

e

ri
jn
da
el
en
co
de

ri
jn
da
el
de
co
de sh
a

CR
C3

2

FF
T

IF
FT

AD
PC

M
en

co
de

AD
PC

M
de

co
de

gs
m
en

co
de

gs
m
de

co
de

Auto./indust Consumer Network Office Security Telecomm. Avg

no
rm

al
iz
ed

 IP
C

Comparing IPC of decay and fast‐decay
(L1: 16KB‐2ways; L1: 128B‐DM)

 (b)
Figure 6. IPC across MiBench suite: higher is better (a) Comparison of IPC for fast-drowsy and drowsy: the baseline is the IPC
achieved with drowsy (drowsy itself in average produces the 99% of IPC achieved without any power-saving technique); (b)
Comparison of leakage saving in fast-decay and decay: the baseline is the IPC achieved with decay (decay itself in average
produces the 80% of IPC achieved without any power-saving technique).

64KB show that the problems should be overcome. In general,
decay caches may incur into a not negligible performance loss
because an hit into a line that is gated introduces a load from the
lower level of memory. With the filter cache the access pattern to
the cache changes and, moreover, it captures a lot of access. In
average, the IPC increases by a 4%.

The effectiveness our proposal, strictly depends on the miss-rate
of L0 cache; the higher is the number of accesses it captures, the
lower is the execution time. The miss-rate of the filter cache is
shown in Table 3.

The miss-rate varies widely across the benchmark and it mainly
depends on the behavior of the benchmark. However it is useful to
underline that the L0, although small, is able to capture many
accesses.

5.3 Leakage energy-delay product
We evaluate the energy-delay product, [20], in a way that is
appropriate for our study [27, 28], as introduced in §2.1. Since we
are interested in the leakage, we calculate the product as:

tion time

akage
energ ows
the s ark.

leakage energy-delay=leakage energy * execu

Figure 7 shows the ratio of leakage energy-delay for fast-drowsy
and fast-decay respectively compared to drowsy and decay.
Figure 7 (a) shows that fast-drowsy technique reduces le

y-delay for all MiBench programs, while Figure 7 (b) sh
ame behaviour for fast-decay except for three benchm

This is not surprising, because these three benchmarks are the
ones previously analyzed in Section 5.1 and 5.2 that don’t have
benefits in leakage saving and IPC.

The leakage energy-delay metric emphasizes the effectiveness of
the technique because it considers at the same time the two
aspects we are focusing on: low-leakage and performance. In

average, fast-drowsy reduces leakage energy-delay of about 17%
relative to drowsy while fast-decay 13% relative to decay.

Table 3. Filter cache miss-rate

Auto./indust

basicmath 30.29%
bitcount 23.34%
quicksort 27.19%
susancorner 18.93%
susanedge 18.93%
susansmooth 18.93%

Consumer

jpegdecode 52.27%
jpegencode 35.77%
lame 37.62%
mad 34.77%
tiff2bw 18.07%
tiff2rgba 21.21%
tiffdither 36.93%
tiffmedian 21.75%
typeset 39.04%

Network dijkstra 55.89%
patricia 29.06%

Office

ghostscript 34.96%
ispell 27.52%
rsynth 34.85%
stringsearch 30.93%

Security

blowfishdecode 21.59%
blowfishencode 21.59%
pgpdecode 9.39%
pgpencode 10.70%
rijndaeldecode 53.91%
rijndaelencode 50.09%
sha 15.45%

Telecomm.

ADPCMdecode 28.68%
ADPCMencode 31.47%
CRC32 21.49%
FFT 28.19%
gsmdencode 21.90%
gsmecode 12.24%
IFFT 31.39%

