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Preface

This proceedings contain the papers presented at the 4th HiPEAC Workshop on Recon-
figurable Computing held on January 23, 2010, in Pisa, Italy.

The HiPEAC Workshop on Reconfigurable Computing provides a forum for re-
searchers active in domains within the reconfigurable computing area. Its main focus is
on reconfigurable architectures, tools that facilitate such architectures, and applications
tailored for reconfigurable platforms. The workshop brings together both hardware de-
signers and software developers that make extensive use of reconfigurable computing.
Moreover, it aims at enabling scientific discussions regarding future challenging issues.

Additionally, an invited contribution from industry offers another opportunity for
interacting on compiler tools for FPGA.

In this fourth year of the workshop we attracted 19 submissions.
We would like to thank all of the authors for submitting their papers. The program

committee selected 9 papers to be presented at the workshop; that is acceptance rate
47%. We also gratefully acknowledge the program committee and the additional re-
viewers who contributed their time and expertise for their dedication and diligence.
They provided a total of 60 review with an average of 3 reviews per submitted paper.
The investment of their time and insight is very much appreciated.

The members of the Organizing and Program committee, as well as the additional
reviewers are listed in the following page.

We hope that the attendees enjoyed the HiPEAC Workshop on Reconfigurable Com-
puting 2010 in all aspects.

January 2010 Roberto Giorgi and Stephan Wong
Program Co-Chairs

4th HiPEAC Workshop on
Reconfigurable Computing 2010
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Reconfigurable Computing becoming main stream?

Walid Najjar

University of California Riverside, CA, USA

Abstract. Reconfigurable computing is not anew concept but can potentially be-
come a new phenomenon. Technological obstacles are limiting the performance
of single CPUs. It is becoming apparent that hardware code acceleration will
soon become the norm rather than the exception. While FPGA-based hardware
accelerators have repeatedly been demonstrated as a viable option for faster com-
puting with very large speed-ups, their programmability remains a major barrier
to their wider acceptance by application code developers. These platforms are
typically programmed in a low level hardware description language, a skill not
common among application developers and a process that is often tedious and
error-prone. Programming FPGAs from high-level languages would provide eas-
ier integration with software systems as well as open up hardware accelerators to
a wider spectrum of application developers. This presentation addresses the chal-
lenges and potentials of high-level language programming of FPGAs as hardware
accelerators.
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A Dynamic Reconfigurable Super­VLIW Architecture 
for a Fault Tolerant Nanoscale Design

Ricardo Ferreira
1,

 Cristoferson Bueno1, Marcone Laure1, Monica Pereira
2
, 

and Luigi Carro2. 
1
 DPI, Universidade Federal de Viçosa, 36570 000 Viçosa, Brazil

2
 Instituto de Informática – UFRGS, 91501­970, Porto Alegre, Brazil

ricardo@ufv.br   , carro@inf.ufrgs.br   

Abstract.   A new scenario emerges due to nanotechnologies that will enable 
very high integration at the limits or even beyond silicon. However, the fault 
rate,  which is  predicted  to   range  from 1% up  to  20% of  all  devices,  could 
compromise the future of nanotechnologies. This work proposes a fault tolerant 
reconfigurable   architecture  of   future   technologies,  named Super­VLIW.  The 
architecture   consists   of   a   reconfigurable   unit   tightly   coupled   to   a   MIPS 
processor. The reconfigurable unit is composed of a binary translation unit, a 
configuration  cache,   a   reconfigurable   coarse­grained  array  of  heterogeneous 
functional  units  and an   interconnection network.  Reconfiguration   is  done  at 
run­time, by translating the binary code, and no recompilation is needed. The 
interconnection   network   is   based   on   a   set   of   multistage   networks.     These 
networks provide a fault­tolerant communication between any pair of functional 
unit and from/to the MIPS register file. This work proposes a mechanism to 
dynamically allocate the available units to ensure parallel execution of basic 
operations, performing the placement and routing on a single step, which allows 
the correct   interconnection  of  units   even  at  huge   fault   rates.  Moreover,   the 
proposed architecture could scale to the future nanotechnologies even under a 
fault rate of 15%. 

1   Introduction

The scaling of CMOS technology brings a new scenario concerning reliability of 
devices.  At  nanoscale  basis   the  wires   and  connections   become   more   fragile   and 
consequently more susceptible to break. Furthermore, due to the inherent variability 
and   the   imprecision   of   fabrication   processes   at   this   scale,   a   large   number   of 
manufacturing defects is predicted [1].  While the fault rates are well below 0.1% on 
current technologies, this number could increase to 20% at nanoscale basis [2].  At 
these   fault   rates,   traditional   static   approaches   such   as   triple   modular   redundancy 
(TMR) or even N­modular redundancy (N­MR) can be compromised, due to the high 
probability that the added redundancy also fails. 

In   addition,   there   is   a   need   for   flexibility   after   fabrication   to   achieve   high 
performance at   low power  levels.  Coarse­Grained Reconfigurable  Arrays  (CGRA) 
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could be an alternative, and several reconfigurable architectures have been proposed 
in the past 20 years [3­7].  However,  a common characteristic shared among these 
architectures that make their usage prohibitive is the need of special compilers and 
tools to select the part of the applications and modify the source code or binary code 
to   be   executed   on   the   reconfigurable   array.   This   totally   breaks   the   software 
compatibility principle that users have become used to. 

The interconnection model is another important issue that must be addressed in 
CGRA designs. The architectures found in the literature are organized in three main 
topologies: the unidimensional model [4], the stripe model [5,6] and the mesh model 
[7].  The models have  in common the need of design  time tools and compilers  to 
perform the placement and routing. 
      In   this  context,   this  work  proposes  a   reconfigurable  architecture  called  Super­
VLIW. In this architecture several parallel/sequential computations are dynamically 
allocated over a large set of functional units, even in presence of faults. This work 
differs   from a  traditional  VLIW processor  where  all   long  instructions  are  built  at 
compile   time.   To   dynamically   configure   the   architecture,   a   binary   translation 
mechanism   is   used,   so   the   binary   software   compatibility   is   ensured.   The   binary 
translation   has   been   widely   used  by   companies   to   encapsulate   RISC  instructions 
inside the x86's processors in the past 20 years, and an unquestionable advantage is 
the software compatibility.

This work also proposes the use of a set of Multistage Interconnection Networks 
(MINs) to send/receive values between the units and the processor register file. The 
model   is   logically   similar   to   the   unidimensional   model,   but   could   be   physically 
implemented on two dimensional organizations as the stripe and the mesh models. In 
addition, the placement and routing is done at runtime. Therefore, no special tools or 
compilers are needed. 

This work also provides further contributions on fault tolerant homogeneous MIN 
without extra resources due to a dynamic placement and routing step. In addition, we 
will show that a MIN could support a 15% fault rate allowing the scaling to reduced 
feature sizes such as nanoscale. Moreover, as it will be shown, a MIN can be flexible 
to offer a fault tolerant interconnection for a CGRA to dynamically speedup a MIPS 
processor.  

This paper is organized as follows. Section 2 presents some related work. Section 3 
gives some background concerning the multistage networks. Section 4 presents the 
proposed work with details about how the Super­VLIW architecture works.  Section 5 
demonstrates   the   experimental   results.   Finally,   Section   6   draws   conclusions   and 
future works.

2   Related Work

Interconnections are one of the main issues on a parallel computer system. A MIN 
can  have a compact  VLSI  layout,  as   shown for  a  butterfly  MIN [8].  Recently,  a 
multilevel FPGA architecture (MFPGA) at circuit­switching mode has been proposed 
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in [9], using a butterfly fat­tree multistage and tree interconnections. Experimental 
results show that the MFPGA has better area efficiency when compared to the mesh 
FPGA architectures. However, this approach is implemented at bit level (LUT­level), 
and it depends on a placement and routing developed at compile time.  Our approach 
differs   from  the previous  one   in   three  aspects.  First,  we use  coarse­grained  units 
instead  of  LUTs,   reducing   the   time  overhead  and   the  memory   space   required   to 
configure the architecture. Second, interconnections are configured at runtime, thus 
no extra tools or special compilers are required. Finally in the interconnection model 
proposed in this work, the faults are taken into account and we will show that the 
proposed MINs provides fault tolerance allowing execution even at a 15% fault rate.

Although the MIN fault tolerance capability has been widely studied [10] during 
the 80's,   this subject   is  still  an important   topic of research [11,12].  One approach 
consists in adding extra stages [10,11]. One extra stage provides fault tolerance for 
one switch failure in a MIN with Log N stages [10], and at least K extra stages will be 
needed to provide multiple fault tolerance to K switches failures [11]. Recently,  a 
fault­tolerant routing for Fat Trees has been presented in [12]. The proposed routing 
has been implemented inside the switches and it is based on exclusion intervals over 
the destination address to forward the packets through the network.

In addition to an efficient interconnection network, the reconfigurable capability is 
another important issue that can ensure flexibility, low power, high performance and 
fault   tolerance.   In   most   approaches   the   interconnections   are   simplified   by   using 
regular and local topologies like meshes. However the price to pay is the complexity 
of the placement and routing steps, which should be done at compile time like in 
ADRES [9]. Recently, an approach has been presented [6], which is based on a Benes 
MIN   that   allows   connections   among   any   unit   from   one   row   to   any   unit   in   the 
previous/next   rows.   However,   the   applications   have   been   manually   mapped   to 
evaluate this architecture. 

Our   approach   differs   from   the   previous   ones   in   several   aspects.   First,   the 
placement and routing is done at runtime in a single step, even in presence of faults. 
No compilation is needed and the software compatibility is sustained. Each unit has a 
global ID, independent of row and column. A heterogeneous set of units is taken into 
account, and the architecture is flexible enough to allow a dynamic placement and 
routing. Moreover, all units can send/receive data to/from all units by using a global 
low cost interconnection model based on a set of MINs. In addition, a 2D layout of 
our architecture is feasible, as shown by the previous work on MIN layouts [8,9]. 

3   Multistage

A multistage interconnection network (MIN) consists of a set of switch columns or 
stages, where each stage is connected to the previous and to the next one. The MIN 
shown in Fig 1(a) is an Omega Network with Log N stages [23], where the interstage 
connection   is   a  perfect­shuffle.  There   are   three  main   classes  of  MINs:  blocking, 
rearrangeable and non­blocking. A MIN is blocking when at least one input/output 

9



permutation assignment  cannot  be performed.  These  networks can  be unique­path 
blocking or multiple­path blocking. An unique­path blocking MIN has only one path 
to connect a given input to a given output.   A multiple­path blocking has more than 
one path to connect a given input to a given output, such as an Omega MIN plus extra 
stages shown in Fig. 1(b). 

Fig. 1. Multistage Interconnection Networks: (a) Omega Network; (b) One Extra Stage Omega

A rearrangeable  MIN can  perform any   input/output  permutation.  However,   the 
exiting paths  may have  to be rearranged  by reprogramming  the  internal  switches. 
Finally,   a   MIN   is   nonblocking   if   it   can   perform   any   input/output   permutation, 
independent of the order in which the switches are programmed.  However, even for 
rearrangeable MIN, most routing algorithms are static, and suppose to know a priori 
all input and output connection pairs [14]. Since in a dynamic context, the connection 
pairs should be processing in order, the previous algorithms cannot be applied. 

Most   fault   tolerance   approaches   aim   to   increase   the   stage  number,   and/or   the 
switch radix,  and/or   the interstage  links.  As an example,   let  us consider   the fault 
tolerant MINs shown in Fig. 2. Let us suppose that one switch fault can occur in the 
extra stage cube network [10] shown in Fig. 2(a). In this case, three stages are added: 
one extra stage  is  added  to duplicate  the paths and  two mux stages  are added   to 
bypass the first or the last stage. Observing the paths between the input/output pair 0 
to 1, one can notice that there are two routing paths. If there is a fault at a single 
switch at the stage 2 or 1, as each path passes through two switches, the “healthy” 
switch can be used. However in case of a single fault at the first or the last stage, there 
is  only one switch for  both paths,   therefore  either   the first  stage or  the last  stage 
should be bypassed by using the mux stage. In case of multiple switch faults, some 
input/output pairs will be disconnected. This fault tolerant MIN costs the double of 
the single Omega MIN from Fig. 1(a), and it only provides a single fault tolerance. 

Other approaches are based on high radix switches. Fig. 2(b) displays a 2­dilated 
baseline MIN which has been proposed in [15]. There are n multiple paths for each 
input/output pair, as shown in Fig. 2(b) for the input 0 and the output 0. However, the 
multiple   paths   use   a   set   of   non­distinct   switches.     Considering   n=8,   even   for   8 
multiple paths, only 3 faults would be enough to disconnect an input/output pair, as 
shown in Fig. 2(b), due to the multiple path share switches. 

The focus of our work is to provide fault tolerance by using a runtime placement 
and routing. We propose the use of a multipath blocking network, where the number 
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of stages ranges from log N to 2 log N. Our approach differs from previous work 
regarding fault  tolerance and routing. First, most works in fault­tolerant MIN [18] 
ensures that any input can reach any output even in the presence of faults. On the 
other hand, in our approach one can send the input to a different output performing an 
alternative path without affecting the correct operation of the architecture.  Moreover, 
while in previous approaches the placement is done before the routing, and therefore 
the MIN should be fault tolerant on any input/output pair, we propose to compute the 
placement and the routing at the same time and during runtime, avoiding the need of 
pre­determined alternative paths.  

Fig. 2. Fault Tolerant MIN: (a) One Extra stage Omega (b) Dilated­Baseline MIN

In our approach, for a given input we will find which outputs are routable by doing 
a broadcast as shown in Fig 1(b). The faults are indicated by the letter F, the allocated 
paths are shown in bold line, and the broadcast from input 2 is shown as a dotted line, 
and it can reach all outputs. Then, the first free output will be selected by using a 
priority decoder. In this approach, even under a high fault rate, the MIN will be able 
to connect some input/output pairs. 

4   Super­VLIW Architecture

The reconfigurable architecture proposed in this work consists of a MIPS processor, a 
reconfigurable  array   (RA) of   functional  units   (FU),  a  context  cache  and  a  binary 
translation   unit   (BT),   as   shown   in   Fig.   3(a).   A   dynamically   reconfigurable 
architecture tightly coupled to a MIPS processor  was previously proposed in  [16], 
however the interconnection model presented in these works is based in buses and 
multiplexers. The architecture proposed here provides an area reduction by replacing 
the interconnection model with multistage networks. Furthermore, the fault tolerance 
approach  proposed   in   this  work  also  allows   the  use  of   the  architecture   in   future 
technologies with high fault rates.

The MIPS processor has a five stage pipeline and a register file. An instruction will 
be firstly executed on the MIPS, and in parallel   the BT mechanism will  build an 
instruction block. This step is named detection phase. A block consists of a super very 
long instruction word (super VLIW), and each block is stored on the context cache. 
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The cache   is   indexed by  the  PC of   the first   instruction of  each  block.  When  the 
instruction   is   executed   again,   if   its   PC   is   found   in   the   context   cache,   the 
reconfigurable unit array will be configured and the entire block will be executed. 
This step is named execution phase.  

The reconfiguration includes data copied from the MIPS register file to the input 
context,   the   interconnection   setting   and   the   unit   configuration.   Only   the   register 
values used by the current block will be copied. When the execution is finished, the 
MIPS   register   file   is   updated   by   the   output   context,   and   then   either   the   next 
instruction block will be executed or a new instruction block will be detected.

Fig.  3.  Super­Vliw Architecture (a) MIPS plus Reconfigurable Unit.  (b) Using one MIN to 
connect to all FUs (c) Using one MIN per FU.

