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ABSTRACT 
 
Decoupled Threded Architecture (DTA)2 is designed to exploit Thread Level 
Parallelism (TLP) by using a sea of simple cores grouped into cluster for providing a 
scalable solution that copes with wire delay. 
Our goals are i) to provide an aggressive mechanisms for decoupling memory accesses 
deriving from simple and complex data structures; ii) to implement a non-blocking 
execution of the threads. 
Here we illustrate some of the concepts related to our research in implementing DTA. 
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1 Introduction 
Our architecture, DTA (Decoupled Threaded Architecture) is based on SDF execution 
paradigm [1, 2] and extends its main properties, like non-blocking execution of threads 
and decoupling of memory accesses from execution. The architecture is organized into 
clusters, where each cluster contain processing elements and portions of a distributed 
scheduler that takes care of allocating tasks on available processors in the same or some 
other cluster.The distributed scheduler details has been introduced in previous work [3] 
The fact that in original SDF execution paradigm each thread needs to be strictly divided 
into pre-load, execution and post-store phases imposes limitations in thread creation for 
the compiler. When compiler encounters a memory access, it must find a way to move it to 
pre-load phase, or when that is not possible (for example when address needs to be 
calculated) it needs to crate new (sequential) thread. This leads to the fact that the size of 
the threads that can be extracted is very limited wand this fact  directly affects the amount 
of available TLP.  
In order to overcome this limit, we reviewed completely the way generic memory access 
happen 
Since READ instructions can occur anywhere inside the thread, decoupling as proposed in 
SDF is violated. One part of our current research is to try and identify all memory accesses 
that will violate decoupling. Once this is done, data can be pre-loaded before thread starts 
to execute, and decoupled execution will be preserved. Details are given in Section 3. 
Morover, one of our design goals is also to map our architecture as closely as possible on 
existing microarchitectures. To this end, we rely on a single pipeline for processing all 
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(non-blocking) instructions instead of using two dedicated pipeline (execution+memory) 
as in the Scheduled Dataflow Architecture (SDA). 
A new scheduling mechanism has introduced additional delay which affects the 
performance. We are investigating the possibility of non-blocking resource assignment by 
allowing the thread to continue even if response didn’t arrive. Details are given in Section 
2. 

2 Non blocking resource assignment 
Each thread in our architecture needs a frame in order to start getting the data from other 
threads and eventually to start the execution. Frame assignment is done in the scheduler. 
In a naïve implementation, when the new thread is forked processor sends the request for 
the new thread to the scheduler and continues the execution only when the response 
arrives. During the time spent in waiting for the response from scheduler the pipeline is 
stalled. This response delay doesn’t exist in original SDF. It comes from the need to 
distribute threads across many processors and achieve parallel execution. We have 
measured this time with simple Fibonacci benchmark, and results for standard DTA 
architecture, as well as for DTA with double speed interconnection network (DTA-DS) are 
presented in Figure 1.  
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Figure 1. Portion of execution time spent in waiting for FALLOC response 

 
In a smarter implementation we considered the following idea. Two tables are used - map 
table and store buffer (Figure 2). When the fork of the new thread occurs, processor 
continues without stopping. Instead of a frame pointer, it receives a virtual frame pointer, 
which is local for each processor. At the same time, request for new frame is sent to the 
scheduler and a new entry in the map table is added. Processor is free to continue the 
execution and waiting for the frame response is done in parallel. When the response from 
scheduler arrives the map table entry with corresponding virtual frame pointer is 
updated. 
The only instructions that actually use the frame pointer are store instructions which store 
data for the new thread in its frame. If a store instruction arrives before the response from 
the scheduler, we must add a new entry in  the store buffer. Later on, when the  the frame 



arrives, the store buffer will be checked for pending stores and they will be processed in 
that moment.  
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Figure 2. Blocking (on the left) and non blocking resource assignment (on the right) 

 
Even in the case when responses from scheduler arrive later and we don’t achieve to 
speed-up the starting time of new threads, execution time of the current thread is shorter 
and processor becomes free earlier.  

3 Decoupling memory accesses 
 Since READ instructions (that read data from the main memory) can cause cache misses, 
this may cause pipeline stalls and can violate decoupling of memory accesses. 
Figure 3 on the left shows current situations, where READ instructions are mixed with the 
rest of the code. On the right, a new pre-load phase has been added in order to solve the 
problem of memory accesses. Our approach is to identify memory accesses that can cause 
blocking at compile time, and to give information about them to the hardware. This 
identification can be done either automatically by the compiler, or programmer could 
insert it manually. 
While the instructions that access memory are known at compile time, actual location for 
the access in most cases is known only at run time. Programs need to be modified in order 
to calculate these addresses before the thread that is performing memory accesses is 
forked. We can use the knowledge on complex data structures (like arrays and linked lists) 
in order to extract this information on memory accesses, to calculate the addresses and 
write them to the appropriate places in the frame. Before thread starts executing, a Load 
Unit will read the information on memory accesses from the frame, and it will program a 
RDMA [ref] mechanism in order to initiate loading of data. Only when all data (both data 
from the frame and data from the main memory) are available locally, thread can start its 
execution. Once data is fetched, it must remain in cache during the time when it is needed 
by the thread. 
 



  
Figure 3. Mechanism for pre-loading data. On the left, current generic situation is shown 
(arrows represent the data being communicated). On the right, preload phase has been added to 
each thread that will include all memory accesses within the thread. 

 
Since capacity of the cache is limited, it may occur that two (or more) fetched blocks are 
conflicting, and one (or more) of them will be evicted from the cache. Also, if invalidation 
from other processor occurs after loading data, depending on the coherence protocol, data 
may be invalidated.  Solution for this problem has been investigated in the area of the 
predictable real-time systems with cache memories. Some proposals in the literature [4] try 
to address this unpredictability, namely “cache partitioning” and “cache locking”. Also, 
lot research has been performed in area of reducing miss rate for direct-mapped and set-
associative caches. Since these misses are coming form conflicts, we can use some of the 
techniques in order to reduce the number of conflicts and try to keep the data in the cache. 
The approaches for reducing the number of conflict misses, are based on using different 
placement functions in case of a conflict, like hash-rehash caches [5] and xor-based 
placement [6]. One of the objectives of our research is to investigate the usage of these 
techniques and to try and improve them so that they can be used to keep the data in the 
cache as long as it’s needed and to eliminate as much potential conflicts as possible. 
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