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Abstract— The focus of our study is the support for
fine/medium grained Thread Level Parallelism (TLP) by using a
hardware scheduling unit and relying on existing simple cores.
Simple cores are grouped into clusters in order to provide a
scalable solution. As a proof of concept, we use an
implementation based on the Cell Broadband Engine (CBE). Cell
is a multiprocessor on a chip developed by Sony, Toshiba and
IBM that contains one general purpose core and eight
coprocessor elements that accelerate the multimedia and vector
processing. The aim of this paper is to present a possible
implementation of DTA (Decoupled Threaded Architecture) that
is based on the Cell processor, while keeping the scalability of the
original DTA.

Index Terms—thread level parallelism, multicore processors

I. INTRODUCTION

URRENT trends in computer architecture have brought to

the market multicore architectures to utilize the ever

increasing number of transistors, which are available on a
single chip. Future general purpose processors are expected to
have a number of cores at least an order of magnitude bigger
than it is now [1]. A good representative of this trend is the
Cell processor [2, 3] that was created by the cooperation of
Sony, Toshiba and IBM. This is a heterogeneous multicore
architecture with a single PowerPC core and eight SIMD
cores.

However, programming for multicore architectures is still
an open issue and research topic in both academia and
industry. TLP is one opportunity that can be exploited by the
multicore architectures. Each core can run a separate thread,
and inside them it can exploit even other levels of parallelism
(ILP, DLP). Even though multicore peak computational power
can be very high, programming them is not a trivial problem.
In the case of Cell, for instance, the programmer defines tasks
statically in order to let them execute on SIMD cores as well
as the data transfers for them (to and from main memory).
Previously, we experimented successfully with the DTA
architecture [4], which is able to efficiently exploit
fine/medium grained TLP that is available in the programs.
The hardware proposed in DTA could provide mechanisms for
efficient and scalable thread scheduling and synchronization
also in existing multicore architecture like the Cell.

In this paper, we present an implementation of DTA support
for the Cell architecture. The aim of this hardware solution is
to exploit available TLP. The idea is to map DTA cores to Cell
SPE cores (see Section 1.A) and introduce simple additional
hardware for thread scheduling and synchronization as in
DTA [4], thus making it dynamic.

The rest of the paper is organized as follows. In the rest of
this section we present a brief review of the Cell architecture
and then a brief introduction to the DTA architecture. Section
II describes the implementation of DTA hardware support in
Cell architecture. In Section III, we show initial results
obtained on this platform. Section IV gives the conclusions.

A. The Cell Processor

The Cell processor is a multiprocessor on a chip that
combines one general purpose PowerPC Processing Element
(PPE) with eight SIMD accelerators (called SPE - Synergistic
Processor Element) [2, 3].

The PPE consists of one PPU (PowerPC Processor Unit)
and caches (L1 + L2). The PPU is a dual-issue in-order
processor based on the IBM PowerPC architecture. In typical
usage of the Cell processor, the PPU is responsible for running
the operating system and for managing the SPEs.

The SPE contains one Synergistic Processor Unit (SPU),
Memory Flow Controller (MFC) and a 256KB of Local Store
(LS) memory. The SPU is a dual-issue in-order processor that
works only with data that are present in its Local Store and
accesses main memory and other Local Stores through MFC
controller. Each MFC contains a Memory Management Unit
(MMU) for address translation and a DMA controller.

The Element Interconnect Bus (EIB) in the Cell processor
connects the PPE, SPEs, off-chip memory and I/O devices. It
has one address bus and four 16-byte data rings for data
transfers.

