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ABSTRACT 
Leakage power in data cache memories represents a sizable 
fraction of total power consumption, and many techniques have 
been proposed to reduce it. As a matter of fact, during a fixed 
period of time, only a small subset of cache lines is used. Previous 
techniques put unused lines, for example, to drowsy state or 
switch them off completely (cache decay) in order to save power.  

Our idea is to adaptively select mostly used cache lines. We found 
that this can be achieved automatically by using a tiny cache 
acting as a filter “L0” cache.  Our main contributions are: i) 
evaluation of filter cache to reduce leakage; ii) improvement of 
other existing power-saving techniques; iii) providing results to 
select the most promising solution. 

Our experiments, with complete MiBench suite for ARM based 
processor, show (in average) 10% improvement in leakage saving 
and 17% in leakage energy-delay versus drowsy-cache; versus 
decay-cache we found 6% improvement in leakage saving and 
13% in leakage energy-delay.  

Categories and Subject Descriptors 
B.3.2 [Memory structures]: Design styles – cache memories.  

General Terms 
Performance, Design, Experimentation. 

Keywords 
Cache decay; drowsy cache; filter cache; low-power; leakage. 

1. INTRODUCTION 
Power consumption of cache memories represents a large fraction 
of the total power consumption; previous studies have found that 
it accounts for about 50% of the total power consumed in 
embedded computing systems [1, 2]. 

The causes for power consumption in cache memories are mainly 
due to two factors: dynamic power and static power. Dynamic 
switching power is due to the charging and discharging of 
parasitic and/or input capacitors. Static power, which is due to 
sub-threshold, gate-oxide and reverse biased PN junction leakage, 
has increased in importance in recent CMOS technologies. 
Leakage depends mainly on the number of transistors and their 
features and, as also predicted in many studies [3-6], from the 
70nm generation, it constitutes a large part of total power 
dissipation.  

Recently, many research projects have focused on reducing 
leakage power in the cache memories [2, 4, 5, 7-15]. The common 
idea is to put unused cache lines into a power-saving state. The 
proposals can be broken down into two main categories [15]: 
state-preserving and non-state-preserving techniques. When a 

cache line is put in a power-saving state, the technique is called 
state-preserving if the line content is maintained (although 
accessible only after putting it back in normal state) and, on the 
other hand, non-state preserving if it is destroyed. State preserving 
techniques are mainly based on the circuit technique called 
drowsy [5], while non state-preserving techniques utilize the 
circuit technique called gated-Vdd [6]. The first has the advantage 
that no data is lost (only a wake-up is needed), but the leakage 
saving is less than in the second one; the second one provides a 
high leakage saving, but unfortunately, data stored in lines are lost 
and, in case of cache miss, the cell has to be turned on with a 
consequent performance loss. 

Both techniques work well if the selection of the lines to put in 
power-saving mode is done accurately. It is important to carefully 
select which lines to deactivate and when. This is necessary to 
avoid performance loss and to achieve enough leakage saving. As 
a matter of fact, during a fixed period of time, only a small subset 
of cache lines is used [16], so there are a lot of possibilities for 
saving power.  

In [17], the use of a L0 cache (filter cache), that is very small 
relative to the conventional L1 cache, has been proposed to reduce 
L1 cache activity. The filter cache works as a buffer to cache 
recently accessed cache lines. This approach reduces the activity 
of the L1 cache. 

In this paper, we propose to reduce the time when cache lines is 
actively dissipating power. Initially, we considered several 
options to shorten this time by considering, for example, to 
dynamically switch between drowsy and decay, as proposed by 
Meng et al. [18]. Our idea here is to make lines in L1 “less used” 
by using an L0 filter cache. This solution is very effective for the 
following reasons: i) an L0 cache can reduce the average access 
time as a small cache is faster the a larger L1 power-saving cache; 
ii) the additional cost of powering-up an L0 cache is much lower 
than the power-saving obtained by the faster powering-down of 
less frequently used L1 lines (as showed by experiments 
throughout the paper); iii) the additional design efforts to include 
an L0 cache is conceptually simple. 

