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Abstract 

 
In this paper we present results of parallelization of 

Deblocking Filter (DF) of H.264 video codec on 
Decoupled Threaded Architecture (DTA). We 
parallelized the code trying to exploit all available 
thread level parallelism and to make it suitable for 
DTA architecture. Experimental results show that 
significant speedup can be achieved and that DTA 
architecture can efficiently exploit available 
parallelism. We also show comparison with 
parallelized version of DF for Cell architecture. 

 
1. Introduction 
 

Today’s multimedia systems demand more and 
more computational power since the quality of content 
that they provide is improving. In particular, users 
show constant demand for videos with higher 
resolution even on mobile devices. H.264, also known 
as MPEG4 part 10 or MPEG-4 AVC (Advanced Video 
Coding) is a video coding standard aimed at providing 
high video quality even at lower bitrates. It was 
developed with many application fields in mind, such 
as high resolution video (for satellite, cable or DSL 
broadcast), video storage (HD-DVD, blu-ray disc), and 
internet and multimedia telephony systems [1]. 

Current single core architectures’ performance 
cannot keep up with growing requirements for 
computational power. Since the technology has 
enabled accommodating more resources on a single 
chip, it is now possible to use many-core processors 
even in embedded devices. The many-core architecture 
that we are developing, the Decoupled Threaded 
Architecture (DTA) [2], is based on a coarse-grained 
dataflow among threads, and on their non-blocking 
execution. It also exploits distribution of processing 
elements to overcome wire delay problem and to 
improve the overall performance.  

One more example of many-core architecture is a 
new research chip from Intel that contains 80 simple 
cores, where each core contains two programmable 
floating point engines. Each core contains a 5-point 

message passing router, and is connected to other cores 
in a 2D mesh network. Unlike DTA, this chip exploits 
standard programming model.  

TRIPS [3] is another example of many core 
architecture that uses “medium size” tiles that can be 
configured either as processing elements, memory, 
cache or registers. While DTA exploits dataflow 
execution at the thread level and control-flow inside 
one thread, TRIPS does the opposite. Indeed, TRIPS 
executes hyper-blocks in a control-flow order, and 
inside these blocks execution is dataflow.  

Cell Broadband Engine Architecture (CBEA) [4] 
combines one Power Architecture core with SIMD 
processing elements that are called SPEs (Synergistic 
Processing Elements). In the current implementation, 
one CBEA processor has 8 SPEs that are 
interconnected by a circular ring with four channels. 
The main difference between CBEA and DTA is the 
programming model that is used. 

Many-core architectures have become widely 
used. Therefore, parallelization of programs that are 
used for providing multimedia content, such as video 
codecs, and running them on many-core processors is a 
promising way to improve the performance. In our 
work we have focused on parallelizing Deblocking 
Filter (DF) of the H.264 codec, and on utilizing the 
advantages that DTA offers to exploit available Thread 
Level Parallelism (TLP). We chose DF because it is 
one of the most time consuming portions of the code 
[5], [6]. 

The rest of the paper is organized as follows. 
Section 2 provides a high-level overview of H.264 
deblocking filter and its parallelization possibilities. 
Section 3 explains the basics of DTA architecture and 
DF implementation for it. Section 4 presents obtained 
results on the DTA architecture and comparison with 
Cell. Conclusions are shown in Section 5.  

 
2. Deblocking Filter of H.264 
 

Encoding and decoding process in H.264 
audio/video codec is composed of several different 
steps. Deblocking filter is one of the steps in the 



process. By profiling H.264 it can be seen that 
deblocking filter consumes about 7% of the total 
decoder processing time [5]. In the case of Altivec 
extensions [7] for optimizing H.264 kernels for 
PowerPC and leaving deblocking filter non optimized, 
deblocking filter portion of H.264 decoder execution 
time can grow up to 49% [6]. It becomes evident that, 
the deblocking filter consumes significant portion of 
the decoder, both with and without optimizations. 
Therefore, it is important to execute it as efficiently as 
possible.  

Steps in H.264 operate on macroblocks (MBs), 
which are blocks of 16x16 pixels. Because decoding 
process is block-based, sharp edges may appear 
between the blocks after discrete cosine transformation 
(DCT) is applied. This is known as “blocking”. The 
purpose of having a deblocking filter is to try to 
eliminate these artifacts by smoothing the edges of 
adjacent blocks. In H.263 deblocking filter was an 
optional step, but in H.264 it is a part of the standard. 