B. DTA Architecture

DTA [4] is an architecture that derives from previously
proposed execution models like SDF (Scheduled Data-Flow)
[5] and related ones like TAM (Threaded Abstract Machine)
[6]. Threads communicate with each other in a producer-
consumer fashion, and a thread will start its execution only
when all its data are ready in a local memory (which we also
call Frame Memory). Each thread has assigned a number of
input data it needs (synchronization count - SC). SC is
decremented every time a data is stored in a local memory of a
thread. When it reaches zero, the thread is ready for the
execution. In this way we have a dataflow-like communication
between threads - dataflow at thread level. An example of
thread synchronization in DTA is shown in Fig. 1. This
example shows one thread (fib(n)) that forks another three
threads (fib(n-1), fib(n-2) and sum). It also shows the data
dependencies among these threads, and the synchronization
counts that are associated with them.

DTA is a proposal for a many-core architecture. Processing
elements (PE) in DTA are grouped into nodes, where



dimension of each node is determined with a constraint that
each PE must be reachable in one cycle. This is done in order
to be able to deal with the wire delay problem. On the other
hand, communication between nodes is slower, and
interconnection network is more complex, but this is necessary
to achieve scalability as the available number of transistors
increases.
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Fig. 1. An example of thread synchronization in DTA with recursive

Fibonacci

There are three specific hardware structures that DTA uses
plus a minimum support in the instruction set. First one is a
frame memory. It is a fast memory associated with each
processor used for storing the thread’s input data. Processor
can access this memory in one cycle and we assume no stalls
in the pipeline in the case of frame memory access. Second
one is a local scheduler element (LSE). Each PE contains one
LSE that manages local frames and forwards request for
resources to the DSE (Distributed Scheduler Element). DSE is
a third DTA specific hardware structure (one per node). It is
responsible for distributing the workload between processors
in the node, and for forwarding it to other nodes. DSE,
together with all the LSEs, makes the hardware scheduling
unit of DTA architecture, which provides functionality of
dynamic distribution of the workload between processors.
Schedulers communicate among themselves by sending
messages. These messages can signal the allocation of the new
frame (FALLOC request and response messages), releasing a
frame (FFREE message) and storing the data in remote frames
(further details in paper [4]).

II. DTA SUPPORT IN CELL

We assume that the compiler or programmer identifies
portions of the programs that we name TLP activities. These
threads execute only on SPUs, and PPU will be responsible for
sending the TLP activities to the SPUs by forking the first
thread. After that, the DTA-specific hardware will take care of
the execution of these activities. When the last DTA thread
completes its execution, it will notify the PPU that the
execution is completed. In order to support this, a minimal
DTA support must include the following:

—Distributed Scheduling Element (DSE) is needed in

order to distribute the threads and to perform the load
balancing among SPUs.

—Local Scheduling Element (LSE) together with the
Frame Memory is needed in order to manage the
threads that are running on a single SPU.

— Support for DTA-specific instructions in the SPUs.

The Frame Memory can be mapped straightforwardly into
the SPE’s Local Store. The rest of this section briefly explains
the CellSim simulator, and then presents the DTA-specific
modifications that are needed in the simulator. The modules
that are implemented correspond to the actual hardware that
would be needed in the Cell processor with DTA support. For
now, we have implemented only the version with one node
(one PPU and eight SPUs).

A. Cell

We use the CellSim in order to model the Cell processor [7,
8]. The high level structure that it models is shown in Fig. 2. It
is a modular simulator implemented using UNISIM
framework [9]. Although the Cell processor has one PPU and
eight SPUs, the CellSim simulator has been built with the
support for even more PPUs and SPUs (all in one node) in

order to create diverse configurations.
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Fig. 2. The modular structure of the CellSim simulator: the configuration with
1 PPE and 8 SPEs. This configuration models the Cell processor.

For each hardware component of the Cell processor (PPU,
SPU, LS, EIB) there is a module that simulates it. The
modules that simulate the PPU and SPU are instruction set
simulators (ISS) and their parameters, such as the number of
instructions that they can execute per cycle can be changed.
All memories in the simulator (main memory and LS) are
simulated by the same type of module whose latency and the
number of ports can be configured. Instead of modeling the
EIB of the Cell processor, CellSim utilizes a K-Bus topology
for the interconnection network (IN) module. In this way, the
network is scalable, and more than one PPU and eight SPUs
can be attached to it. Correspondence with the real Cell
Processor has been validated previously [7, 8].