Power-saving caches are typically used at the first level in the 
hierarchy. Our findings demonstrate that not only a speed-up can 
be achieved by using another small cache level (the total amount 
of cache memory is increased) but it also provides benefits in 
power-saving. This is due to the fact that the filter cache 
introduces itself a negligible leakage consumption (it is very tiny 
relative to the lower level) and the leakage in the conventional 
power-saving cache at the lower level is reduced because that 
level works for a smaller period of time. Indeed, the ratio of lines 
that are in power-saving state is not reduced and the number of 



transitions between the two level (high-power to low-power and 
viceversa) is smaller. 
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Figure 1.  Comparison of leakage saving of decay/drowsy with 
theoretical ideal cases (full Mibench suite average). 
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Figure 2.  Comparison of leakage energy-delay saving of 
decay/drowsy with theoretical ideal cases (full Mibench suite 
average). 

0%

5%

10%

15%

20%

Drowsy Fast‐drowsy Decay Fast‐decay

no
rm

al
iz
ed

 le
ak
ag
e

Leakage breakdown
(L1: 16KB‐2ways; L1: 128B‐DM)

L1 L0

Figure 3.  Leakage breakdown for tiffdither. The baseline 
(100%) is the leakage spent in standard cache (L1 cache 
without power-saving technique). 

Substantially we show that the addition of a filter cache before 
conventional power-saving caches provides advantages for both 
leakage-saving  and performance (the IPC increments).  

The remainder of the paper is organized as follows. In the next 
section we give our motivation for introducing L0. In Section 3 
the details of our proposal are presented. In Section 4, we explain 
the methodology we used for our experiments. Then we discuss, 
in Section 5, the results we have obtained, we evaluate the 
additional leakage saving achieved and the performance 
improvements versus other literature proposals for power-saving 
caches. Section 6 illustrates some recent related works. We finally 
conclude in Section 7. 

2. MOTIVATION 
In order to motivate our investigation, we analyzed the results 
with respect to the cases that can be considered as ideal theoretical 
cases.  

For a standard drowsy-cache, the best theoretical situation that can 
be achieved is when during each cycle only a line (the currently 
accessed line) is in high-power state while the others are in 
drowsy state. This ideal case could be obtained with the perfect 
knowledge of the access pattern, so that the power-saving 
technique is able to wake up the line in time and there is no 
possibility of accessing a drowsy line. We refer to this case as 
Ideal drowsy (versus Drowsy). An analogue situation can be 
considered the ideal theoretical case for decay-cache. Ideally, if  
the access pattern is perfectly known, only one line (the currently 
accessed one) could be kept on, while all the others are 
completely gated-off. We refer to this case as Ideal decay (versus 
Decay). We consider as ideal case a situation where just the 
currently accessed line is on (maximum saving) and the next line 
to be accessed is available immediately (no delay). This 
hypothesis is really very near to the ideal situation (more ideal, for 
example, than the oracle predictor presented in [19]). 

The behaviour for the leakage-saving (how much leakage can be 
saved by using the power-saving technique) of each approach, 
compared to the ideal cases, is shown in Figure 1.  

Both drowsy and decay techniques are effective for leakage 
saving, but there is a lot of distance that can be filled between the 
real and the ideal case. There is about a 10% of additional leakage 
saving that can be achieved and we are proposing a solution that 
try to reduce this distance. Looking at the performance, drowsy 
cache almost doesn’t impact the IPC (there is a reduction less than 
0.5%), while the performance loss for decay cache is higher 
(about 20%).  

In order to clearly understand the effectiveness of the techniques 
for both power-saving and performance, a metric that is able to 
combine them together is useful. We evaluate the leakage energy-
delay product in a way that is appropriate for our study [20]. Since 
we are interested in the leakage, we calculated the product as:  
leakage energy * execution time (Figure 2). With this metric, we 
can see that drowsy and decay are almost equivalent: decay 

provides better leakage saving while drowsy produces less 
performance loss, but considering these two factors together the 
techniques are very similar. However they are both far from their 
theoretical ideal case (more than 10% of difference).  

Figure 3 shows the leakage breakdown. A benchmark is presented 
as a case study. As shown, the additional leakage introduced by 
L0 is negligible. It accounts for about 1% of total leakage. This is 
actually the extra leakage in which our proposal incurs. However, 
since the reduction in L1 leakage is considerable, the total leakage 
(the sum of the leakage in L0 and in L1), is reduced. 
Results presented in this section show that there are a lot of 
possibilities for saving more power without penalizing 
performance.  



3. FAST POWER-SAVING CACHE 
HIERARCHY 
We considered an embedded system architecture based on an 
ARM processors and in this scenario our proposal addresses the 
problem of low-power data cache memories. A simple solution 
that has not been evaluated, as of our knowledge, for reducing 
leakage is based on a filter cache placed between CPU and a 
convention first level cache with power-saving capabilities 
(drowsy/decay). We call this scheme fast-drowsy/decay.  