0,8

0,9

1

1,1

1,2

ba
si
cm

at
h

bi
tc
ou
nt

qu
ic
ks
or
t

su
sa
nc
or
ne
r

su
sa
ne
dg
e

su
sa
ns
m
oo
th

jp
eg
de
co
de

jp
eg
en
co
de

la
m
e

m
ad

ti
ff
2b
w

ti
ff
2r
gb
a

ti
ff
di
th
er

ti
ff
m
ed
ia
n

ty
pe
se
t

di
jk
st
ra

pa
tr
ic
ia

gh
os
ts
cr
ip
t

is
pe
ll

rs
yn
th

st
ri
ng
se
ar
ch

bl
ow

fi
sh
de
co
de

bl
ow

fi
sh
en
co
de

pg
pd
ec
od
e

pg
pe
nc
od
e

ri
jn
da
el
en
co
de

ri
jn
da
el
de
co
de sh
a

CR
C3
2

FF
T

IF
FT

A
D
PC
M
en
co
de

A
D
PC
M
de
co
de

gs
m
en
co
de

gs
m
de
co
de

Auto./indust Consumer Network Office Security Telecomm. Avgno
rm

al
iz
ed

 le
ak
ag
e
en

er
gy

‐d
el
ay

Comparing leakage energy‐delay of drowsy and fast‐drowsy
(L1: 16KB‐2ways; L1: 128B‐DM)

(a)

0,8

0,9

1

1,1

1,2

ba
si
cm

at
h

bi
tc
ou
nt

qu
ic
ks
or
t

su
sa
nc
or
ne
r

su
sa
ne
dg
e

su
sa
ns
m
oo
th

jp
eg
de
co
de

jp
eg
en
co
de

la
m
e

m
ad

ti
ff
2b
w

ti
ff
2r
gb
a

ti
ff
di
th
er

ti
ff
m
ed
ia
n

ty
pe
se
t

di
jk
st
ra

pa
tr
ic
ia

gh
os
ts
cr
ip
t

is
pe
ll

rs
yn
th

st
ri
ng
se
ar
ch

bl
ow

fi
sh
de
co
de

bl
ow

fi
sh
en
co
de

pg
pd
ec
od
e

pg
pe
nc
od
e

ri
jn
da
el
en
co
de

ri
jn
da
el
de
co
de sh
a

CR
C3
2

FF
T

IF
FT

A
D
PC
M
en
co
de

A
D
PC
M
de
co
de

gs
m
en
co
de

gs
m
de
co
de

Auto./indust Consumer Network Office Security Telecomm. Avgn
or
m
al
iz
ed

 le
ak
ag
e
en

er
gy

‐d
el
ay

Comparing leakage energy‐delay of decay and fast‐decay
(L1: 16KB‐2ways; L1: 128B‐DM)

(b)
Figure 7. IPC across MiBench suite: higher is better (a) Comparison of IPC for fast-drowsy and drowsy: the baseline is the IPC
achieved with drowsy (drowsy itself in average produces the 99% of IPC achieved without any power-saving technique); (b)
Comparison of leakage saving in fast-decay and decay: the baseline is the IPC achieved with decay (decay itself in average
produces the 80% of IPC achieved without any power-saving technique).

6. RELATED WORK
Leakage power in cache memories is more important than
dynamic with current and next generation technologies [3] [29].
New high-K materials [30] are only delaying the leakage problem,
and in any case architectural solutions to cope with leakage could
be usefully employed. Unfortunately the fastest implementation is

 a the energy stand-poinnot lways the most beneficial from
Cache utilization varies widely ac

t [31].
ross a range of applications and

t one and cache decay

n

educing leakage power, as of our
dynamic power. The objective here is

NTS
We are particularly grateful to Prof. Sally McKee form

roviding us with a modified version

. REFERENCES
 low power unified

for
l Solid-State Circuits Conference

Skadron, "State-preserving vs. non-state-preserving

hitecture

r Electronics and Design (ISPLED'00), Rapallo, Italy,
2000, pp. 90--95.

it varies significantly also during the execution of a single
application [16], so there are a lot of opportunities for switching
off cache lines in order to reduce leakage.