B. DTA specific modifications

The additional modules that are needed to simulate the DTA
architecture in CellSim are shown in Fig. 3 and Fig. 4. Since



DSE is responsible for distributing the threads and for load
balancing between all nodes, it is placed near to the PPU so
that it can be reached easily from each SPU. The arbiter that
was added between DSE and the bus is a simple combinatorial
module that distributes the transactions from the bus either to
the cache or to the DSE (Fig. 3). The DSE has a table with N
entries (N=8 in this case) that contains the number of frames
assigned to each SPE. It contains also combinatorial logic to
select the SPE that will accept the new frame based on the
same algorithm as in [4]. On the other hand, LSE is
responsible for handling the scheduling of threads that are
executing on one SPU [4], and it is placed inside the SPE.
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Fig. 3. Integration of the DSE into the CellSim

The LSE is implemented as a part of the MFC (Fig. 4). In
this way, it can use the capabilities of the MFC to manage the
local store and communicate with the rest of the system.
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Fig. 4. Integration of the LSE into the CellSim’s SPE module

The LSE contains queues for managing threads and frames
in the SPE: the Pre-Load Queue and the Waiting Table
(detailed in previous work [4, 5]) and briefly recalled below.

The Pre-Load Queue holds the continuations of the threads
(their instruction pointers and the address of their frames) that
are ready for execution (SC == 0). It is implemented as a
circular queue with a configurable capacity.

The Waiting Table contains the continuations that have

been scheduled but are not yet ready for execution (SC # 0). It
is implemented as an associative array with one entry per
frame. The array is indexed by frame number, and each entry
contains the IP and SC. Frame buffer is a circular queue that
contains the addresses of each free frame in the SPE. The size
of these tables and queues can be configured by passing
different parameters to the simulator. The physical structure of
the local store has remained unchanged as in the CellSim and
part of it is used to implement the Frame Memory. LSE is
intercepting accesses that are coming to LS from the
interconnection network, and handles them in case when they
are relevant to the execution of the DTA program (writes to
the frame memory and control space of the LSE).

In order for the SPUs to execute DTA code, a tool has been
developed that translates programs from the native DTA
assembly to the Cell SPU assembly language. For the majority
of the native DTA instructions the appropriate SPE
instructions have been determined. However, for the
instructions that were dealing with DTA threads this was not
possible since they required DTA support. Hence, some new
instructions have been added for the SPU ISA essentially for
handling thread lifetime (such as falloc for allocating a new
frame, ffree for deallocating frames, tstop that notifies the LSE
that a thread has finished its execution) and frame memory
accesses (such as store for storing data to other threads’
frames and load for loading data from the current frame).

The Cell processor memory map consists of several regions
that are dedicated to mapping the local stores, SPU control
registers, PPU control registers, etc. The CellSim simulator
implements this mapping as well. Main memory is mapped at
the beginning of the address space. Then, the local stores of
each SPU in the system are mapped. Registers of each PPU in
the system are mapped after, and, at the end the MFC registers
of each SPU. We have used this fact in order to be able to
access and control the schedulers.

The control registers of the DSE are mapped in the space
reserved for the registers of the corresponding PPU. The
arbiter in front of DSE and PPU decides which transactions
from the interconnection network are going to DSE and which
are for PPU based on the destination address. These registers
are used for communication with LSEs (for -creating,
destroying and dispatching threads) and with other DSEs (for
load balancing among nodes in the future versions of the
simulator). The control registers of each LSE are mapped
inside the space reserved for the local store of the
corresponding SPE. Since LSE is a part of the MFC, it will
intercept the messages that are destined to it.