Many different approaches can be used to reduce leakage in cache  
[2, 4, 5, 7-15].  We have focused on the following two techniques: 
drowsy cache [5] for the state-preserving category, and cache 
decay [19] for the non-state-preserving one. 

L0 cache is a very tiny (e.g. 128B) and fast cache [17], therefore 
the latency between L0 and CPU could be, for example, 1 cycle. 
We considered a typical size for an L1 power-saving cache for 
embedded systems (e.g. 16 KB) Due to the power saving 
techniques and larger size, this cache can experience a longer 
latency (e.g. 2 cycles). 

Our proposal aims to reduce leakage while not reducing 
performance. The addition of a new level of cache provides faster 
execution, but we show in this paper that this solution has many 
benefits also when the concern is the leakage saving.  

In order to understand the improvement we propose, we present 
Figure 4;  it shows in detail the transitions between high-power 
and low-power states, comparing our proposal versus the 
conventional scheme. Power-saving techniques can select the 
lines to put into the low-power state by using many different 
policies [5, 12, 13]. The simplest policy that can be considered is 
one where, periodically all the lines in the cache are put into low-
power mode and a line is waken up only when it is accessed 
again. This policy is called Simple policy and it requires only a 
single global counter as additional hardware (apart from the 
circuitry for the voltage reduction).  

This behaviour (conventional scheme) is shown in Figure 4 (a): 
the power-saving technique with simple policy [5] put all the lines 

into the low-power state (e.g. drowsy or decay state) when the 
global counter saturates. At the next access, the accessed line must 
be waken up. This translates into a performance loss and also into 
a dynamic power cost.  

Figure 4 (b) shows how our proposal (fast scheme) acts. We 
propose to avoid to uselessly waking-up of lines by adding a filter 
“L0” cache before the L1 power-saving capable cache. L0 cache 
captures the most recently used accesses. Lines can remain off in 
L1 since the last used data are stored also in L0 and an hit in the 
filter cache solves the access. Being L0 small and fast it 
introduces negligible additional leakage.  
The main contributions of the addition of L0 are: i) lines get older 
faster (accesses can be solved in L0 without waking-up lines again 
in L1); ii) the number of switching between low-power and high-
power state are reduced (with the consequent reduction of the 
related dynamic power). 
This unexplored solution has several advantages: 

• It mitigates the IPC degradation power-saving caches 
suffer; 

• It requires just simple SRAM cache; 
• It consumes a negligible fraction of a low-power L1 

cache (e.g. drowsy or decay); 
• It adapts to programs behaviour without any special 

effort. 

L0 adapts to programs behaviour without any special effort, 
providing an automatic static filtering operation for the accesses 
into L1; if a program needs more than the size of L0 allows, the 
L1 will work as a conventional power-saving cache, otherwise, L1 
can reduce the switching between low-leakage state and high-
power state and it can maintain lines into power-saving state for a 
longer time. 

The additional cost of this solution can be less than 1% of the L1 
cost. The size of L0 is considerably small and it is negligible 
relative to the full size of the data cache memory hierarchy. In 
addition, L0 doesn’t have any additional circuitry for power-
saving (such as additional bit, voltage supply, control). 
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Figure 4.  Comparison between power-saving schemes. (a) Conventional power-saving scheme with Simple-policy; (b) Fast power-
saving scheme (our proposal). Two assumptions have been done: i) global counter saturates every 4000 cycles; ii) block size is 
8kbytes. 



Substantially our technique provides a faster program execution 
maintaining the same ratio of line in power-saving state in L1. 
Since the activity time is reduced, the total leakage consumption 
is reduced. The overhead of the additions we propose is negligible 
(L0 is very small and it consumes very poor leakage), so the total 
leakage is reduced, as we are going to show in the experiments 
presented in §5. 

4. SIMULATION SETUP 
All simulations have been performed with HotLeakage [21] 
simulator, as in [4, 8, 11, 13, 15, 18, 22] retargeted for ARM 
based processor and modified in order to implement our 
configuration. For technology parameters, we use values for a 
70nm process with Vdd=0.9V (Table 1) as presented in several 
current studies [13] [15]. This choice can provide a more direct 
comparison with such studies. 

In this work we analyze a fixed configuration for the power-

ed the entire suite of MiBench [23] benchmark suite 

e without filter cache 

ithout filter cache 

ter cache 

r cache 

lter cache 

ulated. L0 

ynamic energy, that each 

saving technique (simple policy with 4000 cycles update 
window).  