To provide an efficient   interconnection a MIN must have  the same number of 
inputs and outputs. However, since each FU has two inputs and only one output, the 
Super­VLIW interconnection  network  will  be  unbalanced.  To  solve   this  problem, 
instead of using only one MIN to interconnect the FUs (as shown in Fig. 3(b)), where 
half of the inputs will be unused, we propose to use a separated network for each FU 
input without increasing the network cost, as shown in Fig. 3(c). 

At first glance, four NxN MINs seems to be expensive. However, considering N 
the number of FUs, the number of FU inputs is 2N, and then one needs at least one 
2N x 2N MIN. Although four NxN MINs are twice bigger than just one 2Nx2N MIN, 
the advantage of  the proposed solution is the fault  tolerance capability. Moreover, 
previous approaches [10,11,14] on fault tolerant MIN increase the MIN cost by at 
least a factor of 2. For instance the MIN shown in Fig. 2(a) doubles the cost and it 
offers only one single switch fault. The dilated MIN in Fig.2(b) is six times bigger 
than a single MIN, due to the  4x4 switch instead a 2x2. 

During   the   detection   phase,   the   binary   translation   algorithm   will   verify   the 
instruction operands. Considering a three operand instructions Op3 = Op1 op Op2, 
where Op1 and Op2 are the input operands, Op3 is the destination operand, and op is 
the operation performed by the FU. When the binary translation selects an instruction 
to   be   executed   on   the   reconfigurable   array,   the   first   step   consists   in   sending   a 
broadcast in parallel through MIN Op1 and MIN Op2. At the same time, it sends a 
broadcast at the output context MIN from the Op3 output. Each broadcast will find 
the reachable FUs of each operand. Finally, a bitwise AND of the three broadcast 
vectors is done, and a priority decoder will select the first reachable FU.  

To show how the faults in the MIN’s elements can be tolerated, first let us consider 
a switch to be internal  if there are no direct connections to an input or an output. 
When a single fault affects a link, there are three fault cases. First, a link fault on an 
internal switch will affect multiple paths. However, if the MIN has extra stages, other 
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paths will be available to connect some input/outputs. In the second case, a link fault 
occurs on an output switch. Therefore, this output will be unreachable. However, as 
the units are allocated dynamically, these affected units will behave as unavailable 
ones,  and   the   allocation  algorithm will   avoid   these  units  and  search   for   the   first 
routable unit available. Finally, when a link at first stage switch fails, only one of two 
inputs will be able to be used, and if both links fail, the two associate inputs will be 
disconnected. In this case, a register renaming approach is used to overcome the input 
faults. 

It is important to highlight that this work considers only permanent faults generated 
during   the   fabrication   process.   Thus,   the   information   about   the   faulty   units   is 
generated  before   the  binary   translator   starts,  using  classical   testing  techniques.   In 
addition,  no   modification   on   the   binary   translation   algorithm   is   needed,   and   the 
solution to provide fault tolerance is transparent.

5   EXPERIMENTAL RESULTS

To evaluate the performance degradation presented by the proposed architecture 
under different fault rates we consider as a reference value the performance of the 
MIPS 5 stage processor, and all speedup results are relative to MIPS. Therefore, if an 
architecture generates a speedup factor of 2 this means that the evaluating architecture 
is twice faster than standalone MIPS processor. 

As  case   study  we  analyzed   three  VLIW processors:     simple  8  units  VLIW,  a 
dynamic 8 units VLIW (called VLIW8) and a dynamic fault tolerant Super­VLIW. 
Both dynamic architectures are tightly coupled to a MIPS processor by using a binary 
translation   mechanism.   They   differ   in   number   of   functional   units   and   in   the 
interconnection networks. The MiBench benchmark was used to evaluate the speedup 
of all approaches. 

Fig. 4. A four instruction sequence mapped on simple VLIW and on VLIW8

The simple VLIW can only execute up to 8 operations (4 ALU, 3 Load/Store, 1 
Multiplication) without any data dependence and it works as the traditional VLIW 
machine. The dynamic VLIW8 processor has also eight FUs, each FU has two full 
multiplexers   and   can   connect   to   any   input   context   or   FU   using   a   non­blocking 
network. The instruction block is built dynamically, and each block can have up to 4 
ALUs, 3 Load/Store units and 1 multiplier. In the best case,  all FUs will work in 
parallel,   if   there   are  no  data   dependences   and   in   the   worst   case   they  will   work 
sequentially.  For instance, Fig. 4 shows a MIPS sequence which will be mapped on 
three   simple  VLIW word  due   to  data  dependence,   and  where  only  one  dynamic 
VLIW8  word   is   enough.  The  multiplexers  are  used   to   forward  data.  Finally,   the 
Super­VLIW   has   128   FUs   (90   ALU,   34   Load/Store   and   4   Multipliers)   that   are 
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connected through the MIN networks as demonstrated in Fig. 3(c). Fig. 5 presents the 
speedup achieved by each solution when executing the applications from MiBench 
suite. 

On an   ideal   scenario  without   faults,   as   shown  in Fig.  5,   the  Super­VLIW can 
accelerate on average 2.84 times the MiBench benchmarks in comparison to VLIW8 
and   the   simple   VLIW,   whose   average   speedups   are   1.7   and   1.17   respectively. 
Furthermore, if we consider only seven applications that show the higher individual 
speedups, the Super­VLIW speedup increases to 3.4 times against 1.64 times for the 
VLIW8. Therefore, if the applications are more dataflow, the Super­VLIW could be 
twice faster than VLIW8. The large number of units is needed to capture large block 
on the dataflow application. 

Fig.  5.  Speedups   of   simple   VLIW,   VLIW8  and   VLIW128   on   the   execution   of   MiBench 
benchmarks. 

Although the VLIW8 presented a mean speedup of 1.7 times in the execution of 
MiBench Benchmarks, the main problem of this solution is that it does not support 
faults. If a fault happens in any part of the multiplexer or the functional unit, it will 
invalidate  the whole element.  Therefore,   in  a more realistic  scenario  where  faults 
must be considered the best solution is the Super­VLIW, since it  ensures software 
execution even with several faulty FUs and interconnection units. 

To   evaluate   performance   degradation   of   Super­VLIW   when   faults   affect   the 
resources,   the same benchmarks  were executed  considering different  cases.  Fig.  6 
presents an analysis of the speedup as a function of the fault rate. The graph presents 
the most significant speedups and five different fault rates were used. 

Fig.   6.  The   Speedup   degradation   in   presence   of   faults   for   the   most   significant   MiBench 
benchmarks on the Super­VLIW. 
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As can be observed from Fig. 6, the Super­VLIW not only continues working even 
under a 15% fault rate, but also accelerates execution comparing to the standalone 
processor. According to the results, in the worst case, the average speedup is around 
2.24 for  15% when executing all  benchmarks  from MiBench suite.  Therefore,   the 
Super­VLIW can be scaled to new technologies even in presence of faults.

Table 1 presents an analysis of the area as a function of technology scaling. Since 
the MIPS and the binary translation unit are critical  to  the correct  function of the 
system, we have chosen not to scale them, as using larger feature sizes one could 
increase the reliability of the system. Hence, the size of both units at 90nm technology 
will be 0.4 mm². Furthermore, the area of VLIW8 will be 0.6 mm², which is 3 times 
bigger than a single MIPS and the performance is only 1.7 times better. 

On the other hand,  the Super­VLIW can scale to new technologies that  present 
higher fault rates. Since the functional units are less tolerant than the network, we can 
manufacture them in a larger feature size than the network. For example, the FU array 
can scale to 0.16mm² at 32nm, and the MIN size can scale to 0.03mm² at 11nm. The 
MIN will degrade the performance at 11nm due to the high fault rate. However as 
demonstrated in Fig. 5, under 15% fault rate the average speedup is 2.24, and the area 
is around 2.4 times bigger than the single MIPS (0.53 for the Super­VLIW and 0.22 
for the MIPS standalone). Therefore, the speedup is proportional to the extra area. If 
the fault rate is smaller, the speedup can be improved (up to 4.5 for some benchmarks 
as shown in Fig. 5 and Fig. 6). In these performance results  we did not  take into 
account the fact that as technology scales, the cycle time might shrink, and this means 
that one could expect further speedups by scaling the Super­VLIW.   

Table 1.  Estimated chip size according to the technology scaling (mm²). 

Technology 90nm 32nm 22nm 18nm 11nm
MIPS 0.22 0.22 0.22 0.22 0.22
Binary Translation 0.12 0.12 0.12 0.12 0.12
128 FU 1.3 0.16 0.16 0.16 0.16
MIN 1.8 0.23 0.11 0.07 0.03
Total Area: SuperVLIW 3.5 0.73 0.61 0.57 0.53

6   CONCLUSIONS

This paper presented three main contributions. First it presented a reconfigurable 
Super­VLIW architecture with an online reconfiguration mechanism that also ensures 
software  compatibility.  The Super­VLIW uses  a   set  of  multistage   interconnection 
network as interconnection model that was used to reduce interconnection costs. The 
second   contribution   corresponds   to   a   dynamic   placement   and   routing   for   the 
multistage interconnection network. Using the placement and routing as an atomic 
operation,  one  can  dynamically   find  a  path   to   a   free   functional  unit   even   in   the 
presence  of  a  high number  of   faults.  Furthermore,  most  works  support  at  most  a 
number of   faults  equal   to  the number  of  network stages  O(log N).  Our approach 
supports   up   to   O(N)   switch   faults.   Finally,   a   fault   tolerance   approach   to   both 
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reconfigurable   architecture   and   interconnection   model   has   been   presented.   The 
approach consists in avoiding the faulty functional units and interconnections.

We evaluated the system performance by using the MiBench suite. The analysis 
showed that our approach is still working even when the number of fault is 30 times 
bigger than the number of stages for a 128x128 MIN. The MIN network still works at 
15% of fault rates. Therefore, we conclude that it is possible to scale the system to 
new  technologies   that  present  high   fault   rates,   consequently   the   area  overhead   is 
significantly reduced by scaling the MIN. The entire system can be estimated to be 
2.4 times bigger than a single MIPS and its performance is also improved by a factor 
of 2.4. 

References

1. Eshaghian­Wilner,M. BioInspired and Nanoscale Integrated Computing. John Wiley & Sons 
(2009)
2. DeHon, A. and Naeimi, H.   Seven Strategies for Tolerating Highly Defective Fabrication. 

IEEE Design and Test 22(4), 306­315(2005)
3.   Hartenstein,   R.   .   A   decade   of   reconfigurable   computing:   a   visionary   retrospective.   In 

Proceedings of the Conference on Design, Automation and Test in Europe, 642­649 (2001) 
4.   Compton,  K.   and  Hauck,  S.  2008.   Automatic   design   of   reconfigurable   domain­specific 

flexible cores. IEEE Trans. Very Large Scale Integr. Syst. 16(5), 493­503 (2008) 
5.   Goldstein,   S.   C.,   Schmit,   H.,   Budiu,   M.,   Cadambi,   S.,   Moe,   M.,   and   Taylor,   R.   R.. 
PipeRench: A Reconfigurable Architecture and Compiler. IEEE Computer 33 (4) , (2000).
6. Kazuya Tanigawa, et al.: Exploring Compact Design on High Throughput Coarse Grained 

Reconfigurable Architectures. Field Programmable Logic and Applications  543­546, (2008)
7. Mei, B., Vernalde, S., Verkest, D., De Man, H., and Lauwereins, R. 2003. Exploiting Loop­

Level   Parallelism   on   Coarse­Grained   Reconfigurable   Architectures   Using   Modulo 
Scheduling. In Proceedings of the Conf. on Design, Automation and Test in Europe ­ (2003)

8. DeHon, A. 2000. Compact, Multilayer layout for butterfly fat­tree. In Proceedings of the 
Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures (2000). 

9. Zied, M., Hayder, M., Emna, A., and Habib, M. 2008. Efficient tree topology for FPGA 
interconnect network. In 18th ACM Great Lakes Symposium on VLSI . pp. 321­326 (2008). 

10.Adams, G. B., Agrawal, D. P., and Siegel, H. J. . A survey and comparison of fault­tolerant 
multistage   interconnection   networks.   In   IEEE   interconnection   Networks   For   High­
Performance Parallel Computers, pp. 654­667 (1994)

11.Fan, C. C. and Bruck, J. . Tolerating Multiple Faults in Multistage Interconnection Networks 
with Minimal Extra Stages. IEEE Trans. Comput. 49,(9) pp. 998­1004.(2000),  

12.FT2EI:   A   Dynamic   Fault­Tolerant   Routing   Methodology   for   Fat   Trees   with   Exclusion 
Intervals  / Gómez Requena,  C /  Gómez Requena, M E / López Rodríguez,  P J /  Duato 
Marín, J F, IEEE Transactions on Parallel and Distributed System, 2009; 20 (6)

13.D. H. Lawrie, "Access and alignment of data in an array processor,"IEEE Trans. Comput., 
vol. C­24, pp. 1145­1155, (1975)

14.T.­Y. Feng, S.­W. Seo, "A New Routing Algorithm for a Class of Rearrangeable Networks," 
IEEE Trans. Computers, vol. 43, no. 11, pp. 1270­1280 (1992)
15.N. Kamiura, T. Kodera, N. Matsui, "Fault tolerant multistage interconnection networks with 

widely dispersed paths," Asian Test Symposium, pp. 423 (2000)
16. Beck A., Rutzig M., Gaydadjiev G., Carro, L.: Transparent Reconfigurable Acceleration for 

Heterogeneous Embedded Applications. In IEEE/ACM DATE: pp.1208­1213 (2008)

16



This work was partially supported by the MOSART project (Mapping Optimization for Scalable multi-
core ARchiTecture) funded by the EU (IST-215244). 

Fault-Free: A Framework for Supporting                          
Fault Tolerance in FPGAs 

Kostas Siozios1, Dimitrios Soudris1 and Dionisios Pnevmatikatos2 

 
1 School of Electrical & Computer Engineering, National Technical University of Athens, Greece 

{ksiop, dsoudris}@microlab.ntua.gr 
2 Electronic and Computer Engineering Department, Technical University of Crete, Greece 

pnevmati@mhl.tuc.gr 

Abstract. In this paper we propose a novel methodology for supporting application 
mapping onto FPGAs with fault tolerance even if this feature is not supported by the 
target platform. For the purposes of this paper we incorporate three techniques for error 
correction. The introduced fault tolerance can be implemented either as a hardware 
modification, or through annotating the application’s HDL. Also, we show that the 
existing approaches for fault tolerance result to hardware wastage, since there is no 
demand for applied them uniformly over the whole FPGA. Experimental results show the 
efficiency of the proposed framework in terms of error correction, with acceptable 
penalties in device area and Energy×Delay Product (EDP) due to the redundant hardware 
resources.  

Keywords: FPGA; fault tolerant; architecture; exploration; CAD tool. 

1   Introduction 

SRAM-based Field-Programmable Gate Arrays (FPGAs) are two-dimensional arrays of 
Configurable Logic Blocks (CLBs) and programmable interconnect resources, surrounded by 
programmable input/output pads on the periphery. Even though programmability feature of these 
devices makes them suitable for widely application implementation, there are a number of design 
issues that have to be taken into consideration during application mapping. Among others, 
reliability issues have become worse as devices have evolved. For instance, as the transistor 
geometry and core voltages decreased, while the numbers of transistors per chip and the switching 
frequency increase, the target architectures become more susceptible to incurring faults (i.e., 
flipped bit or a transient within a combinatorial logic path). Nowadays, the reliability problem 
becomes even more important due to the industry trend for increasing the logic density [1]. 
Consequently, fault tolerance need to be though as a critical design issue, even for real-life 
applications. 

