
Exploiting DMA to enable non-blocking execution

in Decoupled Threaded Architecture

Roberto Giorgi, Zdravko Popovic, Nikola Puzovic

Department of Information Engineering

University of Siena – Siena, Italy

http://www.dii.unisi.it/ {giorgi, popovic, puzovic}

Abstract

DTA (Decoupled Threaded Architecture) is designed to

exploit fine/medium grained Thread Level Parallelism (TLP)

by using a distributed hardware scheduling unit and relying

on existing simple cores (in-order pipelines, no branch

predictors, no ROBs).

In DTA, the local variables and synchronization data are

communicated via a fast frame memory. If the compiler can

not remove global data accesses, the threads are excessively

fragmented. Therefore, in this paper, we present an imple-

mentation of a pre-fetching mechanism (for global data)

that complements the original DTA pre-load mechanism (for

consumer-producer data patterns) with the aim of improving

non-blocking execution of the threads.

Our implementation is based on an enhanced DMA mech-

anism to prefetch global data. We estimated the benefit and

identified the required support of this proposed approach,

in an initial implementation. In case of longer latency to

access memory, our idea can reduce execution time greatly

(i.e., 11x for the zoom benchmark on 8 processors) compared

to the case of no-prefetching.

1. Introduction

Many-core architectures are currently an attractive solu-

tion for efficient and scalable utilization of the increasing

number of transistors available on a single chip. These kinds

of architectures are studied in both academia and industry.

Recent examples of such architectures include IBM Cyclops

[1], UltraSPARC T2 [2], TRIPS [3], Plurality [4] and Intel

Polaris [5]. These architectures indicate that future general

purpose processors are expected to have a number of cores

at least an order of magnitude bigger than now.

DTA is a many-core multithreaded architecture for ex-

ploiting fine/medium grained TLP that is available in the

programs [6][7], by providing mechanisms for scalable

thread scheduling, synchronization and decoupling of their

memory accesses. Local variables and synchronization data

are communicated via a fast frame memory. However,

accessing global data from any point in a program is

possible, and might not be completely replaced by accesses

to frame memory through the compiler analysis. Here, we

present an implementation of a pre-fetching mechanism

(for global data) that complements the DTA original pre-

load mechanism (for consumer-producer data patterns) for

fully non-blocking execution of the threads, although it can

be generalized to other existing multithreaded architectures

with few modifications. For example, it can be implemented

on the Cell processor [8]. We used DTA implementation for

the Cell as a framework for our experiments.

The rest of the paper is organized as follows. Section 2

recalls the DTA concept briefly. In Section 3, we present

how DTA can benefit from pre-fetching combined with the

pre-loading mechanism. In Section 4, we show current initial

implementation and some results obtained on the reference

platform. Finally we discuss the related work and give

conclusions.

2. DTA Memory Model (DTA-MM) and re-

quired support

DTA [6][8] is an architecture that derives from previously

proposed execution models like SDF [9] and related ones

like TAM (Threaded Abstract Machine) [10] and EARTH

(Efficient Architecture for Running THreads) [11]. DTA

executes TLP activities, which are, by definition, portions

of a program that exhibit thread level parallelism. The TLP

activities are usually offloaded to DTA hardware where

they are executed in parallel (for example, in the case of

the Cell processor, TLP activities are offloaded by general

purpose processor to SPEs, which execute them in parallel).

In comparison with SDF, DTA adds the concept of clustering

the resources in order to address wire-delay[6], a fully

distributed scheduler and a communication protocol to im-

plement exchange of synchronization messages [6], a major

benefit being a scalable design. A TLP activity is further

divided into threads, which can be executed in parallel. A

threads are logically divided into smaller parts which are

called code blocks (explained below). Threads communicate

with each other in a producer-consumer fashion, and a thread

will start its execution only when all its data are ready in

a frame memory. Each thread has a number of input data

it needs (tracked by a per-thread Synchronization Counter



Figure 1. Simple example of thread communication

in DTA. Data is sent to other threads using STORE

instructions, and is read using LOAD instructions.

Figure 2. High level conceptual view of the DTA.