We simulat
for an ARM based processor. We compared conventional leakage 
power-saving caches with the scheme we propose and we also 
compared them with a standard cache (without power-saving 

capabilities) in order to have a common baseline. To be more 
clear, let consider the following acronyms: 

• standard cache: level 1 (L1) data cach

Table 2: Configuration of the caches 
 L0 L1 

Cache size 128B 16KB 
Block size 16B 16B 

Associativity Direct mapped  2 
Latency 1 cycle 2 cycles 

(L0); no power-saving technique applied; 
• drowsy cache: level 1 (L1) data cache w

(L0); drowsy cache technique applied to L1 cache; 
• decay cache: level 1 (L1) data cache without fil

(L0); decay cache technique applied to L1 cache; 
• fast-drowsy cache: level 1 (L1) data cache with filte

(L0); drowsy cache technique applied to L1 cache; 
• fast-decay cache: level 1 (L1) data cache with fi

(L0); decay cache technique applied to L1 cache; 
Table 2 shows the configuration of the caches we sim
cache size is closest its typical size [17, 24, 25] and the other 
parameters are closest to common ARM XScale processor [26].  

For the leakage evaluation, we take into account all the extra 
power consumptions, in particular the d
power-saving technique introduces; in other terms, we consider 
the total leakage, where we account for the contributions from 
activity in the counters the power-saving techniques use to 
periodically put lines into low-power state, the leakage of extra 
circuitry and we consider also the dynamic power of such extra 
circuitry (as an additional cost to implement the low-power 
technique). The leakage, for the configuration where L0 is 
included, accounts for the L0 contribution: the total leakage 
considered is the sum of the leakage spent in L0 and the leakage 
spent in L1. 

Table 1: Energy parameters 

Leakage control technique Drowsy Decay 
Time for low to high switch 3 cycles 3 cycles 
Time for high to low switch 3 cycles 30 cycles 

Low to high switch cost 0.0003 nJ 0.0003 nJ 
High to low switch cost 0.0001 nJ 0.0001 nJ 

Extra latency in low leak mode 1 cycle 0 cycle 
Policy Simple 

Update window 4000 cycles 
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 (b)
Figure 5. Leakage-saving across MiBench suite: higher is better. (a) Comparison of leakage-saving in fast-drowsy and drowsy: 
baseline is the leakage-saving achieved with drowsy (drowsy itself in average produces a leakage-saving of 83.58% relative to the
case. 



5. RESULTS 
The main objective of this work is to reduce leakage in data cache 

penalizing performance. In order to 

ows the leakage saving achievable with our proposal in 
chniques. Figures 4, 6, 7 show the 

to 

apabilities. With this assumption, 
monstrate how our solution addresses this challenge, 

eases the IPC. 

ced by decay technique. For the 

memories without 
demonstrate the effectiveness of our proposal, we studied mainly 
three metrics: leakage, IPC and energy-delay product (as 
introduced in § 2.1). In the following, these metrics are analyzed 
in detail and the results obtained across MiBench suite [23] are 
presented. 

5.1 Leakage saving 
Figure 5 sh
comparison with standard te
behaviour of our proposal across all the benchmarks of the 
MiBench suite [23]. 
Figure 5 (a) shows the comparison of the leakage saving obtained 
with fast-drowsy and with a drowsy-cache (used as baseline). As 
shown, fast-drowsy is always better than drowsy-cache and the 
behaviour is almost regular. The reduction in leakage (or 
improvement in leakage-saving) varies from a minimum of 2% to 
a maximum of 19% and in average, fast-drowsy reduces the 
leakage, in comparison with drowsy-cache, of about 10%. 
The same results for fast-decay are presented in Figure 5 (b) in 
comparison to the decay-cache. For this technique the benefits for 
leakage saving are less significant. This is not surprising, because 
the decay technique itself already provides a very powerful 
leakage saving, higher than drowsy. For a few benchmarks 
(quicksort, tiff2bw, tiff2rgba and rijndael) fast-decay is even 
worse, even though the loss is minimal (less than 2%). The main 
problem for these benchmarks should be the size of L1 because on 
it there is a huge amount of conflict miss that can’t be eliminated. 
However, preliminary simulations with a bigger cache (e.g. 
64KB) show this problem can be overcome and that fast-decay 

should produces benefits some benefits also for them. In average, 
fast-decay reduces the leakage of about 6% in comparison to 
decay-cache. 
If the leakage spent by a standard cache (without power-saving 
technique) is assumed as baseline (it is not shown in figures) 
drowsy-cache reduces leakage to 16.4% while fast-drowsy 
14.7% (in average) and decay-cache reduces leakage to 13.3% 
while fast-decay 12.8%. Anyway, it is more appropriate to 
compare this solutions in terms of leakage energy-delay as 
discussed below. 

