
Analyzing Scalability of Deblocking Filter of H.264 via TLP exploitation in a
new many-core architecture

Roberto Giorgi, Zdravko Popovic, Nikola Puzovic

HiPEAC members, Faculty of Information
Engineering, University of Siena, Italy

http://www.dii.unisi.it/~{giorgi, popovic, puzovic}

Arnaldo Azevedo, Ben Juurlink
HiPEAC members, Delft University of Technology,

Delft, the Netherlands
{azeved, benj}@ce.et.tudlft.nl

Abstract

In this paper we present results of parallelization of

Deblocking Filter (DF) of H.264 video codec on
Decoupled Threaded Architecture (DTA). We
parallelized the code trying to exploit all available
thread level parallelism and to make it suitable for
DTA architecture. Experimental results show that
significant speedup can be achieved and that DTA
architecture can efficiently exploit available
parallelism. We also show comparison with
parallelized version of DF for Cell architecture.

1. Introduction

Today’s multimedia systems demand more and
more computational power since the quality of content
that they provide is improving. In particular, users
show constant demand for videos with higher
resolution even on mobile devices. H.264, also known
as MPEG4 part 10 or MPEG-4 AVC (Advanced Video
Coding) is a video coding standard aimed at providing
high video quality even at lower bitrates. It was
developed with many application fields in mind, such
as high resolution video (for satellite, cable or DSL
broadcast), video storage (HD-DVD, blu-ray disc), and
internet and multimedia telephony systems [1].

Current single core architectures’ performance
cannot keep up with growing requirements for
computational power. Since the technology has
enabled accommodating more resources on a single
chip, it is now possible to use many-core processors
even in embedded devices. The many-core architecture
that we are developing, the Decoupled Threaded
Architecture (DTA) [2], is based on a coarse-grained
dataflow among threads, and on their non-blocking
execution. It also exploits distribution of processing
elements to overcome wire delay problem and to
improve the overall performance.

One more example of many-core architecture is a
new research chip from Intel that contains 80 simple
cores, where each core contains two programmable
floating point engines. Each core contains a 5-point

message passing router, and is connected to other cores
in a 2D mesh network. Unlike DTA, this chip exploits
standard programming model.

TRIPS [3] is another example of many core
architecture that uses “medium size” tiles that can be
configured either as processing elements, memory,
cache or registers. While DTA exploits dataflow
execution at the thread level and control-flow inside
one thread, TRIPS does the opposite. Indeed, TRIPS
executes hyper-blocks in a control-flow order, and
inside these blocks execution is dataflow.

Cell Broadband Engine Architecture (CBEA) [4]
combines one Power Architecture core with SIMD
processing elements that are called SPEs (Synergistic
Processing Elements). In the current implementation,
one CBEA processor has 8 SPEs that are
interconnected by a circular ring with four channels.
The main difference between CBEA and DTA is the
programming model that is used.

Many-core architectures have become widely
used. Therefore, parallelization of programs that are
used for providing multimedia content, such as video
codecs, and running them on many-core processors is a
promising way to improve the performance. In our
work we have focused on parallelizing Deblocking
Filter (DF) of the H.264 codec, and on utilizing the
advantages that DTA offers to exploit available Thread
Level Parallelism (TLP). We chose DF because it is
one of the most time consuming portions of the code
[5], [6].

The rest of the paper is organized as follows.
Section 2 provides a high-level overview of H.264
deblocking filter and its parallelization possibilities.
Section 3 explains the basics of DTA architecture and
DF implementation for it. Section 4 presents obtained
results on the DTA architecture and comparison with
Cell. Conclusions are shown in Section 5.

2. Deblocking Filter of H.264

Encoding and decoding process in H.264
audio/video codec is composed of several different
steps. Deblocking filter is one of the steps in the

process. By profiling H.264 it can be seen that
deblocking filter consumes about 7% of the total
decoder processing time [5]. In the case of Altivec
extensions [7] for optimizing H.264 kernels for
PowerPC and leaving deblocking filter non optimized,
deblocking filter portion of H.264 decoder execution
time can grow up to 49% [6]. It becomes evident that,
the deblocking filter consumes significant portion of
the decoder, both with and without optimizations.
Therefore, it is important to execute it as efficiently as
possible.