Each Local Store is partitioned as shown in the Fig. 5. The
beginning of the LS is reserved for the code of the threads
(space from address O to Acoge cna). The local store also
contains frames (Ngames frames, each of them with a fixed
number of entry-per-frame called n.,) that are starting from
the address Afame st After the frames, a control space is
starting from the address Aouwo- These addresses are used by
LSE to receive communication from the corresponding DSE.
All these parameters can be configured in the simulator.
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Fig. 5. DTA extension memory mapping inside one Local Store

III. EXPERIMENTAL RESULTS

A. Methodology

In order to verify the model and to obtain performance
results we have used both native DTA simulator [4] and Cell-
DTA simulator (in various configurations), which is a
UNISIM extension [9] of the CellSim simulator [7, 8], and
finally we used a Playstation-3 with a real Cell processor and
Linux Fedora-8. The native DTA simulator is written to model
an ideal DTA processor, and it models an ideal memory with
no latencies. The pipelines that are used are simple, in-order
pipelines. The interconnection among processors in the DTA
is modeled as a standard bus in all the experiments that were
performed.

For simulating the Cell with DTA extension, we extended
the CellSim with the modules that are described in the
previous section. In order to achieve a reasonable comparison
with the native DTA simulator, we have considered two
different configurations characterized by different values for
memory latency (ml), and local store latency (Isl):

o Cell-DTA [ml=150, Isl=6] is the basic configuration where
the latency of local store is 6 cycles and memory latency is
150 cycles. This configuration is used for modeling the
realistic Cell processor.

e Cell-DTA [ml=1, Isl=1] is the ideal configuration where
both local store and memory latencies are 1 cycle. This
configuration was tested so we could compare more directly
the results with the native DTA simulator.

For the initial tests we have used several simple programs
(the first three also used in [5]):

-- Matrix multiply is a program that multiplies two square
matrices of order n (where n is 32). In order to parallelize it,
the matrices have been divided in 2, 4 or 8 parts and sent to
different threads for processing. Hence, all tests with this
program use 2, 4 or 8 processors.

-- Fibonacci is the recursive program for calculating
Fibonacci numbers of k (where k is 10). It is a simple program
that forks a lot of threads to execute recursive function calls.
The main purpose of this benchmark is to test how the system
handles a vast amount of small threads

-- Zoom is a program that zooms into one part of the
input picture. It is parallelized by sending different parts of the
picture to different threads, hence creating independent
threads. Input is an n by n picture (where n is 64).

-- Bitcount (bitcnt) from the MiBench [10] suite is a
program that counts bits in several different ways for a certain
number of iterations (input parameter that is 10000 in our
case). Parallelization is performed by unrolling both the main
loop that calls different functions and loops inside each
function that perform the iterations.

All these programs were hand-coded previously for the
native DTA architecture, and then (automatically) translated
with a tool (except for matrix multiply) in order to use the Cell
SPU ISA with DTA extensions. In the original DTA version,
all programs that were using memory were communicating
with it directly, and in Cell-DTA versions we have
implemented simple pre-fetching mechanism. All data that are
needed by the thread were preloaded into the LS, and then
read from the LS. Also, in order to give a fair comparison, we
have optimized some of these benchmarks for Cell-DTA in
order to eliminate the hazards (by moving instructions and by
renaming registers).