5.2 IPC 
We wish to adopt a solution that at the same time guarantees 

r  power-saving cperfo mance and
in order to de
we investigated the performance in terms of number of instruction 
executed during a cycle (IPC). The filter cache, in average, 
improves the IPC both for drowsy cache and decay cache. It 
provides faster access to the mostly used data and this increments 
the number of instruction executed during a cycle.  

Figure 6 (a) shows results for drowsy technique. The IPC for fast-
drowsy is compared to the IPC for drowsy-cache (used as 
baseline). For each benchmark, the filter cache incr
The drowsy technique itself doesn’t suffered too much of 
performance loss, but with the addition of a tiny filter cache, an 
additional speed-up is possible. We found an IPC increment up to 
11.5%; in average the increment is about 5%. 
In Figure 6 (b) the benefits introduced by fast-decay are shown. 
Except for few benchmarks (lame, tiff2bw, pgpencode and 
rijndaelencode) the filter cache is powerful in reducing the 
additional latency introdu
benchmarks with different behaviour, preliminary results with a 
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 (b) 
Figure 6.  IPC across MiBench suite: higher is better (a) Comparison of IPC for fast-drowsy and drowsy: the baseline is the IPC 
achieved with drowsy (drowsy itself in average produces the 99% of IPC achieved without any power-saving technique); (b) 
Comparison of leakage saving in fast-decay and decay: the baseline is the IPC achieved with decay (decay itself in average
produces the 80% of IPC achieved without any power-saving technique). 



64KB show that the problems should be overcome. In general, 
decay caches may incur into a not negligible performance loss 
because an hit into a line that is gated introduces a load from the 
lower level of memory. With the filter cache the access pattern to 
the cache changes and, moreover, it captures a lot of access. In 
average, the IPC increases by a 4%. 

The effectiveness our proposal, strictly depends on the miss-rate 
of L0 cache; the higher is the number of accesses it captures, the 
lower is the execution time. The miss-rate of the filter cache is 
shown in Table 3.  

The miss-rate varies widely across the benchmark and it mainly 
depends on the behavior of the benchmark. However it is useful to 
underline that the L0, although small, is able to capture many 
accesses.  

5.3  Leakage energy-delay product 
We evaluate the energy-delay product, [20], in a way that is 
appropriate for our study [27, 28], as introduced in §2.1. Since we 
are interested in the leakage, we calculate the product as:  

tion time 

akage 
energ ows 
the s ark. 

leakage energy-delay=leakage energy * execu

Figure 7 shows the ratio of leakage energy-delay for fast-drowsy 
and fast-decay respectively compared to drowsy and decay. 
Figure 7 (a) shows that fast-drowsy technique reduces le

y-delay for all MiBench programs, while Figure 7 (b) sh
ame behaviour for fast-decay except for three benchm

This is not surprising, because these three benchmarks are the 
ones previously analyzed in Section 5.1 and 5.2 that don’t have 
benefits in leakage saving and IPC.  

The leakage energy-delay metric emphasizes the effectiveness of 
the technique because it considers at the same time the two 
aspects we are focusing on: low-leakage and performance. In 

average, fast-drowsy reduces leakage energy-delay of about 17% 
relative to drowsy while fast-decay 13% relative to decay. 

Table 3. Filter cache miss-rate 

Auto./indust 

basicmath 30.29% 
bitcount 23.34% 
quicksort 27.19% 
susancorner 18.93% 
susanedge 18.93% 
susansmooth 18.93% 

Consumer 

jpegdecode 52.27% 
jpegencode 35.77% 
lame 37.62% 
mad 34.77% 
tiff2bw 18.07% 
tiff2rgba 21.21% 
tiffdither 36.93% 
tiffmedian 21.75% 
typeset 39.04% 

Network dijkstra 55.89% 
patricia 29.06% 

Office 

ghostscript 34.96% 
ispell 27.52% 
rsynth 34.85% 
stringsearch 30.93% 

Security 

blowfishdecode 21.59% 
blowfishencode 21.59% 
pgpdecode 9.39% 
pgpencode 10.70% 
rijndaeldecode 53.91% 
rijndaelencode 50.09% 
sha 15.45% 

Telecomm. 