Steps in H.264 operate on macroblocks (MBs),
which are blocks of 16x16 pixels. Because decoding
process is block-based, sharp edges may appear
between the blocks after discrete cosine transformation
(DCT) is applied. This is known as “blocking”. The
purpose of having a deblocking filter is to try to
eliminate these artifacts by smoothing the edges of
adjacent blocks. In H.263 deblocking filter was an
optional step, but in H.264 it is a part of the standard.

Here, we will present a concise overview of a
deblocking filter process, for more detailed information
the reader is referred to [8]. A deblocking filter,
basically, modifies pixels at the edges of macroblocks
in cases when they meet certain conditions. The type of
modification that is performed depends on a parameter
called “boundary strength” and it varies according to
the macroblock type and coding conditions. In a
deblocking filter, macroblock (MB) processing is done
on the level of even smaller blocks of 4x4 pixels [9].
The filtering process is done on both vertical and
horizontal edges of blocks. It starts at the left vertical
edge and proceeds at all internal edges. Once the
filtering is completed for vertical edges, starting from
the top it is repeated for horizontal edges. The filtering
is independently done for all three color components.

There are several possibilities to exploit thread
level parallelism in the deblocking filter [10]. At the
MB level, all MBs that don’t show dependency on one
another can be processed at the same time. One MB
can’t be processed before MBs, both on its left and
above have already been processed (other steps in
H.264 introduce additional dependencies, but here we
analyze only DF). For example, frame in CIF
resolution of 320x240 pixels, which has 300 MBs, can
be processed in total of 34 time slots. Maximal number
of MBs that can be processed in parallel is 15 and it
lasts for 6 time slots. However, the average number of
available independent MBs is 8.82, and it is available
for more than 50% of the execution time. In higher
resolutions, the number of MBs increases. For
example, in FHD resolution (1920x1080), maximal
number of independent MBs is 68 (average 43,64) and
it is available for 57 out of 187 time slots.

Next, all three color components can be processed
in parallel (Y, Cb and Cr). One more opportunity for
parallelism is to process 4x4 blocks in parallel. At each
step in both vertical and horizontal pass, 4 of these
blocks are processed. This data level parallelism can be
transformed to thread level by processing each of 4
blocks in a separate thread. This is done by unrolling
appropriate loops in the code.

3. A new many-core architecture: DTA

DTA [2] is based on SDF execution paradigm
[11]. Threads communicate with each other in a
producer-consumer fashion, and a thread will start its
execution only when all its data is ready in local
(frame) memory. Processing elements (PE) in DTA are
grouped into nodes, as shown in Figure 1, where
dimension of each node is determined with a constraint
that each PE must be reachable in one cycle. On the
other hand, communication between nodes is slower,
and interconnection network is more complex, but this
is necessary to achieve scalability as the available
number of transistors increases.

Node Node

Node Node

Inter‐node network

…

…

PE PE

Distributed
Scheduler Element(DSE)

Intra‐node network

…

High‐level view of the
DTA architecture.

Internal organization of
one node in DTA

Figure 1 – DTA architecture organization.

The logic for handling threads in DTA is
distributed across PEs and nodes. Each PE contains
one LSE (Local Scheduler Element) that manages local
frames and forwards request for resources to the DSE
(Distributed Scheduler Element). Each node contains
one DSE that is responsible for distributing workload
among processors in the node, and for forwarding it to
other nodes when internal resources are depleted. For
more details on both LSE and DSE see [2].

Figure 2 shows thread synchronization in DTA for
a code fragment from deblocking filter. The function
for filtering MB has to filter all three color components
for each edge in both directions. Therefore, in every
pass it forks three threads for each color component
(actually, it can be just for Y because Cb and Cr are

compressed by sampling them at a lower rate to meet
the storage and bandwidth limitations) and one thread
that implements a barrier. In order to ensure that any
thread won’t start executing before all of its data is
ready (so it can then run without blocking) a
synchronization count (SC) has been associated to each
of them. This synchronization count contains the
number of input data that the thread needs in order to
run. In our example, threads filter_mb_edgev and two
instances of filter_mb_edgecv have to wait for just one
input from filter_mb and since they are independent
they can run in parallel. In reality, all of these threads
consume more data but we presented only the most
significant data to illustrate the concept. When data is
stored for a thread, synchronization count is
decremented and once it reaches zero that thread is
ready to execute. Barrier thread has to wait for the
signals from all three of these threads (SC=3) and then
it can fork filter_mb thread for next pass.