Here,  we will present a concise overview of a 
deblocking filter process, for more detailed information 
the reader is referred to [8]. A deblocking filter, 
basically, modifies pixels at the edges of macroblocks 
in cases when they meet certain conditions. The type of 
modification that is performed depends on a parameter 
called “boundary strength” and it varies according to 
the macroblock type and coding conditions. In a 
deblocking filter, macroblock (MB) processing is done 
on the level of even smaller blocks of 4x4 pixels [9]. 
The filtering process is done on both vertical and 
horizontal edges of blocks. It starts at the left vertical 
edge and proceeds at all internal edges. Once the 
filtering is completed for vertical edges, starting from 
the top it is repeated for horizontal edges. The filtering 
is independently done for all three color components.  

There are several possibilities to exploit thread 
level parallelism in the deblocking filter [10]. At the 
MB level, all MBs that don’t show dependency on one 
another can be processed at the same time. One MB 
can’t be processed before MBs, both on its left and 
above have already been processed (other steps in 
H.264 introduce additional dependencies, but here we 
analyze only DF). For example, frame in CIF 
resolution of 320x240 pixels, which has 300 MBs, can 
be processed in total of 34 time slots. Maximal number 
of MBs that can be processed in parallel is 15 and it 
lasts for 6 time slots. However, the average number of 
available independent MBs is 8.82, and it is available 
for more than 50% of the execution time. In higher 
resolutions, the number of MBs increases. For 
example, in FHD resolution (1920x1080), maximal 
number of independent MBs is 68 (average 43,64) and 
it is available for 57 out of 187 time slots.  

Next, all three color components can be processed 
in parallel (Y, Cb and Cr). One more opportunity for 
parallelism is to process 4x4 blocks in parallel. At each 
step in both vertical and horizontal pass, 4 of these 
blocks are processed. This data level parallelism can be 
transformed to thread level by processing each of 4 
blocks in a separate thread. This is done by unrolling 
appropriate loops in the code.  

 
3. A new many-core architecture: DTA 
 

DTA [2] is based on SDF execution paradigm 
[11]. Threads communicate with each other in a 
producer-consumer fashion, and a thread will start its 
execution only when all its data is ready in local 
(frame) memory. Processing elements (PE) in DTA are 
grouped into nodes, as shown in Figure 1, where 
dimension of each node is determined with a constraint 
that each PE must be reachable in one cycle. On the 
other hand, communication between nodes is slower, 
and interconnection network is more complex, but this 
is necessary to achieve scalability as the available 
number of transistors increases. 
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Figure 1 – DTA architecture organization. 
 

The logic for handling threads in DTA is 
distributed across PEs and nodes. Each PE contains 
one LSE (Local Scheduler Element) that manages local 
frames and forwards request for resources to the DSE 
(Distributed Scheduler Element). Each node contains 
one DSE that is responsible for distributing workload 
among processors in the node, and for forwarding it to 
other nodes when internal resources are depleted. For 
more details on both LSE and DSE see [2]. 

Figure 2 shows thread synchronization in DTA for 
a code fragment from deblocking filter. The function 
for filtering MB has to filter all three color components 
for each edge in both directions. Therefore, in every 
pass it forks three threads for each color component 
(actually, it can be just for Y because Cb and Cr are 



compressed by sampling them at a lower rate to meet 
the storage and bandwidth limitations) and one thread 
that implements a barrier. In order to ensure that any 
thread won’t start executing before all of its data is 
ready (so it can then run without blocking) a 
synchronization count (SC) has been associated to each 
of them. This synchronization count contains the 
number of input data that the thread needs in order to 
run. In our example, threads filter_mb_edgev and two 
instances of filter_mb_edgecv have to wait for just one 
input from filter_mb and since they are independent 
they can run in parallel. In reality, all of these threads 
consume more data but we presented only the most 
significant data to illustrate the concept. When data is 
stored for a thread, synchronization count is 
decremented and once it reaches zero that thread is 
ready to execute. Barrier thread has to wait for the 
signals from all three of these threads (SC=3) and then 
it can fork filter_mb thread for next pass.  
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Figure 2 – Example of thread synchronization in 
DTA on a DF code fragment. 
 