- SC). SC is decremented every time a datum is stored in

a thread frame. When SC reaches zero, the corresponding

thread is ready for the execution. In this way, we have a

dataflow-like communication between threads - dataflow at

thread level (Figure 1).

Processing Elements (PE) in DTA are grouped into nodes

[6], where the node size is small enough to avoid the wire

delay problem (e.g., all elements are synchronized with the

same clock) [12]. On the other hand, the communication

between nodes is slower as we rely on a more complex

interconnection network. High level organization of DTA is

shown in Figure 2.

There are three specific hardware structures that DTA

uses plus a minimum support in the instruction set that

was described before [6] and we recall it briefly here. The

first one is a Frame Memory (FM). It is a local memory,

associated with each processing element, that it is used

Table 1. Thread management instructions needed for

execution of DTA programs

Name Description

FALLOC Creates a new frame by sending request to the scheduler.

FFREE Releases a frame.

STOP Notifies the LSE that thread has completed its execution.

LOAD Loads the data from the frame of the current thread.

STORE Stores the data to the frame of another thread.

for storing the thread’s input data. Because of this specific

memory, we have four instruction types for accessing mem-

ory: reading and writing to frame and main memory [6].

The second specific hardware structure is a Local Scheduler

Element (LSE). Each PE contains one LSE that manages

local frames and forwards requests for resources to a DSE

(Distributed Scheduler Element). The DSE is a third DTA

specific hardware structure (one per node). It is responsible

for distributing the workload between processors in the node,

and for forwarding it to other nodes when internal resources

are finished. DSEs from all nodes, together with all LSEs,

constitute the (hardware) Distributed Scheduler (or DS) of

DTA. Scheduler elements communicate among themselves

by sending messages. These messages can signal the allo-

cation of a new frame (FALLOC-Request and FALLOC-

Response messages), releasing a frame (FFREE message)

and storing the data in remote frames (further details are

in the paper [6]). In order to manage the lifetime of each

thread, we need a few additional instructions in the ISA

(Table 1). In cases when the processing element does not

have instructions for accessing main memory, they also need

to be added (for example in Cell SPU).

Each DTA thread consists of three code blocks: pre-load

(PL), execution (EX) and post-store (PS) [6][9]. Each code

block is executed in a phase with a corresponding name

(left part of Figure 3). In the pre-load phase, a thread reads

all the necessary input data from the assigned frame and

writes them into registers. In the execution phase, a thread

manipulates the data placed in registers, and in post-store

phase such thread writes its results into the frames of other

threads.

Each DTA thread must pass through these states:

1) ”Wait for a Frame” - A frame must be assigned to

a thread before it can receive any data from other

threads.

2) ”Wait for stores” - Each thread needs to wait for all

data to become ready in the frame. When the SC

reaches zero the thread will pass into the next state.

3) ”Ready” - All thread’s data are ready in the frame

memory and the thread can start as soon as the pipeline

becomes available.

4) ”Execution” - When the pipeline becomes available

the thread will start its execution. The execution is

divided into three parts:



Figure 3. Lifetime of a thread and DMA related mod-

ifications (on the left) in order to support prefetching.

Prefetching code blocks (PF) are added (step 1) and

memory accesses are changed to access local memory

(step 2).

a) Pre-load (PL) - In this phase data is read from

the frame memory.

b) Execution (EX) - The code of the thread is

executed.

c) Post-store (PS) - Sending data to other threads.

Although there must be no access to the frame memory in

the execution phase, accesses to the main memory can still

occur in the original DTA model. These accesses cause stalls

in the pipeline (we name these accesses READ and WRITE

for the sake of differentiating them from the accesses to

frame memory - LOADs and STOREs). The prefetching

mechanism presented in this paper is dealing with these

stalls.