For both directions
For each edge

Calculate offsets

Filter
Y
component

Filter
Cb
component

Next pass in MB

filter_mb_edgev

filter_mb

filter_mb_edgecv
Filter
Cr
component

filter_mb_edgecv

Inputs: y_offset,
cb_offset, cr_offset

y_offset cb_offset cr_offset

signal
signal

signal

Inputs:
y_offset
SC = 1

Inputs:
cb_offset
SC = 1

Inputs:
cr_offset
SC = 1

barrier

Inputs: 3
signals
SC = 3

Figure 2 – Example of thread synchronization in
DTA on a DF code fragment.

We have implemented two versions of deblocking
filter for DTA architecture. One is sequential, where
MBs are executed one by one and no parallelism is
exploited. This code is for running on a single core
only. The other code is parallel and it exploits all three
levels of parallelism which are mentioned in Section 2:
independent MBs are processed in parallel, color
components are processed in parallel and independent
blocks of 4x4 pixels in vertical and horizontal passes
are processed in parallel. We have to mention that,
depending on input parameters, it is not always
possible to exploit all these three levels of parallelism
at the same time. Both versions of the code are
handwritten. As a reference code, we have used a
scalar implementation extracted from [12].

In DTA implementation, we didn’t include
deblocking filter parameter calculations, but only
filtering itself. We assume that these parameters have

been calculated in the previous steps and that they are,
together with pixel color components, available as
inputs of the program.

4. Results

For our tests, we used first eight frames of Lake
Wave video sequence. Frame resolution was 320x240
pixels – CIF resolution. For the DTA tests, we were
using cycle accurate simulator with perfect memory
model, written in C++. We extracted the data for the
Cell processor from the work of Azevedo et al. [9].

Our first test was to measure the execution time
reduction of each of the first eight frames of Lake
Wave example by simply adding more processors to
the system (all being in a single node). Results are
presented in Figure 3. We measured speedup using
execution time on one processor as a baseline for both
sequential and parallel codes. Execution time overhead
of the parallel code with respect to the sequential is
very low (about 3% on average). For this reason,
speedup is very similar in both cases. As mentioned in
Section 2, the number of independent MBs in CIF
resolution is at maximum 15 and little less than 9 on
average, however, it increases for higher resolutions.
Therefore, from these results, we expect that even
better speedups can be achieved for higher resolutions
because more MBs are available in parallel. This
means more threads with no dependencies among
them. As stated earlier, not all three levels of
parallelism are always available at the same time. That
is why scalability is less than it could be expected
theoretically.

1

2

4

8

16

1 2 4 8 16

speedup
[# of cycles]

of processors

Scalability of parallel DTA code vs. ideal
scalability for H.264 DF

ideal speedup

speedup of parallel code (baseline parallel code)

speedup of parallel code wrt. sequential (baseline sequential code)

Figure 3 – Speedup of H.264 deblocking filter; DTA
parallel code with a different number of processors
in a single node vs. ideal case.

In Figure 4 we presented execution time for each
frame for different number of processors in a single

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 1 2 3 4 5 6 7 AVG

of cycles

frame

Scalability of single DTA node with
H.264 DF

1 processor 2 processors 4 processors 8 processors 16 processors

Figure 4 - Scalability of H.264 deblocking filter;
speedup in execution time of first eight frames of
Lake Wave video sequence obtained by increasing
the number of processors in a single node.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 1 2 3 4 5 6 7 AVG

utilization
[%]

frame

Average processor utilization in DTA for
H.264 DF

1 processor 2 processors 4 processors 8 processors 16 processors

Figure 5 - Average processor utilization for first
eight frames of Lake Wave video sequence obtained
by increasing the number of processors in a single
node.

1

2

3

4

5

6

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

2 p
ro
ce
ss
or
s

4 p
ro
ce
ss
or
s

8 p
ro
ce
ss
or
s

0 1 2 3 4 5 6 7 AVG

speedup

frame

Incremental contribution of each parallelization level in overall
speedup

MB level

4x4 blocks level

color component level

Figure 6 - Contribution of each parallelization in overall speedup; first is just with color component
parallelization, then with 4x4 blocks parallelization included and at the end with all three types of
parallelization together.

node. The execution time reduction is almost linear up
to sixteen processors, but thereafter it slows down
because there is no more thread level parallelism
available. The number of threads available remains the
same even if we add more processors. However,
threads are equally distributed among processors.
That’s why, in the case of sixteen processor in a single
node, we see lower average processor utilization in
Figure 5.