The last ten years many discussions were done about the design of reliable architectures able to 
overcome from faults occurred either during the fabrication process or the execution time. More 
specifically, the term fault tolerant corresponds to a design which is able to continue operation, 
possibly at a reduced level, rather than failing completely, when some part of the system fails [1, 2, 
3, 4, 5, 6, 8, 9, 12, 13, 14, 15]. These solutions include fabrication process-based techniques (i.e. 
epitaxial CMOS processes) [11], design-based techniques (i.e. hardware replicas, time redundancy, 
error detection coding, self-checker techniques) [4], mitigation techniques (i.e. multiple redundancy 
with voting, error detection and correction coding) [5], and recovery techniques (reconfiguration 
scrubbing, partial configuration, rerouting design) [14]. 

Even though fault tolerance is a well known technique, up to now it was mostly studied for 
ASIC designs. However FPGAs poses new constraints (i.e. higher power density, more logic and 
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interconnection resources, etc), while the existing fault models are not necessarily applicable. To 
make matters worse, faults in FPGAs can alter the design, not just user data. In addition to that, the 
designs mapped onto FPGAs utilize only a subset of the fabricated resources, and hence only a 
subset of the occurred faults may result to faulty operation. Consequently, FPGA-specific 
mitigation techniques are required, that can provide a reasonable balance among the desired fault 
prevention, the performance degradation, the power/energy consumption and the area overhead due 
to the additional hardware resources.  

Up to now there are two approaches for preventing faults occurring on FPGAs. The first of 
them deals with the design of new hardware elements which are fault tolerant enabled [2, 4, 12, 
15]. These resources can either replace existing hardware blocks in FPGAs, or new architectures 
can be designed to improve robustness. On the other hand, it is possible to use an existing FPGA 
device and provide the fault tolerance at higher level with CAD tools [2, 3, 6, 8, 13, 14].  

Both of these approaches have advantages and disadvantages, which need to be carefully 
concerned. More specifically, the first approach results to a more complex architecture design, 
while the derived FPGA provides a static (i.e. defined at design time) fault tolerant mechanism. On 
the other hand, the second approach potentially is able to combine the required dependability level, 
offered by fault tolerant architectures, with the low cost of commodity devices. However, this 
scenario imposes that the designer is responsible for protecting his/her own design. 

In [12] a fault tolerant interconnection structure is discussed. The faults in interconnection 
network are corrected by spare routing channels which are not used during place and route (P&R). 
A similar work is discussed in [13], where a defect map is taken as input to P&R tool and then 
application’s functionalities are not placed in the faulty blocks. In another approach [14], EDA 
tools take as input a generic defect map (which may be different from the real defect map of the 
chip) and generate a P&R according to this. A work that deals with a yield enhancement scheme 
based on the usage of spare interconnect resources in each routing channel in order to tolerate 
functional faults, is discussed in [15]. The only known commercial approach for supporting fault 
tolerance in FPGAs can be found in [8]. This implementation replicates each of the logic blocks 
that form application. The initial, as well as the two replica blocks work in parallel, while the 
output is derived by comparing their outputs with a majority voting.  

In this work we focus on providing a framework for exploring the efficiency of alternative fault 
tolerance techniques in terms of numerous design parameters. The introduced fault tolerance can be 
implemented either on hardware (i.e. block redesign) or software (i.e. HDL annotation) level. In 
addition to that, the proposed methodology enables conventional FPGA devices to have fault 
tolerant features, making it suitable for existing commercial architectures. Also, our methodology 
can provide the desired tradeoff between the required reliability level and the area overhead. Based 
on experimental results, we achieve significant error correction (similar to existing fault tolerance 
approaches), but we employ significant fewer hardware resources, leading among others to area, 
delay and energy savings.  

More specifically, the main contributions of this work are summarized, as follows: 
 We introduce a novel methodology for supporting fault detection and correction on FPGA 

devices. 
 We identify sensitive sub-circuits (where faults are most possible to occur) and we apply 

the proposed fault tolerant technique onlt at these points rather than inserting redundancy in 
the whole device. 

 We develop a new tool that automates the introduction of redundancy into certain portions 
of an HDL design. 

 We validate the results with a new platform simulator based on MEANDER framework 
[10]. 

The rest paper is formed as follows: In section 2 we discuss the paper motivation, while section 
3 describes the fault tolerant FPGA architectures. The proposed fault tolerance methodology is 
explained in section 4. Experimental results that show the efficiency of the derived fault tolerance 
architectures are shown in section 5, while conclusions are summarized in section 6. 
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2   Motivation 

The first step in order to build a reliable system is to identify possible regions with increased 
failure probability. These regions mostly include hardware resources that implement application’s 
functionalities with increased switching activity [17]. Since switching activity is an application 
property which does not depend either to the target platform or the employed mapping tools, it is 
possible to identify critical functionalities during the profiling task (step 1 of the proposed 
methodology – we will describe it in section 4). However, the employed toolset introduce some 
constraints regarding the spatial distribution of regions with excessive high (or low) values of 
switching activity, and consequently with increased (or decreased) failure probability [18]. 

In order to show a case study about the variation of switching activity, Figure 1 plots the 
sensitive FPGA regions, by calculating the failure probability of hardware resources for an array 
composed by 64×64 slices, which implements the frisc application [7]. More specifically, Figure 
1(a) depicts the variation of switching activity for the application mapping without fault tolerance. 
In this figure, different colors denote different failure probabilities, while as closer to red color a 
slice is the higher probability to occur a fault.  

 

 
Figure 1.  Spatial distribution of failure probability for frisc benchmark: (a) without fault tolerance, and (b) with 

TMR redundancy 
 
Based on this map (Figure 1(a)), it is evident that the switching activity (and hence the failure 

probability) is not constant across the FPGA, since it varies between two arbitrary points (x1,y1) and 
(x2,y2) of device. From this distribution it is feasible to determine regions on the device with 
excessive high values of switching activity (regions of importance), where we have to pay effort in 
order to increase the fault tolerance. Consequently, the challenge, with which a designer is faced 
up, is to choose only the actually needed redundancy level, considering the associated spatial 
information from the distribution graph. Figure 1(b) depicts a candidate classification of FPGA’s 
hardware resources into two regions, with and without increased demands for redundancy. 

A second important conclusion is drawn from Figure 1: although the majority of existing fault 
tolerant techniques exhibits a homogeneous and regular structure, the actually critical for failure 
resources provide a non-homogeneous and irregular picture. Consequently, careful analysis of the 
points of failure must be performed, while the target system implementation needs to combine 
regions with different density of fault tolerance. 
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Based on exhaustive exploration [18], we found that the region with increased failure probability 
and hence increased demand for redundancy is placed almost in the middle of the device, while it 
occupies about 40% of the FPGA’s area. On the other hand, the rest FPGA (i.e. 60%) exhibits 
limited failure probability, and hence it is not upmost important to apply redundancy. 

3   Proposed Fault Tolerant FPGA Architectures 

Our target is a generic recent FPGA device (shown in Figure 2) similar to the Xilinx Virtex 
architecture, consisting of an array of CLBs, memories and DSP cores. Communication among 
hardware blocks is provided by a hierarchical interconnection network of fast and versatile routing 
resources. We assume that CLBs are formed by a number of Basic Logic Elements (BLEs), each of 
which is composed of a set of programmable Look-Up Tables (LUT), multiplexers, and flip-flops. 
The output of BLE can connect either to an input pin of any other BLE, or to the logic block 
output. Apart from this architecture, our proposed methodology can also support almost any other 
existing FPGA device. 

 

 
Figure 2.  The target FPGA architecture 

 
In order to support the fault tolerance we use a replication technique based on voting, which can 

be implemented either in hardware (as a dedicated circuit) or in glue logic (through HDL 
annotation). In contrast to the hardware implementation, the software-based fault repair technique 
is particular important in the field of FPGAs, as it provides a trade-off between the desired 
accuracy of detecting and correcting faults with the extra hardware overhead. 

The reconfigurable platform is encoded as an M-of-N system, consisting of N hardware blocks 
where at least M ሺܯ ൑ ܰሻ of them are required for proper operation (the platform fails if less than 
M of the blocks are functional). In our study we assume that different blocks fail with statistically 
independent order and if a block fails then it remains non-functional (the faults are not temporal). If 
R(t) is the probability of an individual block to be still operational at time t,  then the reliability of a 
M-of-N architecture corresponds to the probability that at least M blocks are functional at time t. By 
supposing that ௣݂ denotes the probability that entire architecture suffers by a common failure, the 
system reliability can be calculated as follows: 
 

ܴெ_௢௙_ேሺݐሻ ൌ ൥ሺ1 െ ௣݂ሻ ෍ ቊቆ൬
ܰ
݇
൰ܴ௜ሺݐሻቇ ሾ1 െ ܴሺݐሻሿேି௞ቋ

ே

௞ୀெ

൩ (1) 
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where ൫ே௞൯ ൌ
ே!

ሺேି௞ሻ!௞!
. In case we assume that a fault affects the whole architecture (i.e., ௣݂=0), then 

the FPGA’s reliability is calculated based on Equation 2. Additionally, whenever R(t)<0.5 the 
hardware redundancy actually become a disadvantage, as compared to a platform without 
redundancy. 
 

ܴெ_௢௙_ேሺݐሻ ൌ ෍ ቊቆ൬
ܰ
݇
൰ܴ௜ሺݐሻቇ ሾ1 െ ܴሺݐሻሿேି௞ቋ

ே

௞ୀெ

 (2) 

 
The functionality of voter is to receive a number of ܰ ൌ ሼ݅ଵ, ݅ଶ, , ݅ேሽ inputs from an M-of-N 

architecture and to generate a representative output. For instance, a typical voter does a bit-by-bit 
comparison, and then outputs the majority of the N inputs. Figure 3 shows a majority voter 
instantiation with three inputs. Such a voter can block an upset effect through the logic at the final 
output. Consequently, they can be placed in the end of the combinational and sequential logic 
blocks, creating barriers for the upset effects. 

During the redundancy approach, a critical design issue is to determine the optimal partition size 
for the replicated logic that have to be voted, in order to reduce the probability upset faults in the 
routing to affect two distinct redundant parts that are voted by the same voter. A small size block 
partition requires a large number of majority voters that may be too costly in terms of area and 
performance. On the other hand, placing only voters at the last output increases the probability of 
an upset in the routing infrastructure to affect two (or more) distinct redundant logic blocks 
overcoming the fault correction mechanism. 

 

 
Figure 3.  Majority voter schematic and the truth table 

 
Next paragraph describes some of the supported voting schemes from our proposed framework. 

We have to mention that apart from these, any other voting scheme can also be employed, if it is 
appropriately described in Boolean form. Note that, our approach can diagnose with accuracy 
errors in glue logic. In order to correct faults in wire segments, it is possible to add spare routing 
resources similar to [12]. 

3.1   R-fold modular redundancy 

The R-fold modular redundancy (RMR), shown in Figure 4, entails ܴ ൌ ሼ3, 5, 7, … ,  ሽ replicaܥ
logic blocks working in parallel, while the output results through a majority vote. Such a voter 
discards errors coming from the faulty replica(s) and selects as block’s output one of the partial 
outputs from the rest (faulty-free) replicas. This technique can effectively mask faults if: (i) only 
less than ሺሺܴ ൅ 1ሻ/2ሻ replicas are faulty (either on combinational and sequential logic), but the 
fault presents in different register locations, and (ii) the voter if fault free. 

A typical instantiation of this approach is Triple Modular Redundancy (TMR), which 
guarantees effective functionality as far as up to one replica blocks exhibits a single fault. This 
instantiation is also used at the only known commercial tool for supporting fault tolerance in 
FPGAs [8]. 
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Figure 4.  Supported R-fold modular redundancy (RMR) [2] 

3.2   Cascaded R-fold modular redundancy 

Despite the simplicity of the RMR method, it is ineffective when an upset occurs in the voter or 
there is an accumulation of upsets. In these cases, an additional mechanism is necessary to correct 
the faults, before the next upset happens. Cascaded R-fold modular redundancy (CMR) is similar to 
the previous studied architecture, but along with the R replicas of the logic blocks, the majority 
voter is also replicated. Multiple instantiations of this technique are feasible, which mainly differ in 
the number of voters, as well as the connectivity among them. Figure 5 depicts the R-folded 
modular instantiation employed in this paper.  
 

 
Figure 5.  Supported cascaded redundancy (CMR) [3] 

3.1   Time redundancy (TR) 

Figure 6 depicts another fault tolerant implementation supported by the proposed framework. 
More specifically, by sampling the signal inserted to the voter more than once with shifted clocks, 
it is possible to eliminate errors with a pulse width less than the clock cycle. As compared to the 
rest implementations discussed previously, this one exhibits lower area overheads, but it imposes 
performance degradation, as well as the requirement for different clock phases. 

 

 
Figure 6.  Supported time redundancy (TR) [4] 
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4   The Proposed Fault-Free Framework 

In this section we describe the proposed framework for exploring the efficiency of different fault 
tolerance techniques. The goal of this methodology is to ensure fault masking at the same time with 
acceptable area, delay and energy overheads. The methodology consists of three steps (S1, S2 and 
S3), as they are depicted in Figure 7. 
 

 
Figure 7.  Static fault management 

 
Starting from an HDL system description, during the first step (S1) we perform application 

profiling and analysis in order to determine sensitive functionalities with increased failure 
probability. Typical parameter that results at higher failure probability is the increased switching 
activity, and hence the on-chip temperature, due to the electromigration effect [17]. In section 2 we 
have already studied the spatial variation of switching activity. Consequently, application’s 
functionalities with increased switching activity are most candidates for applying redundancy, since 
they have higher failure probabilities. This information, in conjunction to the user constraints (i.e. 
desirable reliability, area overhead, etc), defines the employed fault tolerance model. Such a model 
describes among others the selected fault tolerant technique (i.e. RMR, CMR, TR, etc), as well as 
the amount of redundancy applied on the target platform. 

The second step (S2) of the methodology provides a precautionary mechanism for minimizing 
(or eliminating) reliability issues from defects occurred during execution time due to permanent 
faults. In order to apply it, a number of hardware resources need to be reserved. More specifically, 
this step can provide solutions to the following reliability problems: (i) to discourage functionalities 
to be placed or routed to already known faulty resources, and (ii) to reserve resources on critical 
device regions and to invoke them whenever a fault occurs, in order to find a new P&R which 
occupies only functional components. More specifically, the hardware resources of target device 
are categorized in three groups, namely: (i) unutilized (they are not employed for application 
mapping), (ii) utilized (used for application mapping and are fault free), and (iii) faulty (found not 
to operate properly). Due to the increased complexity of the second task, a co-processor attached to 
the FPGA is required, in order to find the P&R and re-program faulty resources.  

The third step (S3) of the proposed methodology deals with application mapping. The 
application’s HDL description is synthesized and then technology mapped. The retrieved netlist is 
appropriately annotated based on the desired fault tolerance, as it was retrieved from S1. This task 
is involved only whenever the redundancy is applied in software (i.e. HDL) level. Otherwise, i.e. 
when the FPGA incorporate a hardwired fault tolerant mechanism, we bypass this tasks and 
proceed to application P&R. Constraints posed during the P&R comes from the reservation of 
hardware resources (step S2), as well as the faulty map (similar to the Figure 1(a)).  
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In order to provide the necessary software support for our proposed methodology, we employ an 
open source tool flow [10], while the fault tolerance is applied as a new CAD tool, named Fault-
Free. However, the methodology is completely transparent to the employed CAD tool chain and 
can be applied as an intermediate step between synthesis and place and route (P&R) tools at 
existing design flows. 