Recent studies propose a better organization of the cache by
reducing its size dynamically [32]. Unused lines can be put into a
low-leakage state. When a cache block is put in power-saving
state, the technique is called state-preserving if the block content
is maintained and, on the other hand, non state-preserving if it is
destroyed [4, 15]. The main architectural methods of those two
categories are drowsy caches [5] for the firs
[19] for the second one. Cache Decay uses the circuital gated-Vdd
technique [6]; it introduces an extra transistor that gates the supply
of the cache SRAM cells. A dramatic reduction of the leakage
current is achieved, but the loss in performance is not negligible
and it causes some increase in dynamic power dissipation. On the
other hand, drowsy caches decrease leakage by reducing the
power supply without losing information. No additional access to
lower memory level is necessary during an access into a drowsy
line, but the leakage reduction is smaller than in gated-Vdd. A
comparison between these two proposals has been done in [15].

After these two techniques have been introduced, many others
have suggested their improvements. In [13], a drowsy cache
policy called “Reuse Most Recently used On (RMRO)” is
proposed. It is an advanced technique to select the lines to switch
off based on their usage. Drowsy cache approach is used with
Region based cache in [22], allowing both leakage saving and no
performance overhead. Multiple states with progressive reductio
of voltage supply before the data loosing are proposed in [12]. A
detailed FSM is presented in order to select the more useful
supply. The application of the drowsy technique to the instruction
cache has been studied in [9]. Meng et al. [18] explored the limit
of leakage power reduction in caches and they found that, with the
perfect knowledge of the access pattern, it is possible to find the
exact moment when to put a line into drowsy state or when to
switch it completely off.

A trade-off approach between performance and dynamic energy
consumption, has been proposed in [17]. A tiny filter cache is
positioned behind the processor and the standard L1 data cache to
reduce the performance loss. Improvements of this technique has
been proposed in [24, 33-35].

7. CONCLUSION
This paper proposes to further reduce leakage by shortening the
lifetime of high power lines in a power-saving capable cache. We
have used a simple and effective solution: the addition of a tiny
filter “L0” cache placed between CPU and the first level of
power-saving capable data cache. This solution, although simple,
has never been explored for r
knowledge, but only to save
to exploit the filtering action provided by filter cache for mostly
used data in order to allow the leakage power-saving policy in L1
to work better. Our results, obtained across all MiBench

benchmarks show that fast-drowsy (L0+L1drowsy) versus drowsy
(L1drowsy) increments of about 5% the IPC, reduces of about
10% the leakage and of about 17% the leakage energy-delay (in
average); fast-decay (L0+L1decay) versus decay (L1decay)
provides 4% of increment in IPC and reduces of about 6% the
leakage and 13% the leakage energy-delay (in average). Results
for leakage energy-delay are shown in Figure 8.

7.1 Future work
In the future, we will extend this work by exploring several other
parameters in the design space (e.g., policies of the power-saving
technique, cache sizes, benchmarks).

8. ACKNOWLEDGEME

Cornell University for p
of HotLeakage retargeted for ARM ISA. This research is
also supported by the HiPEAC Network of Excellence.

9
[1] A. Malik, B. Moyer, and D. Cermak, "A
cache architecture providing power and performance flexibility
(poster session)", International Symposium on Low Power
Electronics and Design (ISLPED'00), Rapallo, Italy, 2000, pp.
241-243.
2] S. Segars, "Low power design techniques [

microprocessors", Internationa
Tutorial (ISSCC'01), 2001
[3] A. Allan, D. Edenfeld, W. H. Joyner Jr, A. B. Kahng, M.
Rodgers, and Y. Zorian, "2001 technology roadmap for
semiconductors", in Computer, vol. 35, pp. 42-53, 2002.
[4] Y. Li, D. Parikh, Y. Zhang, K. Sankaranarayanan, M. Stan,
and K.
leakage control in caches", Design, Automation and Test in
Europe Conference and Exhibition (DATE'04), 2004, pp. 1530-
1591/04.
[5] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,
"Drowsy caches: simple techniques for reducing leakage power",
Annual International Symposium on Computer Arc
(ISCA'02), 2002, pp. 148-157.
[6] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, "Gated-Vdd: a circuit technique to reduce leakage in
deep-submicron cache memories", International Symposium on
Low Powe

0%

20%

40%

60%

80%

100%

Ideal decay Decay Fast decay Ideal drowsy Drowsy Fast drowsy

le
ak
ag
e
en

er
gy

‐d
el
ay
 sa

vi
ng

Comparing leakage energy‐delay with ideal cases
(L1: 16KB‐2ways; L0: 128B‐DM)

Figure 8. Comparison of leakage saving of decay/drowsy and
fast decay/drowsy with theoretical ideal cases. Our proposal
reduces the gap (full Mibench suite average).