In Figure 6, we have presented contribution of
each level of parallelization used in overall speedup.
We measured these contributions incrementally. First,
we analyzed speedup only when processing color
components in parallel, then we added parallelism at
4x4 block level (MBs processed sequentially), and
finally, MB level parallelization was included.
Baseline is the execution time on one processor
(speedup equal to 1). It can be seen that for two
processors contribution of each level is similar.
However, for more processors in the system, the

overall speedup is dominated by MB level of
parallelism and contribution of other levels doesn’t
increase significantly. Available color component level
parallelism is limited by the fact that all three
components are not processed in each pass (sub-
sampling of Cb and Cr components). On the other
hand, the contribution of 4x4 block level parallelism is
not at its theoretical maximum, because, this
parallelism introduces some overhead in order to be
exploited and it is dependent on input parameters (not
in every case all blocks are processed). The overall
conclusion is that MB level of parallelism is most
significant, and with higher resolution it can increase
even more, while other two are expected to remain at
the same level.

A comparison with the real Cell is presented just
for a reference, as there are several differences in both
cases. In DTA we assume for now a perfect memory
model, but at the same time we also assume that we
could efficiently exploit double-buffering scheme as in
the Cell [9]. On the other hand, we do not use software
pipelining that is used in the Cell code. In the parallel
version of the code for the Cell processor [9], a
sequential code is vectorized by hand utilizing SIMD
capabilities of SPEs. As in DTA version,
implementation doesn’t include deblocking filter
parameter calculations. Parallelization in Cell is based
on SIMD ISA of SPEs and in DTA on adding more
processors to exploit thread-level parallelism.

Our intention was not to compare performances of
these architectures, but to show scaling possibilities of
both of them; Figure 7 shows the results for two
architectures. We presented the execution time of
sequential and parallel versions of the code for both
architectures (average for first eight frames of Lake
Wave video sequence) and achieved speedup.

7000000
6202866

2200000 1774780

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000

Cell DTA

CELL vs. DTA

sequential parallel

Speedup 3.18 Speedup 3.49

Average frame
execution time
[# of cycles]

Figure 7 - Sequential and parallel execution of
H.264 DF on IBM Cell and DTA; average of first
eight frames of Lake Wave video sequence; in Cell
parallel code is SIMD code able to execute 4
operations in parallel while in DTA there are 4
processors in a single node.

In the Cell, the speedup is achieved by using
SIMD capabilities of SPEs to execute four operations
in parallel. In this way, data level parallelism is
exploited. Only one SPE is used for processing a single
frame. For the DTA architecture, we showed execution
time of sequential code running on a single processor
and parallel code running on four processors in a single
node. The reason for having result of sequential code
for DTA better than Cell is also because of a perfect
memory model, in the former case. Speedup achieved
in DTA is 3.49 against 3.18 for Cell. In Cell, the
speedup is achieved by only exploiting ISA
capabilities, whereas in DTA by adding more
processors. However, DTA uses very simple
processors and it is fair to assume that it would be
possible to put a lot of them on a single chip. It is
worth mentioning that these two solutions exploit
different parallelism which could eventually be
combined to achieve even better results.

In the other tests, we were processing all eight
frames together by distributing them among different
nodes – system configurations from 1 to 8 nodes and
from 1 to 16 processors in total. For distributing the
frames equally among the nodes we used “ISA helped
scheduling” [2]. Figure 8 shows speedup achieved for
different system configurations. System configurations
with the same number of processors in total, but
distributed in more nodes (e.g. (2, 2) and (4, 1)) have
slightly degraded performance due to the fact that the
inter-node network has higher latency than intra-node
network.

0
2
4
6
8
10
12
14
16

1, 1 1, 2 2, 1 1, 4 2, 2 4, 1 1, 8 2, 4 4, 2 8, 1 1, 16 2, 8 4, 4 8, 2

1 2 4 8 16

speedup
[# of cycles]

system configuration (# of nodes, # of processors)

Scalability of different DTA configurations
with H.264 DF (with ISA helped scheduling)

Figure 8 - Scalability of DTA with H.264 DF;
speedup obtained by distribution of first eight
frames of Lake Wave video sequence across nodes
(1, 2, 4 and 8 nodes with different number of
processors per node).