5   Experimental Results 

The first step in calculating reliability is the selection of fault models. There are two major 
sources of logic faults in FPGAs: cosmic radiation and manufacturing/operating imperfections. 
Since the size of radiation particles is small as compared to the bitstream size of logic blocks, we 
employ a fault model that follows uniform distribution of non-correlated failures. In addition to 
that, the device scaling makes them more sensitive to soft faults [9]. The second class of faults is 
related to manufacturing and operating imperfections. Even though these defects are not important 
during the testing after fabrication, they become exposed after a long period of operation. In order 
to model this type of faults, we use the Stapper fault model [19], which is based on gamma 
distribution. 

The efficiency for the alternative fault tolerant implementations is shown in Figure 8. More 
specifically, here we study the percentage of repaired over the injected faults for different 
redundant techniques. In order to make this experiment, for each of the curves we calculate the 
bitstream file for frisc [7] application. This size ranges from B=1107Kbits (TR approach) up to 
B=1560 Kbits (CMR approach), while each of these files remains constant along the corresponding 
curve. Then, we inject randomly a number of faulty bits in the configuration data. The amount of 
faulty injected bits, mention with F, ranges from 5% up to 25% of the configuration’s file size. We 
assume that the faults are randomly distributed between logic and interconnection resources.  

The horizontal axis of this figure corresponds to the percentage of injected faulty bits over the 
size of configuration data, while the vertical one shows the percentage of faulty bits over the total 
injected bits that remain faulty after applying the recovery mechanism. In other words, the vertical 
axis plots the efficiency to repair faults for the alternative redundant implementations.  

 

 
Figure 8.  Efficiency of alternative fault tolerant techniques: (a) when they are applied unifomly over FPGA, (b) 

when applied based on the proposed region-based approach 
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Based on Figure 8 we can conclude that the proposed methodology results to significant error 
prevention for all the incorporated mechanisms. More specifically, regarding the case where F=5%, 
our region-based redundancy results up to 7% smaller efficiency in correcting faults, as compared 
to an implementation with full redundancy. However, we have to mention that our approach results 
to significant area savings, since 60% of the device area does not incorporate redundant blocks. In 
addition to that, in case the fault tolerance is applied uniformly over the FPGA, there is still a 
failure probability, since the employed redundancy scheme cannot prevent faults in routing 
infrastructure. 

One of the disadvantages of applying fault tolerant techniques is the performance degradation 
due to additional hardware blocks. Table 1 shows the result in terms of Energy×Delay Product 
(EDP) for the original (i.e., non fault tolerant) and the three alternative techniques discussed in this 
paper. For each of these implementations we evaluate two instantiations: (i) all the functionalities 
are replicated (existing design approach), and (ii) only functionalities that are placed on critical 
device regions are replicated (region-based design approach). The derived modified fault tolerance 
schemes are denoted as m_RMR, m_CMR and m_TR.  

 

Table 1.  Characteristics of applications implementation 

Benchmark 
Existing design approaches Proposed (region-based) approaches 

Initial RMR [8] CMR [3] TR [4] m_RMR m_CMR m_TR 
alu4 4.77 7.85 8.89 6.84 5.81 5.51 5.4 
apex2 8.30 9.42 10.5 9.74 7.44 7.66 7.60 
apex4 4.13 4.99 5.53 5.05 3.19 3.48 3.99 
bigkey 1.41 1.66 1.81 1.69 1.19 1.03 1.00 
clma 133 146 163 152 89.1 102.7 104.9 
des 16.5 17.7 19.4 18.4 11.0 10.9 14.4 
diffeq 2.21 3.14 3.59 2.96 2.29 2.05 1.81 
dsip 6.29 7.81 8.63 7.85 4.76 6.21 6.44 
elliptic 18.2 23.6 26.1 23.2 16.0 15.7 18.8 
ex1010 37.1 41.2 43.4 42.1 26.4 32.6 33.3 
ex5p 3.86 4.85 5.33 4.78 2.96 3.41 3.06 
Frisc 22.0 26.5 28.9 27.1 17.5 17.6 21.7 
misex3 4.35 5.72 6.41 5.62 4.06 3.65 4.44 
Pdc 58.0 66.0 71.9 67.7 45.5 53.9 57.5 
s298 12.5 21.1 24.3 18.1 12.7 15.1 10.5 
s38417 24.2 32.7 37.9 32.1 23.5 25.4 19.3 
s38514 25.1 27.0 29.3 28.0 17.3 22.0 19.9 
Seq 5.47 6.40 7.15 6.55 4.03 4.72 4.85 
Spla 25.8 39.2 43.0 36.0 28.6 26.2 20.5 
Tseng 0.69 1.00 1.12 0.93 0.75 0.73 0.57 
Average: 16.29 19.9 22.1 19.9 16.2 18.0 17.9 
Ratio: 1.00 1.22 1.36 1.22 0.99 1.11 1.10 

 

From the results provided in Table 1, the existing way of applying the three fault tolerant 
techniques exhibit increased EDP values, as compared to initial mapping, ranging from 1.22 up to 
1.36 times. On the other hand, when we apply redundancy only on the application’s functionalities 
mapped onto the 40% of device hardware resources placed on the middle of FPGA array, then the 
EDP overhead range from 0.99 up to 1.1 times. These values are almost similar to those retrieved 
when the device is designed without redundancy. 

5   Conclusions 

A novel framework for exploring and supporting fault tolerance at FPGAs was introduced. This 
framework can support alternative fault tolerance mechanisms based on voting, but rather than 
annotating the whole application’s description with redundancy (as existing approaches do), we 
replicate only application’s functionalities implemented onto regions with increased failure 
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probability. Since our framework does not require dedicated hardware blocks for supporting fault 
tolerance, it leads to increased flexibility, while it can be also applied to commercial devices as an 
additional step between synthesis and P&R. Moreover, our approach can provide a tradeoff 
between the desired reliability level and the extra overhead due to extra hardware resources. Based 
on experimental results, we shown that the proposed fault tolerant technique is not so much 
expensive in term of area, delay and energy dissipation, as compared to existing redundant 
solutions, while it leads to almost similar error correction. 
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Abstract. Reconfigurable architectures have already shown to be a potential 
solution to cope with the increasing complexity found in modern embedded 
computing systems, where high performance and low energy consumption are 
mandatory. In most of the works concerning reconfigurable computing, the 
main objective is to optimize the system by taking into account the known 
requirements of a project, such as speedup, energy or area. However, the impact 
of the context memory is very often ignored. In this article we show its 
significance in terms of power, and discuss a strategy to determine the most 
efficient way to handle the accesses to the context memory. Using as case study 
a coarse-grain reconfigurable array tightly coupled to the MIPS R3000 
processor, we show that the energy of the context memory can represent up to 
89% of the total system energy, and by applying the proposed strategy it is 
possible to save 59% of this amount. 

Keywords: Adaptable Architectures, Reconfigurable Systems, Low-power 
Design, Memory Access 

1   Introduction 

The advance of integrated circuits technology over the years has allowed greater 
transistor integration. Modern mobile phones are an example: one can find several 
features in a single electronic device. Although these devices are still classified as 
embedded systems, they have to execute several heterogeneous applications that 
present a mix of control and dataflow behaviors. Nevertheless, as embedded systems 
are increasingly complex and need high performance computing, they are also tied to 
a number of design restrictions such as area occupation, energy consumption, memory 
footprint and time-to-market constraints, making embedded systems design a greater 
challenge than before. 

An approach that emerged as an alternative to the previously mentioned problems 
is the employment of reconfigurable architectures. Reconfigurable systems provide 
flexibility of implementation, thanks to its ability to adapt to the behavior of the target 
applications even after manufacturing. They have already proven to be able to satisfy 
the constraints imposed by embedded systems [1].  
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Reconfigurable architectures are composed of basic configurable logic units, which 
can implement arithmetic and logical operations, or even more complex functions. 
The interconnection fabric between these units is also configurable. The set of 
configuration bits that indicate both configurable logic functions and their 
interconnection is called a context. Each context is stored in a special memory, the 
context memory.  

In many studies using reconfigurable architectures, the main objective has always 
been to optimize the reconfigurable unit. However, the impact of the context memory 
in the overall power consumed in the system has often been neglected. Therefore, 
besides showing how significant is the power dissipated in the context memory, we 
also show an approach that can alleviate the problem. By correctly balancing the 
amount of memory accesses with the right number of memory output bits one can 
obtain minimum system energy consumption. For that, we studied how to find the 
ideal granularity to access the context memory, varying the amount of configuration 
bits fetched per access, which also involves changing the width of the memory port. 
As a case study, we use a coarse-grain architecture tightly coupled to the MIPS R3000 
processor [2].   

This paper is organized as follows. Section 2 characterizes the problem of the 
context of memory. Section 3 analyzes the impact of the context memory in different 
reconfigurable architectures. Section 4 presents the architecture of the reconfigurable 
data path. Section 5 presents the optimization strategy. Section 6 presents and 
discusses the results. Finally, section 7 draws conclusions and future works. 

2   Identifying the Problem 

If the reconfiguration process has to take place very often in a given reconfigurable 
system, so that there is a great number of context switches in a short period of time, 
the mean power of the context memory might be as large as or even larger than the 
power dissipated for performing the computation. For reconfigurable architectures 
that use a small number of configurations, acting at very specific kernels, the power 
dissipated by the context memory may be amortized by its continuous use through the 
time. However, recent works have shown that dynamic reconfiguration is a clear trend 
for both coarse and fine grain architectures, with several benefits that cannot be 
reached by static reconfiguration systems [2][4][5], reinforcing the necessity of the 
context memory optimization.  

One important aspect of any memory is that the power it dissipates is a function of 
its size and the number of input/output bits. Actually, the number input/output bits 
play a major role, since for each output bit a sense amplifier and other buffering 
circuitry is required, even when considering memories embedded inside the chip. 
Figure 1 shows the impact of the number of input/output bits in the total memory 
energy for three different memory sizes. As it can be seen, the power overhead of 
increasing the memory width port by twice is larger than enhance the storage capacity 
by the same factor. This data has been obtained with Cacti 6.0 [3]. Figure 1 shows 
that there is a design space that must be explored, related to the number of accesses 
needed to load an entire configuration and the size of the configuration word. 
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Figure 1.  Energy spent per access with different port and memory 

sizes. 

3   Related Work 

Several studies on memory techniques have already been done concerning superscalar 
processors, VLIW and multicores to reduce energy consumption or increase the 
performance of the program memory. The usage of programmable associativity, size, 
and line size of an embedded system’s cache architecture [6], encoding tag [7], 
scratchpad memory [8] and instruction compression [9] are some examples.  

However, none of the above is related or can be directly applied to reconfigurable 
systems. As already discussed, different from the regular instruction/data memory, the 
context memory of Reconfigurable Systems stores configurations. Although both 
require high speed access times, the context memory presents an important difference: 
the size of its word and hence the number of output bits is orders of magnitude larger 
than the regular memory size, considerably increasing energy consumption. 

In a reconfigurable architecture the number of basic reconfigurable components is 
one of the main factors that determine performance: the more functional units the 
reconfigurable unit have, the more speedup potential it presents. However, the amount 
of logic available directly impacts the size of the configuration word, increasing the 
number of bits necessary to store a configuration.  

Fine grained architectures that work at the bit level, such as those based on FPGAs, 
require more configuration bits when compared to coarse grain architectures, which 
usually work at the word level. However, even in coarse grained architectures the 
number of bits a configuration takes is still very significant.  For instance, let us 
consider PipeRench [10]. Piperench is composed of a set of stripes, which are 
physical pipeline stages. Each stripe has an interconnection network and a set of 
Processing Elements (PEs). The functionality of each PE is specified by 42 
configuration bits, which means that each stripe needs 672 configuration bits to be 
configured. As this architecture has 16 stripes implemented in hardware, 1344 bytes 
are necessary to store an entire configuration. Configuration data is stored in 22 
SRAMs, each with 256 32-bit words. In the CHESS architecture [11], each ALU 
needs 100 configuration bits. This architecture contains 512 ALUs, so the estimated 
number of bytes for a single configuration is 6400, including the routing mechanism. 
Other examples of coarse grain architectures with similar context memory 
requirements are MorphoSys [12], RaPiD [13] and the CCU [4]. 
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However, none of the aforementioned works takes into account the power 
dissipated in the context memory on the overall system energy consumption. The 
question to be answered is whether there is best context memory partitioning, which 
can program several FUs to sustain high performance, while at the same time 
minimizing the energy of the whole system. We try to answer this question, by 
studying the best possible compromise among several design decisions. 

4   Description of the Reconfigurable Architecture 

Figure 2 shows the structure of the reconfigurable architecture employed as case 
study for this work. The reconfigurable unit is organized as a two-dimensional array 
of functional units, interconnected using multiplexers. It can also execute instructions 
in parallel, according to their data dependencies. As can be observed in Fig. 2a, the 
functional units are divided into groups (e.g. ALU, Load/Store, Multiplier). 
According to the delay of each group, more than one operation can be executed within 
one equivalent processor cycle. In this case study, according to the MIPS R3000 
critical path, a reconfigurable architecture level corresponds to three rows of ALU in 
sequence, one Load or one Multiplication operation. One level can be observed in 
more details in Fig. 2b. 

The reconfiguration and execution processes work as follows: initially, values of 
the input context are fetched from the register file while the configuration bits are 
fetched from the context memory. The configuration bits are responsible for routing 
data between the context bus and the functional units, and for selecting the operation 
of each functional unit. Then, that configuration is executed, taking a given number of 
equivalent processor cycles. Finally, results are written back to the register bank. 

This architecture has a binary translation mechanism (BT), which is implemented 
in hardware and operates in parallel to the processor. At run time, the BT unit detects 
sequences of instructions that can be executed in the reconfigurable architecture. This 
sequence is translated into a data path configuration through the BT, and saved in the 
context memory. These sequences are indexed by the Program Counter (PC) register, 
so they can be used next time they are found. The context memory is similar to a fully 
associative cache. Each entry of the context memory is responsible for storing a 
particular configuration that is indexed by that PC. The number of context memory 
entries determines the number of configurations that can be stored at once. The size of 
each entry depends on the number of functional units that compose the reconfigurable 
array. These parameters are determined at design time. 

5   Proposed Strategy 

According to the experiments shown in Fig. 1, a linear increase in the memory port 
width reflects a non-linear increase in the energy consumption, even while 
maintaining the size of the context memory constant. Therefore, one way to reduce 
the energy during an access is to reduce the memory port bit-width. However, one 
needs to increase the number of memory accesses to load the very same information. 
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Memory area is also affected by this change, because a different number of output 
drivers, size of decoders and sense amplifiers will be required. It is important to 
notice that the response time necessary to the context memory to deliver data after a 
request is also affected. In our experiments, we have maintained this smaller than the 
critical path of the system, in order to avoid compromising the acceleration provided 
by the reconfigurable unit.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: General overview of the reconfigurable array. 
 

Considering a reconfigurable array composed of 4 levels, we divided the memory 
port bit-width by half (Fig. 3(b)) and by fourth (Fig. 3(c)) to evaluate the total energy 
consumption to load one configuration. As the total memory size is kept constant, the 
number of memory entries scales in accordance with the reduction of the memory port 
width, as shown in Fig. 3. Hence, we aim to find the best way to access each 
configuration in the context memory, in order to minimize energy consumption.  

Applying the strategy described above, two extremes can be observed. The first 
case is when the configuration is loaded in just one cycle, so all configuration bits are 
accessed in parallel (Fig. 3(a)). Consequently, a large memory port is required and 
great amount of energy is consumed per access. In another extreme, only one level of 
the reconfigurable array is reconfigured per cycle (Fig. 3(c)).  