ADPCMdecode 28.68% 
ADPCMencode 31.47% 
CRC32 21.49% 
FFT 28.19% 
gsmdencode 21.90% 
gsmecode 12.24% 
IFFT 31.39% 
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(b) 
Figure 7.  IPC across MiBench suite: higher is better (a) Comparison of IPC for fast-drowsy and drowsy: the baseline is the IPC 
achieved with drowsy (drowsy itself in average produces the 99% of IPC achieved without any power-saving technique); (b) 
Comparison of leakage saving in fast-decay and decay: the baseline is the IPC achieved with decay (decay itself in average
produces the 80% of IPC achieved without any power-saving technique). 



6. RELATED WORK 
Leakage power in cache memories is more important than 
dynamic with current and next generation technologies [3] [29]. 
New high-K materials [30] are only delaying the leakage problem, 
and in any case architectural solutions to cope with leakage could 
be usefully employed. Unfortunately the fastest implementation is 

 a  the energy stand-poinnot lways the most beneficial from
Cache utilization varies widely ac

t [31]. 
ross a range of applications and 

t one and cache decay 

n 

 

educing leakage power, as of our 
dynamic power. The objective here is 
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it varies significantly also during the execution of a single 
application [16], so there are a lot of opportunities for switching 
off cache lines in order to reduce leakage.  

Recent studies propose a better organization of the cache by 
reducing its size dynamically [32]. Unused lines can be put into a 
low-leakage state. When a cache block is put in power-saving 
state, the technique is called state-preserving if the block content 
is maintained and, on the other hand, non state-preserving if it is 
destroyed [4, 15]. The main architectural methods of those two 
categories are drowsy caches [5] for the firs
[19] for the second one. Cache Decay uses the circuital gated-Vdd 
technique [6]; it introduces an extra transistor that gates the supply 
of the cache SRAM cells. A dramatic reduction of the leakage 
current is achieved, but the loss in performance is not negligible 
and it causes some increase in dynamic power dissipation. On the 
other hand, drowsy caches decrease leakage by reducing the 
power supply without losing information. No additional access to 
lower memory level is necessary during an access into a drowsy 
line, but the leakage reduction is smaller than in gated-Vdd. A 
comparison between these two proposals has been done in [15].  

After these two techniques have been introduced, many others 
have suggested their improvements. In [13], a drowsy cache 
policy called “Reuse Most Recently used On (RMRO)” is 
proposed. It is an advanced technique to select the lines to switch 
off based on their usage. Drowsy cache approach is used with 
Region based cache in [22], allowing both leakage saving and no 
performance overhead. Multiple states with progressive reductio
of voltage supply before the data loosing are proposed in [12]. A 
detailed FSM is presented in order to select the more useful 
supply. The application of the drowsy technique to the instruction 
cache has been studied in [9].  Meng et al. [18] explored the limit 
of leakage power reduction in caches and they found that, with the 
perfect knowledge of the access pattern, it is possible to find the 
exact moment when to put a line into drowsy state or when to 
switch it completely off.  

A trade-off approach between performance and dynamic energy 
consumption, has been proposed in [17]. A tiny filter cache is 
positioned behind the processor and the standard L1 data cache to 
reduce the performance loss. Improvements of this technique has 
been proposed in  [24, 33-35].  

7. CONCLUSION
This paper proposes to further reduce leakage by shortening the 
lifetime of high power lines in a power-saving capable cache. We 
have used a simple and effective solution: the addition of a tiny 
filter “L0” cache placed between CPU and the first level of 
power-saving capable data cache. This solution, although simple, 
has never been explored for r
knowledge, but only to save 
to exploit the filtering action provided by filter cache for mostly 
used data in order to allow the leakage power-saving policy in L1 
to work better. Our results, obtained across all MiBench 

benchmarks show that fast-drowsy (L0+L1drowsy) versus drowsy 
(L1drowsy) increments of about 5% the IPC, reduces of about 
10% the leakage and of about 17% the leakage energy-delay (in 
average); fast-decay (L0+L1decay) versus decay (L1decay) 
provides 4% of increment in IPC and reduces of about 6% the 
leakage and 13% the leakage energy-delay (in average). Results 
for leakage energy-delay are shown in Figure 8. 

7.1 Future work 
In the future, we will extend this work by exploring several other 
parameters in the design space (e.g., policies of the power-saving 
technique, cache sizes, benchmarks).  
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