We have implemented two versions of deblocking 
filter for DTA architecture. One is sequential, where 
MBs are executed one by one and no parallelism is 
exploited. This code is for running on a single core 
only. The other code is parallel and it exploits all three 
levels of parallelism which are mentioned in Section 2: 
independent MBs are processed in parallel, color 
components are processed in parallel and independent 
blocks of 4x4 pixels in vertical and horizontal passes 
are processed in parallel. We have to mention that, 
depending on input parameters, it is not always 
possible to exploit all these three levels of parallelism 
at the same time. Both versions of the code are 
handwritten. As a reference code, we have used a 
scalar implementation extracted from [12].  

In DTA implementation, we didn’t include 
deblocking filter parameter calculations, but only 
filtering itself. We assume that these parameters have 

been calculated in the previous steps and that they are, 
together with pixel color components, available as 
inputs of the program.  

 
4. Results 
 

For our tests, we used first eight frames of Lake 
Wave video sequence. Frame resolution was 320x240 
pixels – CIF resolution. For the DTA tests, we were 
using cycle accurate simulator with perfect memory 
model, written in C++. We extracted the data for the 
Cell processor from the work of Azevedo et al. [9].  

Our first test was to measure the execution time 
reduction of each of the first eight frames of Lake 
Wave example by simply adding more processors to 
the system (all being in a single node). Results are 
presented in Figure 3. We measured speedup using 
execution time on one processor as a baseline for both 
sequential and parallel codes. Execution time overhead 
of the parallel code with respect to the sequential is 
very low (about 3% on average). For this reason, 
speedup is very similar in both cases. As mentioned in 
Section 2, the number of independent MBs in CIF 
resolution is at maximum 15 and little less than 9 on 
average, however, it increases for higher resolutions. 
Therefore, from these results, we expect that even 
better speedups can be achieved for higher resolutions 
because more MBs are available in parallel. This 
means more threads with no dependencies among 
them. As stated earlier, not all three levels of 
parallelism are always available at the same time. That 
is why scalability is less than it could be expected 
theoretically.  
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Figure 3 – Speedup of H.264 deblocking filter; DTA 
parallel code with a different number of processors 
in a single node vs. ideal case. 
 

In Figure 4 we presented execution time for each 
frame for different number of processors in a single 
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Figure 4 - Scalability of H.264 deblocking filter; 
speedup in execution time of first eight frames of 
Lake Wave video sequence obtained by increasing 
the number of processors in a single node.  
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Figure 5 - Average processor utilization for first 
eight frames of Lake Wave video sequence obtained 
by increasing the number of processors in a single 
node. 
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Figure 6 - Contribution of each parallelization in overall speedup; first is just with color component 
parallelization, then with 4x4 blocks parallelization included and at the end with all three types of 
parallelization together. 
 
node. The execution time reduction is almost linear up 
to sixteen processors, but thereafter it slows down 
because there is no more thread level parallelism 
available. The number of threads available remains the 
same even if we add more processors. However, 
threads are equally distributed among processors. 
That’s why, in the case of sixteen processor in a single 
node, we see lower average processor utilization in 
Figure 5.  

In Figure 6, we have presented contribution of 
each level of parallelization used in overall speedup. 
We measured these contributions incrementally. First, 
we analyzed speedup only when processing color 
components in parallel, then we added parallelism at 
4x4 block level (MBs processed sequentially), and 
finally, MB level parallelization was included. 
Baseline is the execution time on one processor 
(speedup equal to 1). It can be seen that for two 
processors contribution of each level is similar.  
However, for more processors in the system, the 



overall speedup is dominated by MB level of 
parallelism and contribution of other levels doesn’t 
increase significantly. Available color component level 
parallelism is limited by the fact that all three 
components are not processed in each pass (sub-
sampling of Cb and Cr components). On the other 
hand, the contribution of 4x4 block level parallelism is 
not at its theoretical maximum, because, this 
parallelism introduces some overhead in order to be 
exploited and it is dependent on input parameters (not 
in every case all blocks are processed). The overall 
conclusion is that MB level of parallelism is most 
significant, and with higher resolution it can increase 
even more, while other two are expected to remain at 
the same level.  

