
 

 

Abstract— The focus of our study is the support for 
fine/medium grained Thread Level Parallelism (TLP) by using a 
hardware scheduling unit and relying on existing simple cores. 
Simple cores are grouped into clusters in order to provide a 
scalable solution. As a proof of concept, we use an 
implementation based on the Cell Broadband Engine (CBE). Cell 
is a multiprocessor on a chip developed by Sony, Toshiba and 
IBM that contains one general purpose core and eight 
coprocessor elements that accelerate the multimedia and vector 
processing. The aim of this paper is to present a possible 
implementation of DTA (Decoupled Threaded Architecture) that 
is based on the Cell processor, while keeping the scalability of the 
original DTA. 
 

Index Terms—thread level parallelism, multicore processors 

I. INTRODUCTION 
URRENT trends in computer architecture have brought to 
the market multicore architectures to utilize the ever 
increasing number of transistors, which are available on a 

single chip. Future general purpose processors are expected to 
have a number of cores at least an order of magnitude bigger 
than it is now [1]. A good representative of this trend is the 
Cell processor [2, 3] that was created by the cooperation of 
Sony, Toshiba and IBM. This is a heterogeneous multicore 
architecture with a single PowerPC core and eight SIMD 
cores. 

However, programming for multicore architectures is still 
an open issue and research topic in both academia and 
industry. TLP is one opportunity that can be exploited by the 
multicore architectures. Each core can run a separate thread, 
and inside them it can exploit even other levels of parallelism 
(ILP, DLP). Even though multicore peak computational power 
can be very high, programming them is not a trivial problem. 
In the case of Cell, for instance, the programmer defines tasks 
statically in order to let them execute on SIMD cores as well 
as the data transfers for them (to and from main memory). 
Previously, we experimented successfully with the DTA 
architecture [4], which is able to efficiently exploit 
fine/medium grained TLP that is available in the programs. 
The hardware proposed in DTA could provide mechanisms for 
efficient and scalable thread scheduling and synchronization 
also in existing multicore architecture like the Cell. 

In this paper, we present an implementation of DTA support 
for the Cell architecture. The aim of this hardware solution is 
to exploit available TLP. The idea is to map DTA cores to Cell 
SPE cores (see Section I.A) and introduce simple additional 
hardware for thread scheduling and synchronization as in 
DTA [4], thus making it dynamic. 

The rest of the paper is organized as follows. In the rest of 
this section we present a brief review of the Cell architecture 
and then a brief introduction to the DTA architecture. Section 
II describes the implementation of DTA hardware support in 
Cell architecture. In Section III, we show initial results 
obtained on this platform. Section IV gives the conclusions. 

A. The Cell Processor 
The Cell processor is a multiprocessor on a chip that 

combines one general purpose PowerPC Processing Element 
(PPE) with eight SIMD accelerators (called SPE - Synergistic 
Processor Element) [2, 3]. 

The PPE consists of one PPU (PowerPC Processor Unit) 
and caches (L1 + L2). The PPU is a dual-issue in-order 
processor based on the IBM PowerPC architecture. In typical 
usage of the Cell processor, the PPU is responsible for running 
the operating system and for managing the SPEs. 

The SPE contains one Synergistic Processor Unit (SPU), 
Memory Flow Controller (MFC) and a 256KB of Local Store 
(LS) memory. The SPU is a dual-issue in-order processor that 
works only with data that are present in its Local Store and 
accesses main memory and other Local Stores through MFC 
controller. Each MFC contains a Memory Management Unit 
(MMU) for address translation and a DMA controller. 

The Element Interconnect Bus (EIB) in the Cell processor 
connects the PPE, SPEs, off-chip memory and I/O devices. It 
has one address bus and four 16-byte data rings for data 
transfers.  

B. DTA Architecture 
DTA [4] is an architecture that derives from previously 

proposed execution models like SDF (Scheduled Data-Flow) 
[5] and related ones like TAM (Threaded Abstract Machine) 
[6]. Threads communicate with each other in a producer-
consumer fashion, and a thread will start its execution only 
when all its data are ready in a local memory (which we also 
call Frame Memory). Each thread has assigned a number of 
input data it needs (synchronization count - SC). SC is 
decremented every time a data is stored in a local memory of a 
thread. When it reaches zero, the thread is ready for the 
execution. In this way we have a dataflow-like communication 
between threads - dataflow at thread level. An example of 
thread synchronization in DTA is shown in Fig. 1. This 
example shows one thread (fib(n)) that forks another three 
threads (fib(n-1), fib(n-2) and sum). It also shows the data 
dependencies among these threads, and the synchronization 
counts that are associated with them. 