(a) (b)

33



 

 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

Figure 3. Context memory exploration by dividing the configuration in 
parts. 

6   Results 

In our study we have used SystemC to simulate the reconfigurable system coupled to 
a MIPS R3000 processor executing the Mibench Benchmark Suite [14]. From this 
model we extracted performance results and the number of memory requests to the 
context memory. Cacti 6.0 tool has been used [3] to model the different context 
memory arrangements and extract their power consumption, access energy, area and 
access time, using a CMOS 90 nm technology.  

As presented in Table 1, four different array setups were considered to evaluate the 
energy consumption and performance of the system. Each setup is composed of a 
different number of functional units, being the Setup 4 the largest one. This table also 
shows the required number of bytes necessary to store one configuration considering 
the number of functional units of each setup. To give an idea on the speedup 
presented by the reconfigurable system used as case study, Figure 4 presents the 
average speedup of the four different setups for each application varying the number 
of memory context entries. More than 64 entries in the context memory do not 
provide relevant performance gains.  

Table 2 presents the energy spent per access, in nJoules, when one varies the 
number of levels fetched per access and, consequently, the number of bytes. The first 
row shows the energy needed to fetch only one level per access and so on. As the 
number of fetched levels dictates the memory port width, the more levels fetched per 
access, the more energy is necessary.  

 

32 bits 

32 bits + 1 32 bits + 2 
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Table 1 - Different Setups for the Array. 

 Setup #1 Setup #2 Setup #3 Setup #4 
#Rows 24 48 96 192 
#ALU / level 8 8 12 12 
#Multipliers / level 1 2 2 2 
#Ld|St /level 2 6 6 6 
#Levels 8 16 32 64 
#Configuration bytes / level 107 124 147 147 
Total #Configuration bytes 856 1984 4704 9408 

 

Figure 4. Average speedup of the four setups for each Mibench 
benchmark application. 

 
Table 2 - Energy (nJ) necessary for different number of accesses 

 Setup 1 Setup 2 Setup 3 Setup 4 
1 Level/ access 0.147 0.308 0.535 1.141 
2 Levels/ access 0.126 0.251 0.414  0.779 
4 Levels/ access 0.164 0.311 0.514 0.796 
8 Levels/ access 0.305 0.507 0.943 1.175 
16 Levels/ access - 1.376 2.023 2.379 
32 Levels/ access - - 6.751 7.188 
64 Levels/ access - - - 28.987 

 
Figure 5 shows the total energy necessary to load an entire configuration varying 

the number of levels fetched per access. The number of necessary levels to configure 
the whole unit depends on the used setup. According to Table 1, for setups #1, #2, #3 
and #4; 8, 16, 32 and 64 levels are necessary to compose an entire configuration, 
respectively. The results demonstrate that, for each array setup, there is an optimal 
number of levels to be fetched per access that minimizes the energy consumption to 
load an entire configuration.  
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For setup #1, which is the smallest one, the best way to configure the array is to 
load the whole configuration (the 8 levels that compose that configuration) at once. 
On the other hand, for setups #2, #3 and #4, the best option is to fetch 8 levels per 
access. In the case of setup #2, for example, two accesses of 8 levels each would be 
necessary to load an entire configuration, showing the best tradeoff regarding energy 
consumption. In setup #4, although there is a minimum difference between accessing 
8 and 16 levels per cycle, the former still can be considered the best choice in terms of 
energy, although it will take more cycles to fetch the entire configuration. 
Considering the best case for each setup, there are 26%, 44% and 67% of energy 
savings over the original strategy for setups #2, #3 and #4, respectively.   

As shown in Fig. 5, in most cases, except for Setup 1, the results suggest that one 
should make more accesses to the context memory with smaller bit-widths. However, 
reconfigurable systems that need the complete configuration to be ready before 
execution could show performance losses when using the proposed approach, since 
more accesses to the memory must be performed to load an entire configuration. That 
is not the case with reconfigurable unit used in these experiments. In this unit, while 
one level is being executed, the next one is fetched. This way, at each clock cycle at 
last one level is being executed, while the rest of the reconfigurable unit is either 
processing or waiting for a new level. Therefore, no additional delay is inserted and 
performance is maintained. This approach is very similar to the virtualization process 
used in PipeRench[10], and can be applied to several other reconfigurable systems. 

 

  

  
Figure 5. Total energy consumption to load a whole configuration, 

varying the number of levels fetched per cycle 
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To better visualize the results in Figure 5, Table 3 shows the energy consumed to 
fetch an entire configuration considering three different scenarios: fetching only one 
level per access; fetching the entire configuration in one access; and using the context 
memory port width that provides best tradeoff possible considering each setup 
separately. 

Table 3 – Energy spent (nJ) to fetch the Configuration  

Setup One level per access Entire configuration 
per access 

Best tradeoff 
possible 

#1 0,59 0,30 0,30 
#2 4,93 1,37 1,01 
#3 17,1 6,75 3,77 
#4 73,03 28,98 9,40 

 
Figure 6 shows the gains obtained by the use of the technique considering the 

overall system energy consumption. It compares the original access method to the 
optimal, which is the best tradeoff possible presented before. Each bar shows the 
energy saved when using the optimal method, the energy spent by the context 
memory, and the energy spent by the functional units of the reconfigurable unit. For 
setups #1, #2, #3 and #4, the context memory is responsible for 13%, 40%, 68% and 
89% of the whole system energy, respectively. When applying the proposed 
technique, 10%, 29% and 59% of system energy was saved, for setups #2, #3 and #4. 
No gains are shown for Setup #1, since the best policy is exactly the same as before: 
fetch the entire configuration at once. It is important to note that, despite the gains 
obtained by the use of the proposed technique, the context memory remains 
responsible for a significant portion of the total energy consumption. Hence, there is 
still a great design space to be exploited in this subject.  

 

 
Figure 6. Percentage of energy consumption of memory for the system 

energy and energy save by optimization 

7   Conclusions 

This work demonstrated that the context memory is responsible for a large part of 
the energy consumed in reconfigurable systems. By finding the ideal memory port 
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width one can minimize energy at the system level. Results show that the 
reconfiguration memory can represent up 89% of the total system energy, and by 
applying the strategy here discussed it is possible to save 59% of the total energy. The 
approach is general in the sense it can be applied to any reconfigurable system, 
though those that support partial reconfiguration are the best candidates to use it 
without suffering of significant performance penalties when dealing with pipelined 
reconfigurable units. 
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Abstract. Instruction set identification problem has been one of the major 
research topics in the last decade. Most of the solution proposals in the 
literature assume a fixed size register file with pre-specified input and output 
ports. On the other hand, reconfigurable hardware such as an FPGA has a 
variety of on-chip resources, which can be configured according to the 
requirements of the application. Hence, in this work, we propose a register file 
design methodology for ASIPs on the FPGAs. Our tool uses the instruction set 
and the execution thread to generate a register file with reduced number of 
inter-register transfers and maximum number of I/O ports required by the 
application.  Moreover, the file can be partitioned into different size of registers 
during run-time according to the instruction that is being executed. The 
experimental results show that for implementations with concurrent 
instructions, this algorithm can reduce length of register file by 40% in 
average.1 

Keywords: Application Specific Instruction-set Processors, Configurable 
Register file, Reconfigurable Architecture, Register File Management. 

1   Introduction 

Multifarious needs of industry and science led embedded system manufacturers to 
design customizable processors, which offer design flexibility, high performance and 
short time-to-market simultaneously. Thanks to FPGAs, it is possible to reconfigure 
hardware fabric after production and implement a function-specific processor [1]. 

Depending on the specifications of the target hardware, we can talk about two 
different types of application specific processors. If the target hardware is a tightly-
coupled processor and reconfigurable fabric pair, then the extension of the instruction 
set is considered [2][3].  If the target hardware is completely reconfigurable like an 
FPGA, then the application can be either directly synthesized and mapped on the 
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hardware [4] or implemented as an ASIP whose instruction set is completely 
determined by the application [5][6]. Hence, the common point in both approaches is 
to extract the new instruction set according to the application.  

In the literature, application specific instruction (ASI) identification is based on a 
set of constraints due to the register file or other forms of memory where the new 
instructions have to be connected to [7]. These constraints are the number of input and 
output ports and the size of the register file, which is fixed in custom or general-
purpose processors. However, for ASIPs on the FPGAs, the register file neither has to 
be fixed nor has to have a fixed number of read/write (R/W) ports, because an FPGA 
serves a vast amount of on-chip resources. Therefore, in this study, we propose 
reversing the processor customization process: The instructions must be selected 
without register file constraints1. Once they are selected, the register file must be 
tailored according to the ASIs. Based on this proposal, we have developed a simple 
algorithm to generate a run-time flexible register file for ASIPs generated by the 
RH(+) environment [5]. The size and number of R/W ports of the register file are 
determined according to the application at design time. However, the size of each 
register can change during run-time without changing the complete size of the register 
file. As a result, register reuse is utilized. Additional optimizations are also made to 
reduce the inter-register transfers. The algorithm operates in the RH(+) environment, 
which is developed for designing application specific embedded processors on 
FPGAs. Experimental results show that this algorithm efficiently minimizes the 
length of register file for different applications. 

It should be noted that the study presented here is a preliminary demonstration of 
an idea. It does not claim to be the best solution. Based on this self-realization, the 
next section presents a brief overview on previous studies in the literature in the 
domain of ASI extraction. The algorithm for register file design is described in detail 
in Section 4. Experiments are evaluated in Section 5 and the final section concludes 
the work. 

2   Literature Survey 

Instruction set extension has been extensively studied in the last decade. The basic 
objective is to improve the computation time by including application specific 
instructions to the data path of a custom-designed or a general purpose processor [7]. 
This process usually reduces power consumption in the meantime. However, there is 
also a study, whose objective is to reduce energy consumption and to increase battery 
lifetime [8].  

The instruction identification process is straightforward: The control and data flow 
graph (CDFG) of the application is studied so as to extract the most time consuming 
patterns that will be identified as instructions. In the mean time, a set of constraints 
needs to be satisfied. The first constraint is the convexity, i.e. each selected instruction 
has to operate without intervention of the processor. The remaining constraints are 
imposed by the target hardware. The new instructions have to interface with the 
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etc. 
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register file or the main memory. Hence, the size, the number and width of I/O ports 
constrain the shape of the patterns which will be identified as new instructions.  

The existing hardware architecture of the processor imposes a performance 
bottleneck. To reduce this effect, there have been proposals like shadow registers [9] 
[10], multiport registers [11], custom registers for multiple inputs and multiple 
outputs [12][13][14], dedicated data paths [15] and incorporation of an additional 
register file for the new instructions so as to reduce memory access times [16].  

In all these approaches, there exists a custom register file due to the fixed 
architecture of the custom-designed or general-purpose processor. However, for 
reconfigurable processor architectures [6][17][5], there are only primitives for 
generating application specific register files. In [6][17], two level register files are 
used. The global register files is used as an interface for data transfer and a scratchpad 
while the local ones are exploited by functional units in the reconfigurable array. The 
application-specific register file is distributed and has to be formed by combining the 
necessary global and local register files. There are parameters to determine the size 
and ports of the register file.  

RH(+) [5] is a development environment for generating application specific 
microprocessors on a reconfigurable hardware, basically an FPGA. In this toolset, the 
register file is generated automatically by inspecting the application. Therefore, the 
best register file is extracted according to the application-specific instruction set. This 
is a quite new approach in automatic ASIP design because the register file is not a 
constraint for the instructions of the application. In a Xilinx FPGA, each LUT can be 
configured as a one-bit distributed memory with one read and one write port. One-bit 
dual port memory can also be done by combining two LUTs. Moreover, each LUT is 
also coupled with one bit register/latch module. Therefore, in RH(+), a distributed 
register file is automatically generated by combining one-bit distributed memory units 
and if necessary, registers. The following sections describe the register file generation 
in RH(+). 

3   Register File Design Algorithm (RFDA) 

The required input files for the RFDA are developed by RH(+) toolset. Most of the 
detailed information is gathered from a XML based Control Flow Data Graph 
(CDFG) file, which is generated by a front-end compiler running over the application 
that the user develops in the RH(+) environment. The CDFG includes bit-length and 
type information (array or scalar) of each variable, and inputs and outputs of the 
operators. In Fig.1, a sample graph is presented for a simple program.  

Based on the generated CDFG, RH(+) performs instruction selection. Next, a 
template file, which includes the assembly templates for the generated instructions, is 
provided for the back-end compiler. In the back-end compiler, a primitive assembly 
code is generated by processing the CDFG and the template file. The primitive 
assembly code for the CDFG of Fig. 1 is shown in Fig. 2. 

The RFDA runs over the CDFG and the primitive assembly code. Its first goal is to 
find the optimum size for the register file for the user application. Furthermore, it 
introduces RH(+) how to allocate registers during run-time while preserving the 
register file’s total length. Indeed, this algorithm designs the register file as an array 
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of single bit registers. In order to access the registers, multiplexers are utilized inside 
the control and the data paths of the processor. A pseudo code for the RFDA is shown 
in Fig. 3. This pseudo code can be explained as follows: 

 
 

a
3 bit 

Scalar

c
2 bit 

Scalar

INST1

b
5 bit 

Scalar

INST3

INST2

 
Fig. 1. Example of a Control Data Flow 
Graph generated by front-end compiler 

Line # Instruction 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

MOV R0 a 
MOV R1 c 
INST1 R2 R0 R1 
MOV R0 b 
INST2 R1 R0 R2 
MOV b R1 
MOV R0 c 
MOV R1 a 
INST3 R2 R0 R1 
MOV c R2 

Fig. 2. Resulted primitive assembly code by 
The back-end compiler 

 

 
• Manage_SubRegisters (Primitive_Assembly , CDFG). The compiler of RH(+) 
makes register allocation without considering the size of the variables. The size of 
each register may change according to the size of the variable. A register in the 
register file is active when a value is written to it. It is inactive after the last 
instruction, which reads that value. We denote each active period for a register as the 
sub-register of that register. Manage_SubRegisters function generates all sub-registers 
for each register inside the assembly code. Table 1 shows the sub-register table 
generated for the primitive assembly code in Fig. 2. For instance, consider register 
R1; it first appears in line 2 where it gets the value of variable ‘c’, which is 2 bits 
long. R1 holds this value until it is accessed in line 3. Therefore, we write R1_2_3_2 
inside the table as a sub-register of R1. In Table 1, there are three sub-registers for R1, 
namely R1_2_3_2, R1_5_6_5 and R1_8_9_3. Note that sizes of sub-registers can be 
different. 

 
Register_File_Generation (CDFG, Primitive_Assembly) 
{ 

Sub-Register_Table = Manage_SubRegisters (Primitive_Assembly, CDFG); 
Time-Table = Create_Time-Table (Sub-Register_Table); 
OffsetGroup_Table = Set_OffseGroupst (ref Sub-Register_Table,Time-Table); 
Set_Offset_and_Rename (ref Sub-Register_Table, OffsetGroup_Table); 
New_assembly = Rewrite_Assembly(Sub-Register_Table, Primitive_Assembly); 

} 

Fig. 3. Pseudo code for the RFDA 

• Create_Time-Table (Sub-Register_Table). The time-table keeps track of sub-
registers during the program execution time. In this table, columns represent time 
slots and rows stand for sub-registers. All of the sub-registers that exist in a specified 
instruction cycle are marked in the related column. Next, sum of bit-lengths for all 
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registers used in that time slot is calculated. The time-table of Fig. 2 is shown in Table 
2. For instance, sub-register R1_5_6_5 starts in line 5. It also appears in line 6. Hence, 
fifth and sixth columns are marked for the R1_5_6_5 sub-register. 