3. Making DTA-MM more efficient through

DMA-based pre-fetching

In this section, we describe the general prefetching mech-

anism that we propose. Since it is possible to access global

data structures from any point in a program, we focus here

on those accesses. Some modifications are needed to DTA

threads to prefetch global data (Figure 3). In the case when

there are no main memory accesses, threads will remain

unchanged as in the original DTA. However, when there are

READ instructions, the compiler will modify the threads in

order to add prefetching code. For each thread that contains

a generic memory accesses, one new code block (PreFetch

or PF code block, Figure 3) will be created that will initiate

the transfer from main memory to local memory. In order

to decouple the accesses to the main memory, all READ

instructions that the thread contained are replaced by the

compiler with LOAD instructions that now accesses the

prefetched data in the local memory and are moved into

the PL code block.

We could deal with accesses to global data by further

partitioning threads, and this would have been possible also

in the original DTA design [6], but in such case a possible

adverse effect is the creation of too small threads (fine

grained), typically when the program uses complex data

structures such as arrays, linked-lists, data block pointers.

For this reason, the prefetching mechanism has been de-

signed to address these issues acting in two directions:

1) The prefetching can be tuned in order to prefetch not a

single datum but more data depending on the situation;

this operation is actually scheduled with a priority

given by the Control-Data Flow Graph (CDFG) of the

program;

2) The hardware is designed so that prefetch on such

complex structures are facilitated.

This prefetching mechanism needs to be implemented

both on the side of the compiler and in the architecture. The

compiler has to recognize when a thread uses different types

of global data, and be able to insert the prefetch instructions

in the PreFetch (PF) code block. On the architectural side,

we use the DMA unit in order to transfer the data from the

main memory to the local memory. The changes that are

needed in order to implement the prefetching (with respect

to the original DTA) are as follows, and the rest of this

section gives some details on how these changes should be

implemented:

• The lifetime of a thread needs to be changed in order

to support the code block that will prefetch the data.

• Local scheduler needs to be modified in order to handle

different types of transfers for global data.

• Compiler needs to be adapted in order to modify the

DTA threads to add the prefetching code for basic data

types.

In particular, two additional states need to be inserted

(Figure 4): 2a) ”Program DMA” and 2b) ”Wait for DMA”.

If there is data to prefetch, a PF code block is responsible

for programming the DMA transfer.

Depending on the block of data that is accessed from

within the thread (e.g., array access, linked list access,

pointer access), the compiler will insert instructions to

program the DMA unit to prefetch the entire data structure

or only parts of it. Once the transfer is completed, a standard

DTA synchronization mechanism (Synchronization Counter)

can be used to notify the scheduler that the thread can

continue its execution. This could be implemented also

using split-transaction network, but in case where thread

accesses array with a certain stride between elements it could

generate too many transactions (and DMA performs it in one

transaction).



Figure 4. The lifetime of a thread in DTA with prefetch-

ing enabled. The states that are introduced with respect

to the original DTA are shown with darker background.

4. Initial implementation and preliminary re-

sults

In order to verify the mechanism that is proposed above,

we have implemented its initial version that supports the

prefetching of generic object from memory. The rest of this

section explains the experimental methodology that was used

and gives the initial results.

4.1. Experimental methodology

We use a modified version of CellSim [13] with DTA

support [8]: we refer to this modified version as ”CellDTA”

in the following text. CellSim is a modular simulator that is

based on the UNISIM framework [14] to simulate the Cell

processor, and then extended with DTA-specific modules.

The PPE (Power Processing Element) of the Cell proces-

sor is used to initiate the DTA TLP activities, and threads

are executed on the SPEs (Synergistic Processing Element).

Each SPE contains a SPU (Synergistic Processing Element)

which executes code, Local Store and a MFC (Memory Flow

Controller). SPU is an in-order SIMD processor which can

issue two instructions in each cycle (one memory and one

calculation). It does not contain any branch prediction, but

relies on the compiler to give hints on branches. It also does

not have any caches, but uses the local store to store data

and instructions.

For the purpose of implementing DTA support, we have

added one DSE to the Cell processor, and one LSE to each

SPE. In order to store the code of DTA threads that execute

on the SPU and to hold the frames that are needed locally,

we use the Local Store. For this experiment, we use a part

of the LS in order to store the data that was prefetched from

the main memory. The parameters of the memory subsystem

Table 2. Parameters of the memory subsystem used in

simulations.