DTA is a proposal for a many-core architecture.  Processing 
elements (PE) in DTA are grouped into nodes, where 
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dimension of each node is determined with a constraint that 
each PE must be reachable in one cycle. This is done in order 
to be able to deal with the wire delay problem. On the other 
hand, communication between nodes is slower, and 
interconnection network is more complex, but this is necessary 
to achieve scalability as the available number of transistors 
increases. 

input n

a = n-1
b = n-2

...
x = fib(n-1)
...

...
y = fib(n-2)
...

...
res = x + y
...

a b

x y

fib(n-1)

fib(n)

fib(n-2)

sum

Inputs: a
SC = 1

Inputs: n
SC = 1

Inputs: b
SC = 1

Inputs: x, y
SC = 2

n

 
Fig. 1.  An example of thread synchronization in DTA with recursive 
Fibonacci 

 
There are three specific hardware structures that DTA uses 

plus a minimum support in the instruction set. First one is a 
frame memory. It is a fast memory associated with each 
processor used for storing the thread’s input data. Processor 
can access this memory in one cycle and we assume no stalls 
in the pipeline in the case of frame memory access. Second 
one is a local scheduler element (LSE). Each PE contains one 
LSE that manages local frames and forwards request for 
resources to the DSE (Distributed Scheduler Element). DSE is 
a third DTA specific hardware structure (one per node). It is 
responsible for distributing the workload between processors 
in the node, and for forwarding it to other nodes. DSE, 
together with all the LSEs, makes the hardware scheduling 
unit of DTA architecture, which provides functionality of 
dynamic distribution of the workload between processors. 
Schedulers communicate among themselves by sending 
messages. These messages can signal the allocation of the new 
frame (FALLOC request and response messages), releasing a 
frame (FFREE message) and storing the data in remote frames 
(further details in paper [4]). 

II. DTA SUPPORT IN CELL 
We assume that the compiler or programmer identifies 

portions of the programs that we name TLP activities. These 
threads execute only on SPUs, and PPU will be responsible for 
sending the TLP activities to the SPUs by forking the first 
thread. After that, the DTA-specific hardware will take care of 
the execution of these activities. When the last DTA thread 
completes its execution, it will notify the PPU that the 
execution is completed. In order to support this, a minimal 
DTA support must include the following: 

− Distributed Scheduling Element (DSE) is needed in 

order to distribute the threads and to perform the load 
balancing among SPUs. 

− Local Scheduling Element (LSE) together with the 
Frame Memory is needed in order to manage the 
threads that are running on a single SPU. 

− Support for DTA-specific instructions in the SPUs. 
The Frame Memory can be mapped straightforwardly into 

the SPE’s Local Store. The rest of this section briefly explains 
the CellSim simulator, and then presents the DTA-specific 
modifications that are needed in the simulator. The modules 
that are implemented correspond to the actual hardware that 
would be needed in the Cell processor with DTA support. For 
now, we have implemented only the version with one node 
(one PPU and eight SPUs). 

A. Cell 
We use the CellSim in order to model the Cell processor [7, 

8]. The high level structure that it models is shown in Fig. 2. It 
is a modular simulator implemented using UNISIM 
framework [9]. Although the Cell processor has one PPU and 
eight SPUs, the CellSim simulator has been built with the 
support for even more PPUs and SPUs (all in one node) in 
order to create diverse configurations. 
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Fig. 2.  The modular structure of the CellSim simulator: the configuration with 
1 PPE and 8 SPEs. This configuration models the Cell processor. 

 
For each hardware component of the Cell processor (PPU, 

SPU, LS, EIB) there is a module that simulates it. The 
modules that simulate the PPU and SPU are instruction set 
simulators (ISS) and their parameters, such as the number of 
instructions that they can execute per cycle can be changed. 
All memories in the simulator (main memory and LS) are 
simulated by the same type of module whose latency and the 
number of ports can be configured. Instead of modeling the 
EIB of the Cell processor, CellSim utilizes a K-Bus topology 
for the interconnection network (IN) module. In this way, the 
network is scalable, and more than one PPU and eight SPUs 
can be attached to it. Correspondence with the real Cell 
Processor has been validated previously [7, 8].  