From Figure 9, it can be seen that the average
processor utilization in all of these cases is very high
(more than 95% on average), which indicates that DTA

architecture can efficiently exploit thread level
parallelism. In other words, if there is enough TLP in
the program it can be efficiently exploited.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

1, 1 1, 2 2, 1 1, 4 2, 2 4, 1 1, 8 2, 4 4, 2 8, 1 1, 16 2, 8 4, 4 8, 2

1 2 4 8 16

utilization [%]

system configuration (# of nodes, # of processors per node)

Average processor utilization in DTA for
H.264 DF (with ISA helped scheduling)

Figure 9 - Average processor utilization with H.264
DF in the case of distributing first eight frames of
Lake Wave video sequence across nodes (1, 2, 4 and
8 nodes with different number of processors per
node).

5. Conclusions

In this work we have presented H.264 deblocking

filter parallelization possibilities and its performance
on DTA architecture. We have exploited three levels of
thread level parallelism: macroblock level, color
component level and parallel processing of portions of
macroblocks.

We wrote a parallel code for DTA by hand and
executed it on a cycle accurate simulator. The results
show that scalability of the architecture is very good,
for up to sixteen processors it is almost linear, and only
after that the limits of available parallelism are
reached. We have also shown a comparison with Cell
processor with the goal to present scaling possibilities
in both architectures. In Cell, running SIMD version of
the code on a single SPE, speedup of 3.18 is achieved.
In DTA architecture, by having four processors in the
system, we have achieved speedup of 3.49. In our case,
the goal was to achieve scalability by simply adding
more simple processing units. In this way, we have
demonstrated that DTA architecture is suitable for
accelerating portions of H.264 codec by parallel
execution of a deblocking filter.

Future work will focus on performing these tests
on DTA architecture with more realistic memory
system, and with higher resolution inputs as well.
Additionally, we would like to investigate further the
possibilities for parallelizing other portions of H.264
codec.

Acknowledgement

This work was supported by the European Commission
in the context of the SARC integrated project #27648
(FP6).

References

[1] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A.
Luthra, "Overview of the H.264/AVC video coding
standard," IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, pp. 560-576, July 2003.
[2] R. Giorgi, Z. Popovic, and N. Puzovic, "DTA-C: A
Decoupled multi-Threaded Architecture for CMP Systems,"
in Proceedings of IEEE SBAC-PAD, Gramado, Brasil, 2007,
pp. 263-270.
[3] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J.
Huh, D. Burger, S. W. Keckler, and C. R. Moore, "Exploiting
ILP, TLP, and DLP with the polymorphous TRIPS
architecture," in Proceedings of the 30th annual international
symposium on Computer architecture San Diego, California:
ACM Press, pp. 422-433, 2003.
[4] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy, "Introduction to the cell
multiprocessor," IBM J. Res. Dev., vol. 49, pp. 589-604,
2005.
[5] X. Zhou, E. Q. Li, and Y.-K. Chen,
"Implementation of H.264 decoder on general-purpose
processors with media instructions," in Image and Video
Communications and Processing 2003. Edited by Vasudev,
Bhaskaran; Hsing, T. Russell; Tescher, Andrew G.;
Ebrahimi, Touradj. Proceedings of the SPIE, Volume 5022,
pp. 224-235 (2003). 2003, pp. 224-235.
[6] M. Alvarez, E. Salami, A. Ramirez, and M. Valero,
"A performance characterization of high definition digital
video decoding using H.264/AVC," Proceedings of the IEEE
International Workload Characterization Symposium, pp. 24-
33, 6-8 Oct. 2005.
[7] K. Diefendorff, P. K. Dubey, R. Hochsprung, and
H. A. S. H. Scale, "AltiVec extension to PowerPC
accelerates media processing," Micro, IEEE, vol. 20, pp. 85-
95, 2000.
[8] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M.
Karczewicz, "Adaptive deblocking filter," IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, pp. 614-619, July 2003.
[9] A. Azevedo, C. H. Meenderinck, B. H. H. Juurlink,
M. Alvarez, and A. Ramirez, "Analysis of Video Filtering on
the Cell Processor," in Proceeding in Prorisc Conference,
2007.
[10] C. H. Meenderinck, A. Azevedo, M. Alvarez, B. H.
H. Juurlink, and A. Ramirez, "Parallel Scalability of H.264,"
in Proceedings of the first Workshop on Programmability
Issues for Multi-Core Computers, 2008.
[11] K. M. Kavi, R. Giorgi, and J. Arul, "Scheduled
Dataflow: Execution Paradigm, Architecture, and
Performance Evaluation," IEEE Transaction on Computers,
vol. 50, pp. 834-846, August 2001.
[12] "The FFmpeg Libavcoded," Available:
http://ffmpeg.mplayerhq.hu/.