A comparison with the real Cell is presented just 
for a reference, as there are several differences in both 
cases. In DTA we assume for now a perfect memory 
model, but at the same time we also assume that we 
could efficiently exploit double-buffering scheme as in 
the Cell [9]. On the other hand, we do not use software 
pipelining that is used in the Cell code. In the parallel 
version of the code for the Cell processor [9], a 
sequential code is vectorized by hand utilizing SIMD 
capabilities of SPEs. As in DTA version, 
implementation doesn’t include deblocking filter 
parameter calculations. Parallelization in Cell is based 
on SIMD ISA of SPEs and in DTA on adding more 
processors to exploit thread-level parallelism.  

Our intention was not to compare performances of 
these architectures, but to show scaling possibilities of 
both of them; Figure 7 shows the results for two 
architectures. We presented the execution time of 
sequential and parallel versions of the code for both 
architectures (average for first eight frames of Lake 
Wave video sequence) and achieved speedup.  
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Figure 7 - Sequential and parallel execution of 
H.264 DF on IBM Cell and DTA; average of first 
eight frames of Lake Wave video sequence; in Cell 
parallel code is SIMD code able to execute 4 
operations in parallel while in DTA there are 4 
processors in a single node. 
 

In the Cell, the speedup is achieved by using 
SIMD capabilities of SPEs to execute four operations 
in parallel. In this way, data level parallelism is 
exploited. Only one SPE is used for processing a single 
frame. For the DTA architecture, we showed execution 
time of sequential code running on a single processor 
and parallel code running on four processors in a single 
node. The reason for having result of sequential code 
for DTA better than Cell is also because of a perfect 
memory model, in the former case. Speedup achieved 
in DTA is 3.49 against 3.18 for Cell. In Cell, the 
speedup is achieved by only exploiting ISA 
capabilities, whereas in DTA by adding more 
processors. However, DTA uses very simple 
processors and it is fair to assume that it would be 
possible to put a lot of them on a single chip. It is 
worth mentioning  that these two solutions exploit 
different parallelism which could eventually be 
combined to achieve even better results. 

In the other tests, we were processing all eight 
frames together by distributing them among different 
nodes – system configurations from 1 to 8 nodes and 
from 1 to 16 processors in total. For distributing the 
frames equally among the nodes we used “ISA helped 
scheduling” [2]. Figure 8 shows speedup achieved for 
different system configurations. System configurations 
with the same number of processors in total, but 
distributed in more nodes (e.g. (2, 2) and (4, 1)) have 
slightly degraded performance due to the fact that the 
inter-node network has higher latency than intra-node 
network. 
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Figure 8 - Scalability of DTA with H.264 DF; 
speedup obtained by distribution of first eight 
frames of Lake Wave video sequence across nodes 
(1, 2, 4 and 8 nodes with different number of 
processors per node). 
 

From Figure 9, it can be seen that the average 
processor utilization in all of these cases is very high 
(more than 95% on average), which indicates that DTA 



architecture can efficiently exploit thread level 
parallelism. In other words, if there is enough TLP in 
the program it can be efficiently exploited. 
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Figure 9 - Average processor utilization with H.264 
DF in the case of distributing first eight frames of 
Lake Wave video sequence across nodes (1, 2, 4 and 
8 nodes with different number of processors per 
node). 
 
5. Conclusions 

 
In this work we have presented H.264 deblocking 

filter parallelization possibilities and its performance 
on DTA architecture. We have exploited three levels of 
thread level parallelism: macroblock level, color 
component level and parallel processing of portions of 
macroblocks.  

We wrote a parallel code for DTA by hand and 
executed it on a cycle accurate simulator. The results 
show that scalability of the architecture is very good, 
for up to sixteen processors it is almost linear, and only 
after that the limits of available parallelism are 
reached. We have also shown a comparison with Cell 
processor with the goal to present scaling possibilities 
in both architectures. In Cell, running SIMD version of 
the code on a single SPE, speedup of 3.18 is achieved. 
In DTA architecture, by having four processors in the 
system, we have achieved speedup of 3.49. In our case, 
the goal was to achieve scalability by simply adding 
more simple processing units. In this way, we have 
demonstrated that DTA architecture is suitable for 
accelerating portions of H.264 codec by parallel 
execution of a deblocking filter.  

Future work will focus on performing these tests 
on DTA architecture with more realistic memory 
system, and with higher resolution inputs as well. 
Additionally, we would like to investigate further the 
possibilities for parallelizing other portions of H.264 
codec. 
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