B. DTA specific modifications 
The additional modules that are needed to simulate the DTA 

architecture in CellSim are shown in Fig. 3 and Fig. 4. Since 



 

DSE is responsible for distributing the threads and for load 
balancing between all nodes, it is placed near to the PPU so 
that it can be reached easily from each SPU. The arbiter that 
was added between DSE and the bus is a simple combinatorial 
module that distributes the transactions from the bus either to 
the cache or to the DSE (Fig. 3). The DSE has a table with N 
entries (N=8 in this case) that contains the number of frames 
assigned to each SPE. It contains also combinatorial logic to 
select the SPE that will accept the new frame based on the 
same algorithm as in [4]. On the other hand, LSE is 
responsible for handling the scheduling of threads that are 
executing on one SPU [4], and it is placed inside the SPE. 

PPU

Interconnection network

Cache DSE

Arbiter

 
Fig. 3.  Integration of the DSE into the CellSim 

 
The LSE is implemented as a part of the MFC (Fig. 4). In 

this way, it can use the capabilities of the MFC to manage the 
local store and communicate with the rest of the system.  
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Fig. 4.  Integration of the LSE into the CellSim’s SPE module 

 
The LSE contains queues for managing threads and frames 

in the SPE: the Pre-Load Queue and the Waiting Table 
(detailed in previous work [4, 5]) and briefly recalled below. 

The Pre-Load Queue holds the continuations of the threads 
(their instruction pointers and the address of their frames) that 
are ready for execution (SC = = 0). It is implemented as a 
circular queue with a configurable capacity.  

The Waiting Table contains the continuations that have 

been scheduled but are not yet ready for execution (SC ≠ 0). It 
is implemented as an associative array with one entry per 
frame. The array is indexed by frame number, and each entry 
contains the IP and SC. Frame buffer is a circular queue that 
contains the addresses of each free frame in the SPE. The size 
of these tables and queues can be configured by passing 
different parameters to the simulator. The physical structure of 
the local store has remained unchanged as in the CellSim and 
part of it is used to implement the Frame Memory. LSE is 
intercepting accesses that are coming to LS from the 
interconnection network, and handles them in case when they 
are relevant to the execution of the DTA program (writes to 
the frame memory and control space of the LSE). 

In order for the SPUs to execute DTA code, a tool has been 
developed that translates programs from the native DTA 
assembly to the Cell SPU assembly language. For the majority 
of the native DTA instructions the appropriate SPE 
instructions have been determined. However, for the 
instructions that were dealing with DTA threads this was not 
possible since they required DTA support. Hence, some new 
instructions have been added for the SPU ISA essentially for 
handling thread lifetime (such as falloc for allocating a new 
frame, ffree for deallocating frames, tstop that notifies the LSE 
that a thread has finished its execution) and frame memory 
accesses (such as store for storing data to other threads’ 
frames and load for loading data from the current frame). 

The Cell processor memory map consists of several regions 
that are dedicated to mapping the local stores, SPU control 
registers, PPU control registers, etc. The CellSim simulator 
implements this mapping as well. Main memory is mapped at 
the beginning of the address space. Then, the local stores of 
each SPU in the system are mapped. Registers of each PPU in 
the system are mapped after, and, at the end the MFC registers 
of each SPU. We have used this fact in order to be able to 
access and control the schedulers. 

The control registers of the DSE are mapped in the space 
reserved for the registers of the corresponding PPU. The 
arbiter in front of DSE and PPU decides which transactions 
from the interconnection network are going to DSE and which 
are for PPU based on the destination address. These registers 
are used for communication with LSEs (for creating, 
destroying and dispatching threads) and with other DSEs (for 
load balancing among nodes in the future versions of the 
simulator). The control registers of each LSE are mapped 
inside the space reserved for the local store of the 
corresponding SPE. Since LSE is a part of the MFC, it will 
intercept the messages that are destined to it. 

Each Local Store is partitioned as shown in the Fig. 5. The 
beginning of the LS is reserved for the code of the threads 
(space from address 0 to Acode_end). The local store also 
contains frames (nframes frames, each of them with a fixed 
number of entry-per-frame called nepf) that are starting from 
the address Aframe_start. After the frames, a control space is 
starting from the address Acontrol. These addresses are used by 
LSE to receive communication from the corresponding DSE. 
All these parameters can be configured in the simulator.  
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Fig. 5.  DTA extension memory mapping  inside one Local Store 

III. EXPERIMENTAL RESULTS 

A. Methodology 
In order to verify the model and to obtain performance 

results we have used both native DTA simulator [4] and Cell-
DTA simulator (in various configurations), which is a 
UNISIM extension [9] of the CellSim simulator [7, 8], and 
finally we used a Playstation-3 with a real Cell processor and 
Linux Fedora-8. The native DTA simulator is written to model 
an ideal DTA processor, and it models an ideal memory with 
no latencies. The pipelines that are used are simple, in-order 
pipelines. The interconnection among processors in the DTA 
is modeled as a standard bus in all the experiments that were 
performed. 