Memory Parameter Value

Main memory
Size 512 MB
Latency 150 cycles
Number of ports 1

Local Store
Size 156 kB
Latency 6 cycles
Number of ports 3

Table 3. Instructions for accessing both frame and

main memory.

Name Description

LS address The address in the local store where data will be
stored.

MEM address The address in the main memory where data is
located.

Data size The size of the data that will be transfered.

Tag ID The ID of the DMA operation that will later be used
by the LSE to check if the transfer is completed or
not.

Table 4. Parameters of the communication subsystem

used in simulations.

Parameter Value

Bus
Number of buses 4
BW of each bus 8 bytes/cycle
Total BW 8.1 GB/s at 2.4 GHz

MFC (DMA
controller)

Command Queue size 16
Command latency 30 cycles

used in simulations are given in Table 4. The SPU has

been changed to add DTA-specific instructions (Table 1) and

instructions for accessing main memory.

Each of the SPEs contains a DMA unit, which is used by

DTA threads to transfer the prefetched data. The program-

ming of this unit is performed via MFC and commands are

sent using existing Cell SPE instructions. The parameters

that are used to program the DMA unit in Cell are in Table 3.

DMA needs address and size for the data block access.

Additionally, the address where this data will be stored in

the LS has to be sent, together with the TAG ID, which is

used to read the status of the initiated transfer in the DMA

unit. The parameters of the communication subsystem that

are used in the simulations are in Table 2.

4.2. Benchmarks

All the benchmarks are hand-coded for the original DTA

and then translated for Cell-DTA version. Prefetching code

blocks are added by hand following the principles described

in the previous sections. The benchmarks are:

• The bitcount from the MiBench [15] suite is a program

that counts bits for a certain number of iterations (input

parameter). Its parallelization has been performed by



unrolling both the main loop and the loops inside each

function. This benchmark is used in order to test the

scalability of the architecture. Global data that is used

by some of the functions in the program is prefetched

in the threads where it was needed. Experiments are

performed with 10000 iterations - bitcnt(10000) in the

figures.

• Matrix multiply (mmul) is a program that multiplies

two matrices. Threads that run in parallel are calculat-

ing parts of the output matrix. The number of threads

is always a power of two, and the program is always

executed on a number of cores that is power of two.

Inputs are two n by n matrices. Prefetching of the

parts of the input matrices is performed in the threads

that are calculating the output matrix. Experiments are

performed with matrices of size 32 by 32 - mmul(32)

in the figures.

• Zoom is a program that zooms into one part of the

input picture. It is parallelized by sending different

parts of the picture to different PEs. Input is an n by n

picture. Parts of the input image are prefetched in the

threads that are calculating the zoom. Experiments are

performed with a picture of size 32 by 32 - zoom(32)

in the figures.

4.3. Preliminary results

Before applying the prefetching mechanism, we have an-

alyzed the behavior of benchmarks to determine the amount

of execution time in which the processor is stalled when

waiting for memory. The programs were executed with eight

SPUs in conditions described in previous section. The results

are shown in Figure 5.

The y-axis of the Figures 5 shows the benchmark name

and x-axis shows the percentage of time spent in certain

phases of the execution: Working - when the SPU works

without stalls; Idle - when the SPU has no ready threads to

execute; Memory Stalls - when SPU waits for a response

from main memory (including the time that a request to

memory spends on the network); LS Stalls - when SPU is

waiting for a response from the Local Store; LSE Stalls

- when the SPU waits for a response from the LSE and

Prefetching - prefetching overhead, which is due to the

fact that SPU must spend some time in order to program

the DMA unit. In an implementation where LSE has two

available pipelines (SP and XP) [6], it can overlap this with

the execution of other threads, but in the CellDTA this is not

yet available. In case of bitcnt, there are LSE stalls, which

are due to the fact that this benchmark is forking vast amount

of threads in small amount of time and the LSE can’t keep up

(a possible solution is to use virtual frame pointers [6], but

we did not include this feature in the current version of the

CellDTA simulator). In all three benchmarks, a significant

amount of time is spent while waiting for memory. Accesses

Table 5. Number of executed instructions in all

benchmarks (total, instructions for accessing frame

and main memory).