 
Table 1. Sub-Register Table for example 

Register Name Bit Length BI DI Offset NewName 
R0_1_3_3 3 1 3 -- -- 
R0_4_5_5 5 4 5 -- -- 
R0_7_9_2 2 7 9 -- -- 
R1_2_3_2 2 2 3 -- -- 
R1_5_6_5 5 5 6 -- -- 
R1_8_9_3 3 8 9 -- -- 
R2_3_5_3 3 3 5 -- -- 
R2_9_10_5 5 9 10 -- -- 

 
Table 2. Time-Table of example 

Time 1 2 3 4 5 6 7 8 9 10 
R0_1_3_3 x x x        
R0_4_5_5    x x      
R0_7_9_2       x x x  
R1_2_3_2  x x        
R1_5_6_5     x x     
R1_8_9_3        x x  
R2_3_5_3   x x x      
R2_9_10_5         x x 
Length 3 5 8 8 13 5 2 5 10 5 

 

 
• Set_OffsetGroups (ref Sub-Register_Table, Time-Table). An offset is the start 
address of a sub-register in the register file. To set offset values, we run an algorithm, 
which finds the best offset group for each sub-register so that the size of the register 
file will be optimized. Here, sub-registers that have equal or similar sizes (considering 
a defined threshold) are categorized on offset groups. It is assumed that sub-registers 
in the same offset group are not accessed simultaneously during runtime. Threshold is 
an experimentally obtained value and it limits the differences between the sizes of the 
sub-registers in an offset group.  Although applying a threshold may lead a larger 
register file, it reduces the complexity of addressing. The offset-group table for our 
example is shown in Table 3. 
• Set_Offset_and_Rename (ref RegisterFileTable, OffsetGroup_Table). In this step, 
the same offset value is set for each sub-register inside an offset group. The offset 
value is also calculated based on the algorithm in Fig. 4. Then, each sub-register is 
renamed and these new names are used in the next function. The final version of sub-
register table is demonstrated in Table 4.  
 

Table 3. OffsetGroup table for example 

 Register Group 
Maximum 
Length 

1 R0_1_3_3, R0_4_5_5, R1_8_9_3 5 
2 R0_7_9_2, R1_2_3_2  2 
3 R1_5_6_5, R2_9_10_5 7 
4 R2_3_5_3 3 
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Offset = 0; 
for each group in OffsetGroup table { 
        for each sub-register inside group  
                offset of sub-register = Offset; 
        Offset = Offset + maximum size of all sub-registers inside group; 
} 

Fig. 4. Offset calculation algorithm 

  
Table 4. Offset calculation and register naming 

Register Name Bit Length BI DI Offset NewName 
R0_1_3_3 3 1 3 0 R0_3_0 
R0_4_5_5 5 4 5 0 R0_5_0 
R0_7_9_2 2 7 9 5 R0_2_5 
R1_2_3_2 2 2 3 5 R1_2_5 
R1_5_6_5 5 5 6 7 R1_5_7 
R1_8_9_3 3 8 9 0 R1_3_0 
R2_3_5_3 3 3 5 12 R2_3_12 
R2_9_10_5 5 9 10 7 R2_5_7 

 
• Rewrite_Assembly (Primitive_Assembly). This function replaces the names of the 
registers in the primitive assembly code with their new names. The final version of 
the assembly code in Fig. 2 is shown as the last column in Table 5. 
 

After the execution of the algorithm, RH(+) generates a register file whose length 
is equal to the sum of the offset of the sub-registers in the last offset group and the 
length of the largest sub-register inside that group. RH(+) also generates the necessary 
combinational circuit to read and write to the specified sub-registers. Table 5 
demonstrates organization of the register array according to the final assembly code. 
It should be noted that the size of each register changes dynamically. For example the 
initial size of R0 is 3, and then it becomes 5. 

4   Experiments 

The proposed algorithm is executed for three different algorithms implemented in  
RH(+) environment. Since RH(+) provides us with the opportunity of defining both 
traditional and application specific operators, each of these algorithms is implemented 
using different sets of instructions. Moreover, RH(+) processor architecture supports 
VLIW instructions.  Hence, we are provided with concurrent  operations, which 
results in a high access rate to the register file for each instruction. Therefore, results 
of the RFDA tightly depend on the automatically selected instruction set in addition to 
the defined operators. In Table 6, specifications of each experiment are listed. Each 
specification shows the defined operator types and the maximum amount of 
concurrency in case of VLIW utilization. In Table 7, we show the resulting register 
file sizes for each experiment considering whether RFDA is applied or not. Moreover, 
we take into account the impact of the instruction selection unit. Thus, for each 
implementation, we run algorithm for both of the cases: the instruction set consists of 
1) concurrent operations, 2) no concurrent operations, i.e. sequential implementation.  
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Table 5. Resulted assembly code and the organization of registers in each instruction cycle 

Inst. 
Step 

Dynamically Adaptive Register File Assembly Code 

1 { MOV R0_3_0 a 

2 { { MOV R1_2_5 c 

3 { {{ INST1 R2_3_12 R0_3_0  R1_2_5 

4 { { MOV R0_5_0 b 

5 { {{ INST2 R1_5_7 R0_5_0 R2_3_12 

6 { MOV b R1_5_7 

7 { MOV R0_2_5 c 

8 {{ MOV R1_3_0 a 

9 { {{ INST3 R2_5_7 R0_2_5 R1_3_0 

10 { MOV c R2_5_7 

 
In the first experiment a 15-tap Finite Impulse Response (FIR) filter is 

implemented. The coefficient set consists of 8-bit scalars and is stored in an array. 
The input is also 8-bit long and input at each tap is stored in an array. “Double loop” 
version of the algorithm is implemented by defining four traditional operators listed in 
Table 6. In the concurrent version of this implementation, at least one VLIW 
instruction including three concurrent instructions exists. In the “Single loop” 
approach, we defined array adder and array multiplier operators. These array 
operators actually take two arrays as inputs, perform the operations on their elements, 
and then store each result in a new array. Actually, by using these operators, we do 
not need a loop for the calculation of the multiplication and addition operations one 
by one for all elements of arrays. As a result, we only need one loop for shifting the 
input array.  
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Table 6. Implementation specifications of experiments 

Experiment Defined  
Operators 

Maximum  
concurrency 

FIR 
Double loop Scalar add/sub - Scalar Mul –Indexing - Shift 3 
Single loop Array Add - Array Mul – Shift - Increment 3 

FFT 
Classic Scalar add/sub - Scalar Mul – Indexing – Cosin - Sine 8 
Unfolded  
by two 

Scalar add/sub – Indexing 
 

4 

MIC 
Double loop 

Scalar add - Scalar Div - Scalar root -Scalar sqr - 
Indexing 

3 

Hybrid  
Scalar add- Scalar Div - Scalar root – Indexing - Array 
Add - Array Sqr 

3 

  
The FFT implementation in RH(+) is radix-2 decimation-in-time algorithm. The 

real and imaginary parts of each number are stored in separate arrays and output 
values are written over input values, which make this implementation an in-place one. 
The algorithm calculates the twiddle factors by using sine and cosine operators, so 
sine and cosine hardware modules have to be available. The “classic” implementation 
consists of trivial three nested for loops that go through the FFT-stages, the butterflies 
with the same twiddle factors and each individual butterfly. This algorithm is 
implemented with a 4-tap array whose elements are 8 bits long. In the “unfolded by 
two” implementation, there are no loops and temporary storages except individual 
butterfly nodes. This algorithm is implemented with a 2-tap array with 8-bit long 
elements. In Table 6, the defined operators and the maximum number of concurrent 
instructions are given. 

The Motion Intensity Calculator (MIC) is implemented based on the algorithm 
defined in [18]. This algorithm is also implemented in two different ways. In the 
“double loop” implementation, we defined purely scalar operators. Hence, we need 
two loops, one for the calculation of the average value of the input arrays and the 
other one for the calculation of motion intensity values. The second approach is the 
“hybrid” one in which we use a combination of scalar and array operators. We define 
square and add operators for array variables. In addition, there are some other 
operators like division and root, which are implemented with scalar variables. For 
both implementations, we consider arrays with twelve 8-bit motion vectors as inputs. 

The experimental results of Table 7 can be studied in two ways: 
• Improvement in register file sizes: Register files for sequential and concurrent 

implementations have to be considered separately. For the sequential case where 
we have only ASIs, the average amount of register file size reduction after 
applying the RFDA is equal to 36%. For the concurrent case where we have both 
ASIs and VLIW, the reduction in the size of the register file after RFDA is 41% 
in average. 

• Improvement in performance: Application specific instruction selection is done to 
improve the performance. The performance of the concurrent implementation is 
21% better than that of the sequential implementation. As stated above, this 
improvement is due to the selected VLIW instructions in the concurrent 
implementation. Since these instructions are selected without taking the register 
file into account, the performance measures for these implementations are the 
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optimum values. Moreover, RFDA provides an optimized register file for the 
optimum number of execution steps. 

 
Table 7. Experimental results of algorithm 

  
Concurrent Instructions  Sequential Instructions  

Register File Length Total 
Exec. 
Steps 

Register File Length Total 
Exec. 
Steps   RFDA Normal %Imp RFDA Normal %Imp 

FIR 

Double 
loop 

290 840 65% 166 290 480 65% 178 

Single 
loop 

390 840 54% 81 265 360 26% 93 

FFT 
Folded 247 384 36% 1054 122 128 5% 1925 
Unfolde
d by two 

112 128 12% 24 48 64 25% 42 

MIC 
Double 
loop 

228 576 60% 696 121 288 77% 816 

Hybrid  429 552 22% 572 321 384 16% 634 
Average Imp in 
Register File 
Size 

  41%    36%  

Average Imp in 
Performance 

   %21     

5   Conclusion 

In this work, we propose an efficient algorithm for designing a register file for 
Application Specific Instruction-set Processors. Our aim in this paper is to reverse the 
methodology of ASI selection for ASIPs, which are designed for FPGAs where a vast 
amount of resources are available: We generate ASIs without considering register file 
constraints. Hence we aim to maximize the performance. Once the instructions are 
selected, then the register file can be tailored to meet the architectural constraints set 
by the ASIs.  

This work is done in the RH(+) design automation tool which is a system level 
design tool for embedded systems on reconfigurable fabrics. The experimental results 
show that register file design algorithm, RFDA, makes efficient use of memory and 
area. After RFDA, the size of the register file is reduced up to 35% in average for the 
experiments implemented by ASIs only. However, when we combine ASIs in VLIW 
instructions, the number of execution steps decreases by 20% in the average. For this 
case, the application of RFDA results in 41% reduction in the register file size. 
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Abstract. The benefits of partially and dynamically reconfigurable sys-
tems have been traditionally defined as the ability of such systems to
adapt for unknown run-time changes in resource allocation and resource
types in the system. However, partially and dynamically reconfigurable
systems can also be effective when they serve in a multi-user environ-
ment for application domains that are relatively well defined (e.g., a
high performance computing node for scientific computing). Particularly
for data intensive high performance computing applications, the system
needs to be flexible for varying amount of data parallelism. In this paper,
we present a design framework to help guide dynamic decisions about
sharing the computational environment and task placement in partially
and dynamically reconfigurable fpga clusters deployed for data inten-
sive high performance computing applications. In order to exploit the
system features, the proposed baseline scheduling solution, as shown by
the results, is able to suggest the number of fpgas that an online sched-
uler should later use for a known situation or for a situation similar to a
known one.

1 Introduction

There is an ever increasing need for computing systems that are cost effective,
efficient, and flexible. Multi-fpga systems are becoming attractive for meeting
all three expectations. It is possible to exploit the superior performance per
Watt efficiency of FPGAs and the speed of the hardware execution, maintaining
also the flexibility of changing the job performed during the system lifetime.
Exploiting the full potential of multi-fpga platforms is a very difficult problem,
especially because there are no well established systematic design frameworks for
the designer to rely on. The most significant advantage of these systems arises
from partial dynamic reconfiguration. They can potentially be configured as
necessary at any time: it is possible to configure the entire system, to reconfigure
each fpga separately or to reconfigure only a portion of a single fpga. These
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various types of adaptations are generally exploited to best match the hardware
parallelism in the system with the current workload for optimal performance.

The aim of this work is to develop a design framework, which can help eval-
uate the performance impact of system-level design choices in a cluster of par-
tially and dynamically reconfigurable devices, such as number of devices and
the communication infrastructure deployed in the system. The proposed frame-
work performs three main tasks: (a) Evaluate the expected performance for a
given workload by varying the amount of FPGA devices in the cluster as well
as considering different communication structures, (b) Determine the best ini-
tial configuration in terms of number of FPGA devices for a given workload,
(c) Derive a suggested task placement and scheduling policy, which an online
scheduler can further refine during run-time with various optimization criteria.
The proposed tool can also provide useful feedback to determine transformations
that can be applied to the task graphs, which represent target applications, in
order to achieve the best performance. Furthermore, the proposed framework
generates a static task placement and baseline schedule for run-time reconfig-
uration of programmable devices that can be used as an initial solution by an
online scheduler to address runtime constraints. Our solution considers commu-
nication delay between fpgas and all the features exploitable on reconfigurable
devices such as module reuse, configuration prefetching and anti-fragmentation

techniques. It can explore the system design space in different ways:

– given a different amount of fpgas and a given number of task graphs to
schedule, it tries to minimize the total execution time by parallelizing the
tasks. It can help identify when it is necessary to parallelize tasks and when
the communication delay will dominate the execution time. Therefore, it can
help find the best architecture for a given set of task graphs;

– for a given architecture the tool can determine the baseline policy that the
online scheduler should follow to increase the probability of reducing the
total completion time;

– the tool can provide a policy for the online scheduler based on the number
of tasks in the task graphs, the ratio between the reconfiguration time4 of a
task and its execution time, the ratio between the execution time of a task
and its own data set size and in the end based on the number of different
task types in the set of task graphs.

Section 2 presents the related work. Section 3 provides a description of the
problem, including the architectural model on which the proposed tool has been
based. Section 3.2 describes the proposed heuristic scheduler, which is embed-
ded into the proposed framework. Section 4 presents our experimental results.
Finally, the conclusions regarding the proposed approach will be summarized in
Section 5.

4 Computed as a linear function of the bitstream dimension
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2 Related Work

For a single fpga case, several approaches have been proposed to accomplish the
online scheduling problem for dynamic reconfiguration. Some of these solutions
also involve a design-time component. The approach proposed in [1] considers
the scheduling problem of multiple applications on a runtime partial reconfig-
urable architecture as constituted by two phases: one at design-time and one at
run-time. The design-time scheduler explores the design space for each task and
generates a small set of schedules with different energy-performance trade-offs.
A complete methodology for scheduling and placing tasks at runtime onto par-
tially dynamically reconfigurable FPGA-based systems was explored also in [2].
The scheduling problem was presented for both the 1D and 2D reconfiguration
models, proposing two heuristics, the horizon and the stuffing techniques, [3], to
tackle them.

Most of the works proposed for multi-fpga systems focus on static sched-
ulers. These schedulers take as input a task graph of an application and they
partition it temporally and spatially, [4] [5]. In [6] the authors first divide the
application in time partitions and place each one of them onto the multi-fpga

architecture by leveraging a RTL partitioning algorithm. This work does not
consider runtime reconfiguration, but just a static system with just one appli-
cation executed. Other approaches focus on online schedulers directly, [7] [8],
without taking into account any static baseline scheduler. Module reuse and
configuration prefetching are considered in a very few cases.