[7] B. Allu and W. Zhang, "Static next sub-bank prediction for
drowsy instruction cache", Proceedings of the 2004 international
conference on Compilers, architecture, and synthesis for
embedded systems, 2004, pp. 124-131.

 Flautner, D. Blaauw, and T. Mudge, "Drowsy

 power electronics and design,

i, "Exploiting

win, and A. Sivasubramaniam, "Leakage Energy

, Y. Zhang, K. Sankaranarayanan, K. Skadron, and

n

R. Kastner, "Exploring the limits

S. Kaxiras, Z. Hu, and M. Martonosi, "Cache Decay:

 A. U. Diril, and Y. S. Dhillon,

. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and

mance Embedded Architectures &

A free, commercially

nics and design (ISLPED'99), 1999, pp. 64-69.

ications

 N.

g, B. Falsafi, K. Roy, and N.

cache", in IEEE Transactions on Very Large

esi, "Selective cache ways: On-demand cache

tem", in Lecture Notes in Computer Science (LNCS'03),

[8] M. J. Geiger, S. A. McKee, and G. S. Tyson, "Drowsy region-
based caches: minimizing both dynamic and static power
dissipation", 2nd Conference on Computing Frontiers (CF'05),
Ischia, Italy, 2005, pp. 378--384.
[9] N. S. Kim, K.
instruction caches: leakage power reduction using dynamic
voltage scaling and cache sub-bank prediction", in Annual
ACM/IEEE International Symposium on Microarchitecture
(MICRO'02), pp. 1072-4451/02, 2002.
[10] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, "Single-
v_DD and single-v_T super-drowsy techniques for low-leakage
high-performance instruction caches", Proceedings of the 2004
international symposium on Low
Newport Beach, California, USA, 2004, pp. 54--57.
[11] Y. Meng, T. Sherwood, and R. Kastner, "On the limits of
leakage power reduction in caches", International Symposium on
High-Performance Computer Architecture (HPCA'05), 2005, pp.
154-165.
[12] N. Mohyuddin, R. Bhatti, and M. Dubois, "Controlling
leakage power with the replacement policy in slumberous caches",
Conference on Computing Frontiers (CF'05), Ischia, Italy, 2005,
pp. 161--170.
[13] S. Petit, J. Sahuquillo, J. M. Such, and D. Kael
temporal locality in drowsy cache policies", Conference on
Computing Frontiers (CF'05), Ischia, Italy, 2005, pp. 371--377.
[14] L. Li, I. Kadayif, Y. F. Tsai, N. Vijaykrishnan, M. Kandemir,
M. J. Ir
Management in Cache Hierarchies", Proceedings of the 2002
International Conference on Parallel Architectures and
Compilation Techniques 2002, pp. 131-140
[15] D. Parikh
M. Stan, "Comparison of State-Preserving vs. Non-State-
Preserving Leakage Control in Caches", in Workshop on
Duplicating, Deconstructing and Debunking (held in conjunctio
with ISCA'03), pp. 14–25, 2003.
[16] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A.
Moshovos, "Spatial Memory Streaming", Annual International
Symposium on Computer Architecture (ISCA'06), 2006, pp. 252-
263.
[17] J. Kin, M. Gupta, and W. H. Mangione-Smith, "The Filter
Cache: An Energy Efficient Memory Structure", Annual
ACM/IEEE International Symposium on Microarchitecture
(MICRO'97), 1997, pp. 184-193.
[18] Y. Meng, T. Sherwood, and
of leakage power reduction in caches", in ACM Transactions on
Architecture and Code Optimization (TACO), vol. 2, pp. 221-246,
2005.
[19]
Exploiting Generational Behavior to Reduce Cache Leakage
Power", Proceedings of the 28th annual international symposium
on Computer architecture, 2001, pp. 240-251.
[20] H. H. S. Lee, J. B. Fryman,
"The Elusive Metric for Low-Power Architecture Research", in
Workshop on Complexity-Effective Design in conjunction with
ISCA-30 (WCED'03), 2003.
[21] Y
M. Stan, "HotLeakage: A Temperature-Aware Model of