B. Experimental Results

Even when compared with an “ideal” Cell-DTA configuration
(ml=1, lIsl=1) (Fig. 6), the native DTA has a substantial
advantage memory is served within a pipeline cycle and
without bus contention. We made these experiments in order
to validate the DTA-Cell simulator against the original DTA.
Since CellSim models a realistic Cell processor, it was
impossible to completely bypass the queues and the bus. In
cases of bitcnt, zoom and matrix multiply this comes from the
fact that these benchmarks have memory accesses which are
slower in Cell-DTA then in native DTA. The difference is
more visible in the case of zoom and matrix multiply since
they are memory-intensive benchmarks. When using Cell-
DTA with memory latencies set to 1 the differences become
smaller, but native DTA is still faster. This is due to the fact
that SPU pipelines are modeled with dependencies, and even
though the memory latency is small (1 in case of Cell-DTA
[ml=1, Isl=1]), the memory access from the SPU needs to go
through the bus and to wait in the queues, which wasn’t the
case in native DTA simulator. This is also the reason why
Fibonacci is slower on Cell-DTA. This behavior was quite
expected as the native DTA simulator was mainly built for
testing the correctness of the execution model, TLP support
and scalability, and not to assess the absolute validity of the
execution time. Nevertheless, we need to work on
optimization of our DTA mapping which is still in its infancy,
and there is space for a more efficient implementation.

In fact, we can verify this also observing the average
pipeline utilization for all benchmarks (Fig. 7). It can be seen
that utilization is higher in case of native DTA than in case of
Cell-DTA for all the benchmarks except for matrix multiply.
This is also due to the fact that native DTA implements non-
blocking frame allocation [4] (that is not available here), and
that it uses perfect memory, so there are no pipeline stalls due
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Fig. 6. Execution time for the four benchmarks. The Y-axis represents the execution time in cycles, and the X-axis represents the number of SPUs (PEs or
processors in native DTA). In brackets, for each benchmark we report the input parameters that we used.

to memory or frame accesses. In case of matrix multiply, the
benchmark is heavily optimized in the Cell version, hence the
better utilization.

A quite interesting result is the scalability for the DTA
extension to Cell. The results are comparable to the native
DTA results (Fig. 8). The speedup has been calculated with
respect to the execution time when running on only one SPU
(or on one processor in case of native DTA). The obtained
speedup is good, almost ideal in some cases. The worst
speedup is obtained in the case of Fibonacci. In fact, this latter
program generates a vast number of small threads, and the
thread management becomes a significant factor. This is also
the case for bitcnt, but the impact is lower.

C. Comparison with the Cell

All four programs have been implemented for the Cell
architecture in order to compare it with the Cell-DTA. We
have implemented the matrix multiply and zoom so that each
of the eight SPUs calculates one part of the destination matrix.
The bitent program is implemented so that each of the seven
functions is statically allocated to one of the SPUs (one
remains free). In case of execution on DTA-Cell, programs are
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Fig. 7. Average pipeline usage of the four benchmarks. The Y-axis represents
the average pipeline usage and the X-axis represents the number of SPUs
(processors in native DTA).
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Fibonacci uses an algorithm that is recursive. Since the Cell
programming model doesn’t support non-trivial dynamic
synchronization among SPUs, it would be difficult to
implement it. Such implementation could lead to DTA-like
software synchronization mechanisms which we will consider
in our future work. Table I presents the comparison. We can
see that in all cases the results are Cell-DTA outperforms the
original Cell. In case of Fibonacci, the reason is obvious (one
vs. eight SPUs) and in case of other programs the dynamic
scheduling and synchronization of DTA are giving the
advantage to Cell-DTA model.

TABLEI

CELL-DTA vs. NATIVE CELL EXECUTION*

Benchmark Cell-DTA  Cell Improvement
cycles cycles

Fibonacci 5263 11561 54%
Bitcount 7945637 8196021 3%
MatrixMult. 154294 196908 21%
Zoom 142037 341381 58%

*The execution time in the table is given in the number of cycles obtained
using CellSim, and improvement is calculated with respect to the execution
time on a real Cell.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a hardware implementation
of DTA TLP support for the Cell architecture. Initial results
show that the solution is scalable, and that it improves the
performance of the Cell processor. We need to use more
benchmarks in order to further explore the feasibility of the
DTA support. For mapping portion of source code that could
benefit from TLP acceleration we plan to mark TLP activities
using OpenMP directives [11].
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