3 Proposed Approach

The reconfiguration process for fpga devices requires a specific configuration
file called bitstream. If the bitstream is designed to change the whole fpga area
behavior, it is called total bitstream. Otherwise, if it configures only a portion, it
is called partial bitstream. In this work partial dynamic reconfiguration is taken
into account, thus, partial bitstreams are used.

The main characteristic of bitstreams is that they have a correlation with
the operation they implement: once the bitstream is defined, the operation is
defined too. On the other hand, given an operation, there could exist more than
one bitstream implementing it.

It is possible to assign to each bitstream an attribute called type used to
identify the operation implemented, the area occupied on the target architecture,
and the time needed for configuration. Let us now define a set of reconfiguration
features that have to be taken into account to define the scheduler. Module reuse

means that two tasks of the same type have the possibility to be executed exactly
on the same module on board, with a single configuration at the beginning. The
deconfiguration policy is a set of rules used to decide when and how to remove a
module from the fpga. Anti-fragmentation techniques avoid the fragmentation
of the available space trying to maximize the dimension of free connected areas.
Configuration prefetching means that a module is loaded onto the fpga as soon
as possible in order to hide its reconfiguration time as much as possible.
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3.1 Architectural Setup

Figure 1 (a) presents the logic view of the fpga architecture on which our
scheduling approach has been validated. This logic model has been implemented
on a real architecture, see Figure 1 (b), where it is possible to distinguish between
two distinct areas: a static and a reconfigurable one. The static side includes a

Fig. 1. Self dynamic reconfigurable architecture views: (a) Logical view (b) Physical
view.

General Purpose Processors, GPP, used to execute the reconfiguration man-
agement. On the other hand, the reconfigurable area can be seen as a set of
reconfigurable slots used to map the desired modules. The target architecture
exploits a mono-dimensional reconfiguration approach and it is characterized by
a communication infrastructure able to support the intra-module communica-
tion without introducing new constraints during the reconfiguration phase. The
delay of this infrastructure has not been taken into account in this work because
it highly depends on runtime conditions: a way to model this delay has been to
augment the execution time of each task by a value depending on the amount of
data it needs as input and it provides as output. At the same time, the software
running on the static side is able to perform reconfigurations: when it is needed
it sends to the ICAP [9] driver the order for reconfiguring a selected bitstream in
a particular position and this, using the ICAP on-chip device, will perform the
reconfiguration. Since our framework only performs a static scheduling of the
task graphs, the ICAP device is considered to reconfigure at the fastest possi-
ble speed. The architectural model described above is used in each fpga of our
target system. The communication infrastructures between fpgas considered in
this work are of three types:

1. task to task communication: there is a hard-wired connection between each
pair of hardware modules that need to communicate. This is an ideal config-
uration for point to point communication, however, it is infeasible because
too many pins would be needed for each fpga. Furthermore, this commu-
nication infrastructure is not scalable with respect to the number of fpgas.
We have only used it as a baseline comparison for the other communication
structures.
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2. fpga to fpga communication: there is a bus between each pair of fpgas.
This is a feasible communication infrastructure, but it is not scalable: the
number of pins required in each fpgadepends linearly on the number of
fpgas.

3. bus based: there is a single bus on which all the fpgas are connected. This
is a feasible and scalable solution.

All the connections are expected to operate at 100Mb/sec. The communication
is controlled by the processors located on the static sides.

3.2 Exploring the Design Space and Generating a Baseline

Reconfiguration Schedule

In this section, we present the details of our methodology. The pseudocode of our
algorithm is shown in Algorithm 1. The proposed solution takes into account con-

Algorithm 1 Scheduling algorithm Pseudocode

sLength ← 0
t ← 1
g ← readGraph()
setALAP(g)
RNs ← getRootNodes(g)
while ∃ not scheduled tasks do

Control possibility of reuse for available tasks in RNs
if ∃ not scheduled tasks then

avTask ← getFirstALAPAvailableNode(RNs)
endT ← findEndTime(avTask,t)
while not all the available nodes in RNs have been observed do

if ∃ a position on the fpgas for avTask then

schedule avTask
if sLength ≤ endT then

sLength ← endT
end if

for all avTask child nodes chTask do

if All chTask parents have been scheduled then

RNs ← RNs + chTask
end if

end for

Control possibility of reuse for available tasks in RNs
avTask ← getNextALAPAvailableNode(RNs)

end if

end while

end if

t ← nextControlStep(t)
end while

figuration prefetching, module reuse, and anti-fragmentation techniques. It tries
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to take advantage of all the features of the multi-fpga architecture and it tries
to parallelize the execution as much as possible and evaluate the performance
for a given system configuration.

The backbone of the framework is the static scheduler, which is built on top
of a list based approach. First of all it performs an infinite-resource scheduling in
order to sort the task set S by increasing alap

5 values. This phase is performed
for all the task graphs considered in a particular instance of the problem. Then,
the scheduler builds a subset RN with all tasks having no predecessor. In the
scheduling algorithm, RN will be updated at each step so as to include all tasks
whose predecessors have all been already scheduled (available tasks). As long as
there is at least one unscheduled task, the algorithm performs the following op-
erations. First it scans the available tasks in increasing alap order to determine
those that can reuse the modules currently placed on the fpgas. Each time this
occurs, a task S is placed in the position k which hosts a compatible module
and is the farthest from the center of the considered fpga. The farthest place-

ment criterion is an anti-fragmentation technique, that aims at favoring future
placements, as it is usually easier to place large modules in the center of the
fpga [10]. We adopted this technique for both first module configuration and
module reuse. A task will exploit module reuse in the fpga already containing
the input pins of the task graph containing it only if its final termination time
will be the lowest one. If this does not happen, the scheduler will place the task
in another fpga trying to reach a better termination time.

In this way our baseline scheduler finds a suitable number of fpgas for a
particular input set. For the same reason it would be possible to ignore the reuse
of a module if a completely new module leads to a better local solution. All
these considerations are addressed by the scheduler, taking into account also the
latency needed to transf data between fpgas. Unused modules can be present
on the fpgas because the scheduler adopts limited deconfiguration. Modules are
left intact on the fpga until other tasks require their space, in order to increase
the probability of reuse. The scheduler selects tasks based on increasing ALAP
time, but it allows out of order scheduling. First of all it looks for module reuse
opportunities and places all the tasks that can be reused. After this phase, it
searches, again in increasing ALAP time, for tasks to be placed. In this last
step, if a task cannot fit in the system at the current time it will be delayed
and subsequent tasks will be considered to be scheduled. Thus, when no further
reuse is possible, the scheduler scans the available tasks in increasing alap order
to determine those which can be placed on the fpgas at the current time step.
The placement is feasible when sufficient space is currently free or it can be freed
by removing an unused module. Another constraint taken into account by the
scheduler is the possibility of configuring each time at most one module on each
fpga. No more than one reconfiguration (no more that one new module) per time
step can be performed on a single fpga. The position for a task S is chosen once
again by the farthest placement criterion. There might be an interval between
the end of the reconfiguration and the beginning of the execution of a task: this

5
alap stands for As Late As Possible

62



7

is done to exploit configuration prefetching. This allows invisible data transfer
and increase the possibility of parallel execution. When all possible tasks have
been scheduled, the set of available tasks RN is updated. Finally, the current
time step is updated by replacing it with the minimum between the first time
step in which a reconfigurator device is available and the minimum time in which
a task terminates its execution.

4 Results

Partial dynamic reconfiguration is one of the key features that make FPGAs
unique devices, offering degrees of freedom not available in other akin technolo-
gies and in some cases pushing FPGA-based solutions towards the standard
application platform e.g., network controller capable of handling the TCP and
UDP protocols by exploiting partial reconfiguration [11], data mining applica-
tions [12], cryptographic system [13]. In all these kinds of applications config-

uration prefetching [14], module reuse [15], and anti-fragmentation techniques,
combined with a multi-fpga architecture can provide interesting and promis-
ing improvements trying to parallelize the execution as much as possible and
evaluate the performance for a given system configuration, as proposed in this
work. The proposed framework has been tested on a large set of task graphs to
evaluate its behavior and the policies it provides for the online scheduler. The
task graphs represent data mining applications from the NU-MineBench suite
[12]:

1. distance application: it receives as inputs two sets of data of equal size and
calculates the distance between them;

2. variance application: it receives as input a single set of data and calculates
the mean and the variance among the whole data set;

3. variance1 application: it receives as input a single set of data and calculates
the mean and the variance among the whole data set. The tasks graph is
different than the former variance application, because it involves different
task types.

Task graphs for these applications have been extracted from VHDL descriptions
for each benchmark kernel. The common feature of the tasks in this application
set is that they generally have very short execution time while their reconfigura-
tion time is very high. Furthermore, the communication delay between tasks is 8
or 16 times larger than the execution time. The task graphs of these applications
increase in size according to the data size they process. distance and variance1

have some task types in common, furthermore, also variance and variance1 have
some task types in common.

The results of our baseline schedule are shown in Table 1. We observe that
if the number of task graphs is close to but not more than the number of fpgas
in the system, the schedule length for the feasible communication style C3 is
longer for no more then the 26% with respect to C1. If too few task graphs or
too many task graphs are scheduled, the scheduler tries to schedule each task
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Table 1. Schedule length for the applications. The first column reports the #FP-
GAs, 1, 2, 3, 6 and 16, used to define the underline architecture. Different workloads,
#TGs, containing several task graphs varying between 1, 2, 5 and 10 have been eval-
uated. Furthermore three different types of communication infrastructures has been
take into consideration.C1 denotes Task to Task communication, C2 denotes fpga to
fpga communication, and C3 denotes Bus based communication.

# TGs 2 5 10

# FPGAs Com. Type C1 C2 C3 C1 C2 C3 C1 C2 C3

1 VP7 981 981 981 1438 1438 1438 2129 2129 2129
VP30 1704 1704 1704 2244 2244 2244 3018 3018 3018

2 VP7 990 1475 1475 1495 1731 1731 1829 5763 5763
VP30 1713 1743 1743 2301 3205 3205 2955 5189 5189

3 VP7 990 1066 1507 1493 2115 1701 1893 3333 2755
VP30 1713 1744 2051 2299 3267 2765 2462 5541 3467

6 VP7 986 1015 993 1492 1492 1827 1645 3429 6903
VP30 1709 1738 1214 2298 2298 2595 2451 4263 7843

16 VP7 548 722 3081 1016 1016 16935 1094 1610 12287
VP30 1150 1150 3081 1194 1217 16935 1236 2408 55431

graph on a different fpga in order to avoid the communication delay. If a local
optimization would allow the schedule of tasks from the same task graph on
different fpgas, our scheduler finds out that the communication delay needed
by the results to go to one child is too high, worsening the global scheduling time.
Therefore, it will try to suggest local optimizations only if the communication
delay does not become too high. From the results it is possible to notice that
using just one fpga the communication delay is equal to zero and the results are
very good (even 70% better than the best results computed by the other). This
observation is very interesting because it leads to the conclusion that best results
is to execute 10 graphs on each fpga . In such a context, the parallelization will
be very high and the power consumtion, on the contrary, will be very low. The
high reconfiguration time helps to hide the communication time.

On the other hand, the reconfiguration process is a very power consuming
operation. For this reason the system that will exploit our baseline scheduler will
work very well, in terms of both execution time and power consumption, when
the workload will reach 10 graphs for each fpga. When the amount of data
necessary to execute those graphs becomes too high and there will be the neces-
sity of having more memory, the online schedule will follow the advices of the
baseline one increasing the number of fpgas involved in the execution process.
This helps us to determine the exact amount of fpgas needed for a particular
situation. When an online scheduler further operates on the configured system,
it will be very likely to encounter an input situation similar to the one predicted
by the baseline scheduler and it can schedule those task graphs in an effective
way. In presence of dynamically reconfigurable multi-fpga systems, the online
scheduler may change the shape of the system itself. A suitable communication
infrastructure for a system using our baseline scheduler starts at the beginning
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with a single bus connected to all the fpgas. For every N fpgas there is a
bridge that allows the uniform connection of the bus. Each bridge allows the bus
to be separated into two completely independent ones. The number N has to be
chosen, analysing different input benchmarks. From the results of this analysis
it is possible to select the minimum number of fpgas needed for a general input
set. Exploiting this kind of hardware it is possible to increase the parallelism of
the system, processing different input sets in different locations of the system.

A more advanced way of dealing with this separation concept can be imple-
mented with reconfigurable connections. The connections are provided by fpgas
that can be reconfigured at runtime. Once the online scheduler has selected the
amount of fpgas needed by a particular input set, and as a result partitioned the
system, the communication infrastructure between those fpgas will be modified.
Following the suggested policy by the baseline scheduler, the online scheduler can
provide fpga to fpga communication for those fpgas. If this communication
structure still ends up to be too expensive, it is possible to design in advance,
at compile time, a mesh or crossbar communication infrastructure for a general
situation. Clearly this infrastructure needs to be easily extendable and placeable
onto the fpgas providing the communication.

Our baseline solution suggests the number of fpgas that an online sched-
uler should later use for a known situation or for a situation similar to a known
one. In order to choose which fpgas will be really selected at execution time,
the online scheduler may rely on communication overload, temperature of the
devices, and many other criteria. Furthermore, by using our baseline scheduler
it is possible to save power in situations of a low workload: the fpgas that are
not needed can be turned off. When they are needed again they will be turned
on. This same principle can be applied when certain devices have reached high
operating temperatures. In this case a reconfigurable communication infrastruc-
ture can help the system and the scheduler: the system shape will change but
the execution will not be stopped or degraded significantly.

5 Conclusions

The goal of this work is to develop a reconfiguration aware design framework
to support an online reconfiguration scenario. The proposed solution evaluates
different system configurations and generates suggested scheduling policies for
the online scheduler based on the specific instance of the considered problem.
Section 4 shows the results obtained and it is clear how different choices can affect
an online scenario. Being able to evaluate them with a systematic tool is highly
beneficial and improves the efficiency of the entire design cycle. As a future work,
we are planning to develop an online scheduler capable of using the suggested
policies by the previous phases. Furthermore, it is possible to try to obtain better
results: when two or more task graphs can be created starting from the same
application, each one with different task types. In that case, it is possible to
utilize the generated baseline schedule to find out which representation of the
same application is the best choice for a given architecture at run-time.
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Specifying Run-time Reconfiguration in

Processor Arrays using High-level language
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Abstract. The adoption of run-time reconfigurable parallel architec-
tures for high-performance embedded systems is constrained by the lack
of a unified programming model which can express both parallelism and
reconfigurability. We propose to program an emerging class of reconfig-
urable processor arrays by using the programming model of occam-pi

and describe how the extensions of channel direction specifiers, mobile
data, dynamic process invocation, and process placement attributes can
be used to express run-time reconfiguration in occam-pi. We present
implementations of DCT algorithm to demonstrate the applicability of
occam-pi to express reconfigurability. We concluded that occam-pi ap-
pears to be a suitable programming model for programming run-time
reconfigurable processor arrays.

1 Introduction and Motivation

The design of high-performance embedded systems for signal processing appli-
cations is facing the challenges of not only increased computational demands
but also increased demands for adaptability to future functional requirements
for these applications. Reconfigurable parallel architectures offer the possibility
to dynamically allocate the resources during run-time, which allows the user to
implement applications which adapt according to changing demands and work-
loads. The reconfigurable computing devices have evolved over the years from
gate-level arrays to a more coarse-grained composition of highly optimized func-
tional blocks or even program controlled processing elements, which are operated
in a coordinated manner to improve performance and energy efficiency. These
reconfigurable processor arrays are well suited for streaming applications that
have highly regular computational patterns.