Benchmark Total LOAD STORE READ WRITE

bitcnt 9415559 806593 806593 192366 2814

mmul 341422 73 73 65536 1024

zoom 353425 4672 4672 32768 16384

to the Local Store (for reading frame memory) are mostly

hidden (overlapped with the execution) and therefore LS

stalls constitute only a 2% of execution time of bitcnt and

they are negligible in the case of mmul and zoom. In order

to fully understand the behavior of benchmarks, we have

extracted the dynamic instruction count (Table 5). We report

the total number of executed instructions, as well as number

of instructions that are accessing frame and main memory.

In bitcnt, 58% of time is spent waiting for main memory

(Figure 5a), while READ instructions represent 2% of

total executed instructions and LOAD instructions represent

8.5% of all executed instructions (Table 5). As we can see

(Table 5), data is mostly exchanged using frame memory and

accesses to global data within threads (READ instructions)

are due to the reading of global arrays that are used by

some of the functions that are counting bits. The prefetching

decouples 62% of READ instructions. Other READ instruc-

tions are left in the program because it is not worthwhile

to decouple them. In certain threads of bitcnt, a thread

is reading one element of the 256-element array, and the

element to be read is not known before the execution starts,

so the entire array needs to be prefetched. In this case, it is

faster to leave one memory access inside the thread rather

than prefetch all elements of the array when only one will

be used.

In matrix multiply, 94% of time is spent waiting for

memory (Figure 5a), while (Table 5) READ instructions

represent 19% of all instructions and the number of accesses

to frame memory is negligible. The accesses to global

memory are due to the fact that the input matrices are stored

in main memory, and read from there by the threads that

are calculating the result. Prefetching decouples all global

memory accesses, in this case.

Zoom spends 92% of time waiting for memory (Fig-

ure 5a), while (Table 5) READ instructions are 9.2% of

all instructions. Similarly to matrix multiply, input data is

stored in main memory, and read from there by threads that

are calculating the output image. Prefetching decouples all

global memory accesses, also in this case. As we can see,

the percentage of time spent while waiting for memory and

the number of accesses to main memory are high and this

gives a lot of space for the prefetching technique to work.

Finally, we show the final effect on the execution time

when prefetching is enabled (figures 6a, 7a, 8a) in com-

parison with the execution time without prefetching and



(a) No prefetching (b) With prefetching

Figure 5. The breakdown of average SPU execution time on original CellDTA with eight SPUs and memory latency

set to 150.

the scalability (figures 6b, 7b, 8b) for our benchmarks.

When prefetching is enabled, in cases of mmul and zoom

all needed data is transferred to the local store before

executing the EX code block (see figure 4), while in the

original DTA design [6] a transfer from the main memory

is created each time a READ operation is performed. This

means that in case of no prefetching the CellDTA is not

using all available bandwidth, since each READ instruction

fetches only 4 bytes of data (and the network can support

transfers of 32 bytes in one cycle). On the other hand,

when prefetching is used, DMA unit can fully utilize the

bandwidth. In fact, as expected, performance is much better

when prefetching is enabled: speedup with respect to the

original CellDTA is 1.13 times for bitcnt (Figure 6a), 11.18

times for matrix multiply (Figure 7a) and 11.48 times for

zoom (Figure 8a). The reduced speedup in the case of the

bitcnt benchmark is due to the fact that we do not decouple

all the global access, but only a portion of them (this shall

be considered in the next releases of our simulator). The

scalability (in all cases) is a little worse with respect to the

original architecture. More importantly, the execution times

are reduced in comparison with original architecture, and it

is especially visible in cases of matrix multiply and zoom.

Prefetching overhead (Figure 1.b) is 19% in case of bitcnt,

28% in case of matrix multiply and it is negligible in case of

zoom. In case of bitcnt, memory stalls still account for 26%

of execution time, while in case of the other two benchmarks

memory stalls are completely eliminated.

