
Implementing DTA support in CellSim

Roberto Giorgi1,3, Nikola Puzovic2,3, Zdravko Popovic2,3

Dept of Information Engineering, University of Siena, Via Roma 56, 53100 Siena, Italy

ABSTRACT

Decoupled Threaded Architecture (DTA) is designed to exploit Thread Level
Parallelism (TLP) by using many simple cores grouped into a cluster for providing a
scalable solution that copes with wire delay. Cell Broadband Engine (CBE) is a
multiprocessor on a chip developed by Sony, Toshiba and IBM that contains one
general purpose core and eight coprocessor elements that accelerate the multimedia and
vector processing.
Here we illustrate the work that has been performed in implementing DTA support in
the Cell processor using CellSim and we present the initial results that we have
obtained.

KEYWORDS: multiprocessor, thread level parallelism, multithreading

1 Introduction
The Decoupled Threaded Architecture (DTA) [1] is based on SDF execution paradigm [2,
3]. DTA addresses scalability by a hierarchical structure of the nodes and a distributed
scheduler. The architecture is divided into clusters, such that each element of the cluster
can be reached within one cycle. Each thread that runs on DTA has a portion of local
memory (called frame) associated to it, where data that are needed for the execution are
kept. Only when all data that are needed for execution have arrived to the frame, thread
will execute. Since frames are located near to the processor, accesses to frame memory
should have very low latency, and will not cause any misses. Hence, the pipeline will not
stall because of frame memory accesses. Each cluster in DTA contains a Distributed
Scheduling Element (DSE) that is responsible for allocating tasks for processors inside the
cluster and for maintaining balanced workload on each of them. Local Scheduling Element
(LSE) is located inside each processor, and it is responsible for managing frames and
execution of threads in the processor.
Cell Broadband Engine Architecture (CBEA) [4] combines one Power Architecture core
with multiple SIMD processors called Synergetic Processing Elements (SPE). The current
implementation has eight SPEs, which are interconnected by circular ring with four
channels that is called Element Interconnect Bus (EIB). Each SPE in the architecture has a
local storage that does not participate in cache coherency, and PPE has L1 and L2 caches.
A main memory can be attached trough the Memory Interface Controller (MIC).

1 HiPEAC Member.
2 HiPEAC PhD Student.
3 http://www.dii.unisi.it/~{giorgi,popovic,puzovic}

So far, the simulator that we used in order to test the DTA was using DTA-specific
instruction set, and because of limited availability of benchmarks we have decided to
implement a DTA support in a simulator for one of the existing and widely used
architectures. Doing this would also allow us to focus only on DTA-related research
because we would be able to utilize components that exist in other simulators (such as a
sophisticated memory system, interconnection, etc). Since CBE has gained a lot of
attention recently, and it has shown excellent performance, we have decided to use Cell
processor as the starting point for implementing the DTA support. The DTA threads
would execute in this case on SPEs, and PPE would be responsible for managing workload
and for dispatching threads.

2 Mapping DTA to Cell
In order to execute the DTA programs, Cell SPE pipelines are used together with
additional logic for managing thread creation and distribution. A tool has been developed
for translating existing DTA benchmarks for the SPE architecture. In order for the
benchmarks to run, few new instructions have been added that will support the creation
and management of the DTA threads, and that will be used to manage loads and stores to
the frame memory.
The system is developed starting from CellSim [5], which is a modular simulator
developed in the UNISIM environment that is intended to simulate the Cell processor.
Figure 1 shows the mapping of DTA architecture to Cell.

SPE SPE SPE SPE

SPE SPE SPE SPE

EIB

PPE

I/O
 controller

RA
M
 controller

PPE SPE

Arbiter

L2

PPU

DSE

SPU LS

MFC
LSE

FM

DSE Distributed Scheduling
Element

LSE Local Scheduling
Element

FM Frame Memory (part
of LS)

Figure 1. Mapping DTA to Cell

When performing this mapping, we have considered that one PPE and eight SPEs that are
attached to it are making one cluster. Distributed Scheduling Element (DSE) is added
alongside each PPU, and it is in charge of distributing workload among different SPEs.
Inside each SPE, we have added a Local Scheduling Element (LSE) that is in charge of
threads that are running on the SPE and a certain amount of LS is dedicated to hold
frames for DTA threads. Figure 2 on the left presents a detailed organization of the SPE.