For simulating the Cell with DTA extension, we extended 
the CellSim with the modules that are described in the 
previous section. In order to achieve a reasonable comparison 
with the native DTA simulator, we have considered two 
different configurations characterized by different values for 
memory latency (ml), and local store latency (lsl): 
• Cell-DTA [ml=150, lsl=6] is the basic configuration where 

the latency of local store is 6 cycles and memory latency is 
150 cycles. This configuration is used for modeling the 
realistic Cell processor.  

• Cell-DTA [ml=1, lsl=1] is the ideal configuration where 
both local store and memory latencies are 1 cycle. This 
configuration was tested so we could compare more directly 
the results with the native DTA simulator. 
For the initial tests we have used several simple programs 

(the first three also used in [5]):  
 -- Matrix multiply is a program that multiplies two square 

matrices of order n (where n is 32). In order to parallelize it, 
the matrices have been divided in 2, 4 or 8 parts and sent to 
different threads for processing. Hence, all tests with this 
program use 2, 4 or 8 processors. 

 -- Fibonacci is the recursive program for calculating 
Fibonacci numbers of k (where k is 10). It is a simple program 
that forks a lot of threads to execute recursive function calls. 
The main purpose of this benchmark is to test how the system 
handles a vast amount of small threads 

 -- Zoom is a program that zooms into one part of the 
input picture. It is parallelized by sending different parts of the 
picture to different threads, hence creating independent 
threads. Input is an n by n picture (where n is 64).   

 -- Bitcount (bitcnt) from the MiBench [10] suite is a 
program that counts bits in several different ways for a certain 
number of iterations (input parameter that is 10000 in our 
case). Parallelization is performed by unrolling both the main 
loop that calls different functions and loops inside each 
function that perform the iterations. 

All these programs were hand-coded previously for the 
native DTA architecture, and then (automatically) translated 
with a tool (except for matrix multiply) in order to use the Cell 
SPU ISA with DTA extensions. In the original DTA version, 
all programs that were using memory were communicating 
with it directly, and in Cell-DTA versions we have 
implemented simple pre-fetching mechanism. All data that are 
needed by the thread were preloaded into the LS, and then 
read from the LS. Also, in order to give a fair comparison, we 
have optimized some of these benchmarks for Cell-DTA in 
order to eliminate the hazards (by moving instructions and by 
renaming registers). 

B. Experimental Results 
Even when compared with an “ideal” Cell-DTA configuration 
(ml=1, lsl=1) (Fig. 6), the native DTA has a substantial 
advantage memory is served within a pipeline cycle and 
without bus contention. We made these experiments in order 
to validate the DTA-Cell simulator against the original DTA. 
Since CellSim models a realistic Cell processor, it was 
impossible to completely bypass the queues and the bus. In 
cases of bitcnt, zoom and matrix multiply this comes from the 
fact that these benchmarks have memory accesses which are 
slower in Cell-DTA then in native DTA. The difference is 
more visible in the case of zoom and matrix multiply since 
they are memory-intensive benchmarks. When using Cell-
DTA with memory latencies set to 1 the differences become 
smaller, but native DTA is still faster. This is due to the fact 
that SPU pipelines are modeled with dependencies, and even 
though the memory latency is small (1 in case of Cell-DTA 
[ml=1, lsl=1]), the memory access from the SPU needs to go 
through the bus and to wait in the queues, which wasn’t the 
case in native DTA simulator. This is also the reason why 
Fibonacci is slower on Cell-DTA. This behavior was quite 
expected as the native DTA simulator was mainly built for 
testing the correctness of the execution model, TLP support 
and scalability, and not to assess the absolute validity of the 
execution time. Nevertheless, we need to work on 
optimization of our DTA mapping which is still in its infancy, 
and there is space for a more efficient implementation.  

In fact, we can verify this also observing the average 
pipeline utilization for all benchmarks (Fig. 7). It can be seen 
that utilization is higher in case of native DTA than in case of 
Cell-DTA for all the benchmarks except for matrix multiply. 
This is also due to the fact that native DTA implements non-
blocking frame allocation [4] (that is not available here), and 
that it uses perfect memory, so there are no pipeline stalls due 
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