Figure 9 shows the pipeline usage for CellDTA with and

without prefetching. Naturally, the usage is much higher

when prefetching is performed because operations with local

store are much faster than operations with main memory,

and latencies are much smaller. Obtained results are in

line with the results presented in Figure 5, meaning that

the improvement in pipeline usage is mostly due to the

amount of memory stalls that were present in the architecture

without prefetching.

As our interest is mostly on the execution model of the

threads and the decoupling of their accesses, our simulator

does not yet include the cache module (still under develop-

ment), we performed another set of experiments by setting

all memory latencies in the system to one cycle. In this way,

we investigate the best situation when cache accesses would

always hit and we compare the results with the previous

experiments (which represent the opposite extreme situation,

when cache would always miss). The speedup is similar to

the case of long memory latency (1.01 times in case of

mmul and 1.34 times in case of zoom), and the pipeline

usage is improved. In case of bitcnt, prefetching has slowed

down the execution because only 5% of the time was spent

waiting for memory, while prefetching overhead is 34%. The

execution time is almost equal to the case with long latencies

and prefetching. Considering that prefetching introduces a

little overhead, this indicates that this perfetching scheme

can almost eliminate the need for caches.

5. Related Work

Multi-core architectures have gained a lot of attention in

the industry recently. IBM Cyclops-64 (C64) [1] is a multi-

core multithreaded chip that is currently under development.

It contains 80 processors and each processor has two SRAM

memory banks that can be configured either as scratchpad or

global memory. Plurality [4] is a multi-core system that uses

a pool of RISC processors with uniform memory, hardware

scheduler, synchronizer and load balancer. SUN Microsys-

tems’ UltraSPARC T2 [2] is a multithreaded multicore chip

capable of running 64 threads at the same time. The main

difference between these architectures and the DTA is the

scheduled dataflow programming model that DTA uses [9].



(a) Execution time (b) Scalability

Figure 6. Results for bitcnt(10000) when memory latency is set to 150 cycles.

(a) Execution time (b) Scalability

Figure 7. Results for mmul(32) when memory latency is set to 150 cycles.

(a) Execution time (b) Scalability

Figure 8. Results for zoom(32) when memory latency is set to 150 cycles.

There are several examples of research in multi-core

architectures in academia. Speculative Data-Driven Multi-

threading (DDMT) [16] is an architecture that is based on

dataflow at thread level like DTA. Main difference is that



Figure 9. Pipeline usage for programs with and without

prefetching.

this concept has static scheduling while in DTA scheduling

is done dynamically at run-time in hardware. TRIPS [3]

uses ”medium size” tiling by allowing several different types

of tiles. Some of them can be reconfigured in order to

exploit different types of parallelism. While DTA employs

dataflow execution at the thread level, and control flow-

like execution inside the thread, TRIPS does the opposite.

The EARTH architecture [11] contains two levels of threads

- threaded procedures and fibers. Threaded procedures are

invoked asynchronously in parallel, and they are divided into

fibres - fine-grain threads that synchronize in dataflow-like

manner. Fibers in EARTH are similar DTA threads, with

the difference that DTA threads have decoupled memory

accesses. TAM [10] defines a self-scheduled machine lan-

guage with parallel threads, which communicate in dataflow

manner. The difference between TAM and DTA is that TAM

only provides a machine language that can be compiled to

run on any multiprocessor system without hardware support.

6. Conclusion

In this paper, we have presented a mechanism to address

accesses to generic data in the DTA in order to be able

to execute threads in fully non-blocking fashion. We have

explained one possible prefetching mechanism and presented

its initial implementation. The simulation environment was

DTA model implemented on Cell processor in UNISIM

framework (using CellSim simulator). We have seen from

the initial results that in all test cases execution is faster.

For the memory intensive benchmarks (mmul and zoom)

this speed up is very significant. We can also notice that

pipeline utilization is almost perfect when prefetching is

used, which proves that concept is correct. This was just an

initial implementation. As a part of the future work we are

planning to fully automate the entire process (both compiler

and architecture parts) and to experiment with some other

advanced mechanism and with more complex benchmarks.