Subthreshold and Gate Leakage for Architects", University of
Virginia Tech report, Charlottesville 2003

[22] M. J. Geiger, S. A. McKee, and G. S. Tyson, "Beyond Basic
Region Caching: Specializing Cache Structures for High
Performance and Energy Conservation", International
Conference on High Perfor
Compilers (HiPEAC'05), Barcelona, Spain, 2005, pp. 48109--
2122.
[23] M. R. a. R. Guthaus, J.S. and Ernst, D. and Austin, T.M. and
Mudge, T. and Brown, R.B., "MiBench:
representative embedded benchmark suite", Annual Workshop on
Workload Characterization (WWC'01), 2001, pp. 83--94.
[24] N. Bellas, I. Hajj, and C. Polychronopoulos, "Using dynamic
cache management techniques to reduce energy in a high-
performance processor", International symposium on Low power
electro
[25] K. Vivekanandarajah, T. Srikanthan, S. Bhattacharya, and P.
V. Kannan, "Incorporating pattern prediction technique for energy
efficient filter cache design", The 3rd IEEE International
Workshop on System-on-Chip for Real-Time Appl
(IWSOC'03), 2003, pp. 44-47.
[26] Intel, "Intel XScale Microarchitecture", in Technical
Summary, 2000.
[27] S. Yang, M. D. Powell, B. Falsafi, K. Roy, and T.
Vijaykumar, "An integrated circuit/architecture approach to
reducing leakage indeep-submicron high-performance I-caches",
in The Seventh International Symposium on High-Performance
Computer Architecture (HPCA'01), pp. 147-157, 2001.
[28] M. Powell, S. H. Yan
Vijaykumar, "Reducing leakage in a high-performance deep-
submicron instruction
Scale Integration Systems (VLSI'01), vol. 9, pp. 77-89, 2001.
[29] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S.
Hu, M. J. Irwin, M. Kandemir, and V. Narayanan, "Leakage
current: Moore's law meets static power", in Computer, vol. 36,
pp. 68-75, 2003.
[30] J. W. McPherson, "Reliability challenges for 45nm and
beyond", in Annual Conference on Design Automation (DAC'06),
pp. 176-181, 2006.
[31] L. Benini, A. Macii, E. Macii, and M. Poncino, "Analysis of
Energy Dissipation in the Memory Hierarchy of Embedded
Systems: A Case Study", Mediterranean Electrotechnical
Conference (MEleCon'00), Lemesos, Cyprus, 2000, pp. 236-239.
[32] D. H. Albon
resource allocation", in Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO'99), pp. 248–259,
1999.
[33] K. Vivekanandarajah, T. Srikanthan, and S. Bhattacharyya,
"Decode Filter Cache for Energy Efficient Instruction Cache
Hierarchy in Super Scalar Architectures", Conference on Asia
South Pacific design automation: electronic design and solution
fair (ASDAC'04), 2004, pp. 373-379.
[34] M. G. Kabadi and R. Parthasarathi, "Live-Cache: Exploiting
Data Redundancy to Reduce Leakage Energy in a Cache
Subsys
pp. 337-351, 2003.
[35] C. Yang and C. H. Lee, "HotSpot Cache: Joint Temporal and
Spatial Locality Exploitation for I-Cache Energy Reduction",
International Symposium on Low Power Electronics and Design
(ISLPED'04), 2004, pp. 114-119.

	1. INTRODUCTION
	2. MOTIVATION
	3. FAST POWER-SAVING CACHE HIERARCHY
	4. SIMULATION SETUP
	5. RESULTS
	5.1 Leakage saving
	5.2 IPC
	5.3 Leakage energy-delay product

	6. RELATED WORK
	7. CONCLUSION
	7.1 Future work

	9. REFERENCES