SPU LS

MFC

Status Channels MFC Requests

LOAD/STORE

FETCH

IN/OUT

IN/OUT
IN/OUT

SPE

EIB

Selection Logic (MMU)

in_bus

Channel Interface

in_ch out_ch

LS Interface
(queues)

in_ls out_ls

DMA
controller LSE

Stores to frame memory & signals

out_bus

Figure 2 Detailed SPE (on the left) and MFC (on the right) organization

SPE is implemented using three modules: SPU that is the actual processor, LS that
represents a Local Store and the MFC (Memory Flow Controller) module that is
responsible for running DMA operations, and allows the PPE to control the SPE. Figure 2
on the right presents the organization of the MFC with the modifications needed to run
DTA threads. Local storage has remained unchanged, and one part of it has been reserved
in order to hold the frames. LSE is a part of MFC, and it uses the capabilities of MFC for
communication with the rest of the system. Through the channel interface, SPE can access
the LSE, and LSE can send data and commands to SPE. By using the LS interface (queues),
LSE can write to frame memory.
CellSim provides with the mapping of the memory in which all local stores, main memory
and control registers for PPEs and SPEs are mapped inside a single address space. In this
mapping, the local store of each SPU has a predefined range of addresses and we are using
part of this range for accessing frames. We have used free locations in the mapping of
control registers in order to map control registers for local and distributed schedulers.

3 Initial Results
In order to perform the initial tests we have use the simplest available benchmark that
calculates Fibonacci numbers. Figure 3 shows the results that were obtained. We can see
that Cell with DTA support (DTA on Cell) scales well, even better than basic DTA, but
execution time for basic DTA decreases not as fast as for Cell with DTA support when the
number of SPE increases.

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8

N
um

be
r o

f c
yc
le
s

Number of processors (SPUs)

Execution time for fib(10)

DTA on Cell Basic DTA

0

2

4

6

8

10

0 2 4 6 8 10

Sp
ee

du
p

Number of processors (SPUs)

Scalability for fib(10)

Ideal Basic DTA DTA on Cell

Figure 3. Comparison of “DTA on Cell” execution and basic DTA execution

The basic DTA model that was used for obtaining results uses perfect memory (no
latencies) and a bus as interconnection among processors. This explains why the execution
time with eight processors is worse than the execution time with seven processors. Since
the network gets congested when number of processors is increased from seven to eight,
the average latency of the messages that are exchanged among processors is higher, and
total execution time gets longer. When executing DTA on Cell, the memory model is
realistic and the SPEs are modelled with more detail then the pipelines of DTA (such as
pipeline hazards). This yields the higher execution time compared to basic DTA. This also
leads to the fact that messages are sent with bigger distance in time between them (with
respect to basic DTA version), and message latency does not saturate the scalability when
executing DTA programs on Cell.

4 Conclusions and future work
Here we have presented the work performed so far in implementing the DTA support in
the Cell processor. The initial results that we have obtained show that we are on the right
track for achieving our goal, which is implementing a scalable and efficient version of the
DTA architecture. Future work will focus on further development of the simulator which
will eventually lead to fully non-blocking execution of threads, and to provide
mechanisms for decoupling memory accesses from execution.

5 Acknowledgments
This work was supported by the European Commission in the context of the SARC
integrated project #27648 (FP6).

6 References

[1] R. Giorgi, Z. Popovic, and N. Puzovic, "DTA-C : A Decoupled multi-Threaded

Architecture for CMP Systems," in 19th International Symposium on Computer
Architecture and High Performance Computing, SBAC-PAD 2007 Gramado, Brasil,
2007, pp. 263-270.

[2] K. M. Kavi, R. Giorgi, and J. Arul, "Scheduled Dataflow: Execution Paradigm,
Architecture, and Performance Evaluation," IEEE Transaction on Computers, vol. 50,
pp. 834-846, August 2001.

[3] K. Kavi, J. Arul, and R. Giorgi, "Execution and Cache Performance of the Scheduled
Dataflow Architecture," SPRINGER Journal of Universal Computer Science, vol. 6, pp.
948-967, October 2000.

[4] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,
"Introduction to the cell multiprocessor," IBM J. Res. Dev, vol. 49, pp. 589-604, 2005.

[5] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade,
"CellSim: A Cell Processor Simulation Infrastructure," in HiPEAC ACACES-2007,
L'Aquila, Italy, 2007, pp. 279-282.