Acknowledgments

This work was supported by the European Commission

in the context of the SARC integrated project #27648 (FP6)

and by the HiPEAC2 Network of Excellence (FP7) contract

IST-217068.

References

[1] G. Almási, C. Caşcaval, J. G. Castańos, M. Denneau, D. Lieber, J. E. Moreira,

and H. S. Warren, Jr., “Dissecting cyclops: a detailed analysis of a multithreaded

architecture,” SIGARCH Comput. Archit. News, vol. 31, no. 1, pp. 26–38, 2003.

[2] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hether-

ington, P. Jordan, M. Luttrell, C. Olson et al., “UltraSPARC T2: A highly-

treaded, power-efficient, SPARC SOC,” in Solid-State Circuits Conference, 2007.

ASSCC’07. IEEE Asian, Jeju, Republic of Korea, 2007, pp. 22–25.

[3] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W.

Keckler, and C. R. Moore, “Exploiting ilp, tlp, and dlp with the polymorphous

trips architecture,” SIGARCH Comput. Archit. News, vol. 31, no. 2, pp. 422–433,

2003.

[4] “Plurality architecture.” [Online]. Available: http://www.plurality.com/

architecture.html

[5] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,

P. Iyer, A. Singh, T. Jacob et al., “An 80-Tile 1.28 TFLOPS Network-on-Chip

in 65nm CMOS,” in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest

of Technical Papers. IEEE International, 2007, pp. 98–589.

[6] R. Giorgi, Z. Popovic, and N. Puzovic, “DTA-C: A Decoupled multi-Threaded

Architecture for CMP Systems,” in Proceedings of IEEE SBAC-PAD, Gramado,

Brasil, Oct. 2007, pp. 263–270.

[7] R. Giorgi, Z. Popovic, N. Puzovic, A. Azavedo, and B. Juurlink, “Analyzing

scalability of deblocking filter of h.264 via tlp exploitation in a new many-core

architecture,” in Proceedings of the 11th EUROMICRO-DSD, Parma, Italy, sept

2008, pp. 189–194.

[8] R. Giorgi, Z. Popovic, and N. Puzovic, “Introducing hardware tlp support for the

cell processor,” in Proceedings of IEEE International Workshop on Multi-Core

Computing Systems. Fukuoka, Japan: IEEE, March 16-19, 2009 2009, pp. 1–6,

accepted for publication.

[9] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled dataflow: Execution paradigm,

architecture, and performance evaluation,” IEEE Transaction on Computers,

vol. 50, no. 8, pp. 834–846, Aug. 2001.

[10] D. Culler, S. Goldstein, K. Schauser, and T. Von Eicken, “TAM-A Compiler

Controlled Threaded Abstract Machine,” Journal of Parallel and Distributed

Computing, vol. 18, no. 3, pp. 347–370, 1993.

[11] H. Hum, O. Maquelin, K. Theobald, X. Tian, X. Tang, G. Gao, P. Cupryk,

N. Elmasri, L. Hendren, A. Jimenez et al., “A design study of the EARTH

multiprocessor,” in Proceedings of the IFIP WG10. 3 working conference on

Parallel architectures and compilation techniques table of contents. IFIP

Working Group on Algol Manchester, UK, UK, 1995, pp. 59–68.

[12] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” in Proceedings

of the IEEE, 2001, pp. 490–504.

[13] F. Cabarcas, A. Rico, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade, “A

module-based cell processor simulator,” in HiPEAC ACACES-2007, L’Aquila,

Italy, Jul. 2007, pp. 279–282.

[14] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. Penry,

O. Temam, and N. Vachharajani, “UNISIM: An Open Simulation Environment

and Library for Complex Architecture Design and Collaborative Development,”

Computer Architecture Letters, vol. 6, no. 2, pp. 45–48, 2007.

[15] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,

“MiBench: A free, commercially representative embedded benchmark suite,” in

Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop

on, 2001, pp. 3–14.

[16] C. Kyriacou, P. Evripidou, and P. Trancoso, “Data-Driven Multithreading Using

Conventional Microprocessors,” IEEE Transactions On Parallel and Distributed

Systems, pp. 1176–1188, 2006.