However, developing applications that employ massively parallel reconfig-
urable architectures poses several challenges. Traditionally, system developers
have either used low-level proprietary languages or relied on programming in C
and the use of advanced synthesis tools and automatic parallelization techniques;
however, the latter techniques lag in terms of achieved run-time performance.
Moreover, existing tools mainly support reconfiguration of the complete device,
thus allowing changes in the hardware only at a relatively slow rate. The proce-
dural models of imperative languages, such as C and Pascal, rely on sequential
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control flow because these languages were originally designed for sequential com-
puters with unified memory system. Applying them for arrays of reconfigurable
processing units result in limited extraction of instruction level parallelism, lead-
ing to inefficient use of available hardware and increased power consumption.

We propose to use a concurrent programming model that allows the pro-
grammer to express computations in a productive manner by matching it to the
target hardware using high-level constructs. Portability across different hard-
ware resources is provided by means of a compiler. Occam is a programming
language based on the Communicating Sequential Processes (CSP) [1] concur-
rent model of computation. However, CSP can only represent a static model
of the application, where processes synchronize communication over fixed chan-
nels. In contrast, the pi-calculus [2] allows modeling of dynamic constructions of
channels and processes, which enables the dynamic connectivity of networks of
processes. Thus, occam-pi [3], combining CSP with pi-calculus, seems to be an
interesting approach to programming of run-time reconfigurable systems.

In earlier work, we have demonstrated the effectiveness of generated code
from the occam-pi language for the Ambric [4] array of processors [5]. In this
paper, we will also be focusing on expressing the reconfigurability of the under-
lying hardware in a programming model by relying on the concepts of mobility
introduced in the pi-calculus. The target architecture for our first proof of con-
cept implementations is the Ambric fabric of processors and we believe that the
use of occam-pi as a unified programming language is suitable for other recon-
figurable architectures such as PACT XPP [6] and ElementCXI programmable
device [7]. We present the results of streaming DCT algorithm implementation.

2 Occam-pi language

The occam language [8] is based on the CSP process algebra with well-defined
semantics and is a suitable source language because of its simplicity, minimal
run-time overhead and power to express parallelism. Occam has built in semantics
for concurrency and interprocess communication. The communication between
the processes is handled via channels using message passing, which helps in
avoiding interference problems.

Occam-pi [3] can be regarded as an extension of occam to include the mobility
features of the pi-calculus [2]. The mobility feature is provided by the dynamic
asynchronous communication capability of the pi-calculus, which is useful when
creating a network of processes that changes its configuration at run-time.

2.1 Basic Constructs

The hierarchical modules in occam are composed of procedures and functions.
The primitive processes provided by occam include assignment, input process
(?), output process (!), skip process (SKIP), and stop process (STOP). In addition
to these there are also structural processes such as sequential processes (SEQ),
parallel processes (PAR), WHILE, IF/ELSE, CASE, and replicated processes [8].
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A process in occam contains both the data and the operations it is required
to perform on the data. The data in a process is strictly private and can be
observed and modified by the owner process only. In contrast, in occam-pi the
data can be declared as MOBILE, which means that the ownership of the data
can be passed between different processes.

2.2 Language Extensions to Support Reconfigurability

In the following section, we will describe the semantics of the extensions in the
occam-pi language such as channel direction specifiers, mobile data, dynamic
process invocation, and process placement attributes. These extensions are used
to express the reconfiguration of hardware resources in the programming model.

Channel Direction Specifier: The channel type definition has been extended
to include the direction specifiers, Input (?) and Output (!). Thus a variable
of channel type refers to only one end of channel. A channel direction specifier
is added to the type of a channel definition and not to its name. Based on the
direction specification, the compiler performs its usage checking both outside
and within the body of the process. Channel direction specifiers are also used
when referring to channel variables as parameters of a process call.

Mobile Data: The assignment and communication in classical occam follows
the copy semantics, i.e., for transferring data from the sender process to the
receiver both the sender and the receiver maintain separate copies of the com-
municated data. The mobility concept of the pi-calculus enables the movement
semantics during assignment and communication, which means that the respec-
tive data has moved from the source to the target and afterwards the source loses
the possession of the data. In case the source and the target reside in the same
memory space, then the movement is realized by swapping of pointers, which is
secure and no aliasing is introduced.

In order to incorporate mobile semantics into the occam language, the key-
word MOBILE has been introduced as a qualifier for data types [9]. The definition
of the MOBILE types is consistent with the ordinary types when considered in the
context of defining expressions, procedures and functions.

Dynamic Process Invocation: For run-time reconfiguration dynamic invo-
cation of processes is necessary. In occam-pi concurrency can be introduced
by not only using the classical PAR construct but also by dynamic parallel pro-
cess creation using forking. Forking is used whenever there is any requirement of
dynamically invoking a new process which can execute concurrently with the dis-
patching process. In order to implement dynamic process creation in occam-pi,
two new keywords FORK and FORKING, are introduced [10]. The scope of the
forked process is controlled by the FORKING block in which it is being invoked.

The parameters that are allowed for a forked process are:
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– VAL data type: whose value is copied to the forked process.
– MOBILE data type and channels of MOBILE data type: which are moved to

the forked process.

The parameters of a forked process follow the communication semantics in-
stead of the renaming semantics adopted by parameters of ordinary processes.

Process Placement Attribute: The placement attribute is essential in order
to identify the location of the components that will be reconfigured in the re-
configuration process, and it is inspired by the placed parallel concept of occam.
The qualifier PLACED is introduced in the language followed by two integers to
identify the location of the hardware resource where the associated process will
be mapped. The identifying integers are logical numbers which are translated by
the compiler to the physical address of the resource.

3 Compilation Methodology

In this section we will give a brief overview of the Ambric architecture before pre-
senting a method for compiling occam-pi programs to reconfigurable processor
arrays. The method is based on implementing a compiler backend for generating
native code.

3.1 Ambric Architecture and Programming Model

Ambric is an asynchronous array of so called brics, each composed of two pairs
of Compute Unit (CU) and RAM Unit (RU) [4]. The CU consists of two 32-bit
Streaming RISC (SR) processors, two 32-bit Streaming RISC processors with
DSP extensions (SRD), and a 32-bit channel interconnect for interprocessor and
inter CU communications. The RU consists of four banks of RAM along with a
dynamic channel interconnect to facilitate communication with these memories.
The Am2045 device has a total of 336 processors in 45 brics.

The architecture was designed to support a structured object programming
model. Using the proprietary tools the individual objects are programmed in a
sequential manner in a subset of the java language, called aJava or in assembly
language [11]. Objects communicate with each other using hardware channels
without using any shared memory. Each channel is unidirectional, point-to-point,
and has a data path width of a single word. The individual software objects are
then linked together using the proprietary language called aStruct.

3.2 Compiler for Ambric

When developing a compiler for Ambric, we have made use of the frontend of
an existing Translator from Occam to C from Kent (Tock) [12]. The compiler
is divided into front end, which consists of phases up to machine independent
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optimization, and back end, which includes the remaining phases that are de-
pendent upon the target machine architecture. In this case, we have extended
the frontend for supporting occam-pi and developed a new backend, targeting
Ambric, thus generating native code in aJava and aStruct.

In the following we give a brief description of the modifications that are
incorporated in the compiler to support the language extensions of occam-pi,
introduced to express reconfigurability.

Frontend: The frontend of the compiler, which analyzes the source code in
occam-pi, consists of several modules for parsing and syntax and semantic anal-
ysis. We have extended the parser and the lexical analyzer to take into account
the additional constructs for introducing mobile data types, dynamic process in-
vocation and process placement attributes. We have also introduced new gram-
mar rules corresponding to these additional constructs to create Abstract Syntax
Trees (AST) from tokens generated by the lexical analysis. Steps for resolving
names and type checking are performed at this stage. The frontend also tests the
scope of the forking block and whether the data passed to a forked process is of
MOBILE data type, thus fulfilling the requirement for communication semantics.

In order to support the channel end definition, we have extended the defini-
tion of channel type to include the direction whenever a channel name is found
followed by a direction token, i.e., ‘?’ for input and ‘!’ for output. In order to
implement the channel end definition for a procedure call, we have used the
DirectedVariable constructor to be passed to the AST whenever a channel end
definition is found in the procedure call.

Ambric backend: The Ambric backend is further divided into two main passes.
The first pass generates declarations of aStruct code including the top-level de-
sign, the interface and binding declarations for each of the composite as well
as primitive objects corresponding to the different processes specified in the
occam-pi source code. Before generating the aStruct code, the backend tra-
verses the AST to collect a list of all the parameters passed in procedure calls
specified for processes to be executed in parallel. This list of parameters, along
with the list of names of procedures called is used to generate the structural
interface and binding code for each of the parallel objects.

The next pass makes use of the structured composition of the occam con-
structs, such as SEQ, PAR, and CASE, which allows intermingling processes and
declarations and replication of the constructs like (SEQ, PAR, IF). The backend
uses the genStructured function from the generateC module of the C backend
to generate the aJava class code corresponding to processes which do not have
the PAR construction. In case of the FORK construct, the backend generates the
background code for managing the loading of the successive configuration from
the local storage and communicating it to the concerned processing elements.
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4 Implementing the Reconfigurable Framework

Let us explain how the occam-pi language can be applied for the realization
of dynamic reconfiguration of hardware resources. The reconfiguration process
based on its specification in the occam-pi language can be performed by taking
into account a work farm design approach [13] as shown in Figure 1.

Fig. 1. Framework of Reconfigurable Components.

Fig. 2. Reconfigurable Components Mapping.

A worker is a specific area of hardware executing a particular task. The task
can either consist of one process, or it can be composed of a number of pro-
cesses which are interconnected according to their communication requirements.
A worker can either occupy one processing element or be mapped to a collec-
tion of processing elements. Each worker can have multiple inputs and outputs,
but in Figure 1, we show only the connections used during the reconfiguration
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process. The reconfiguration process is controlled by a configuration loader and
a configuration monitor. In Ambric, both the loader and the monitor processes
are mapped to some of the processors in the array, but in other cases the recon-
figuration management processes can instead be mapped to dedicated hardware.
The configuration loader has a local storage of all the configurations in the form
of pre-compiled object codes. Two types of packets are communicated from the
loader to the workers: work packets and configuration packets. The former consist
of the data to be processed and the latter contain the configuration data. Both
types of packets are routed to different workers based on either the worker ID
or some other identifier. Each worker has a small kernel to differentiate between
the incoming packets based on their header information. Whenever a worker
finishes its task, it returns control to its input kernel after sending a reconfig-
uration request packet indicating that the particular worker has completed its
task and is ready to be reconfigured to a new configuration. The configuration
monitor observes the reconfiguration request and issues it to the configuration
loader, which forks a new worker process to be reconfigured in place of the ex-
isting worker. The location of the worker is specified by the placement attribute,
which consists of two integers. The first integer relates to the identification of
worker and the second integer identifies the individual processing element within
the worker, as shown in Figure 2. The configuration data is communicated in
the form of a configuration packet that includes the instruction code for the in-
dividual processing elements. The configuration packet is passed around all the
processing elements within the worker, where each processing element extracts
its own configuration data and passes the rest to its adjacent neighbor.

5 1D-DCT Case Study

In this section, we present and discuss the implementation of the One-Dimensional
Discrete Cosine Transform (1D-DCT), which is developed in occam-pi and then
ported to Ambric using our compilation platform. DCT is a lossy compression
technique used in video compression encoders to transform an N × N image
block from the spatial domain to the DCT domain [14].

We have used a streaming approach to implement the 1D-DCT algorithm,
and the dataflow diagram of an 8-point 1D-DCT algorithm is shown in Figure 3.
When computing the forward DCT, an 8 × 8 samples block is input on the left,
and the forward DCT vector is received as output on the right. The implemen-
tation is based on a set of filters which operate in four stages, and two of these
stages are reconfigured at run-time based on the framework presented in Section
4. The reconfiguration process is applied between these stages in such a way that
when the first two stages are completed, the next two stages of the pipeline are
configured on the same physical resources, thus reusing the same processors. The
function of ‘worker1’ is described by a process named ‘task1’, which consists of
the first two stages of the DCT algorithm that are mapped to two individual
SRD processors of ‘compute-unit 1’, as they are invoked in a parallel block. The
implementation of the configuration loader as expressed in the occam-pi pro-
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gram is shown in Figure 4a, which has one output channel-end ‘cnf’ of mobile
type because it is used to communicate the configuration data (Note that Figure
4 only shows the code related to configuration management, not the complete
code). The implementation of the configuration monitor is shown in Figure 4b.
The configuration monitor will wait until it receives a ‘RECONFIG’ message from
the worker, which indicates that the worker has finished performing its task and
is ready to be reconfigured. The monitor will generate a reconfiguration request
message along with the logical address of the resource to be reconfigured, to the
configuration loader. The configuration loader, upon reception of a reconfigura-
tion request, will issue a FORK statement as shown in Figure 4a, which includes
the name of the process to be configured in place of ‘worker1’, its corresponding
configuration data, and its associated channels. The new forked ‘task2’ process
has the same placement attributes as those of ‘task1’ as shown in Figure 4c, to
determine the mapping locations. The newly configured ‘task2’ process consists
of the last two stages of the DCT algorithm.

Fig. 3. Dataflow diagram for 1D-DCT.

5.1 Implementation Results and Discussion

We now present the results of the reconfigurable 1D-DCT which is implemented
by using the framework presented in Section 4. Our aim here is to demonstrate
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Fig. 4. (a) Configuration Loader, (b) Configuration Monitor, (c) Worker Process.

the applicability of the programming model of occam-pi, together with the pro-
posed framework for expressing reconfigurability, thus we do not claim to achieve
efficient implementations with respect to performance.

The coarse-grained parallelized DCT is implemented in a four stage pipeline
and earlier results reveal that the 4-stage DCT implementation that uses four
SRD processors, takes 1340 cycles to compute 64 samples of 1D-DCT. This
time includes the time consumed during communication stalls between different
stages. The computation of the same amount of samples performed by two SRD
processors, which are reconfigured to perform the different stages successively
takes 2612 cycles, which includes the cycle count for the reconfiguration process,
which is 550 cycles. The number of instruction words to be stored in the local
memories of individual processors are 97. The SRD processor takes 2 cycles to
write one memory word in its local memory, thus the memory writing time is a
significant part of the overall reconfiguration time. The reconfiguration process
is controlled in such a way that the time taken by the two processors to update
their instruction memories is partially overlapped. The above-mentioned stalls
can be eliminated in the reconfigurable two-processor implementation. This time
is instead used for the reconfiguration management. The results also show that
the reconfiguration time is one fifth of the overall time of computation, which
depict the feasibility of the approach.

6 Conclusions and Future Work

We have presented our concept about using the mobility features of the occam-pi
language and the extensions in language constructs to express run-time reconfig-

75



urablity in processor arrays. The ideas are demonstrated by a working compiler,
which compiles occam-pi programs to native code for an array of processors,
Ambric. A reconfigurable component framework is presented, which is adopted
to control the reconfiguration of dynamic processes with minimal disruption of
the rest of the system. An application study is also performed and the results
show two different ways to implement the 1D-DCT algorithm, which are com-
pared on the basis of performance versus resource requirements.

We believe that the compositional nature of process-oriented parallel pro-
gramming enhances the programmer’s understanding when developing multime-
dia signal processing systems. The properties of exposing parallelism and sepa-
rating communication from computation help in the task of parallelization, and
the support for expressing reconfigurability enables effective use of resources as
demonstrated by the cycle-count results of 1D-DCT algorithm.

In the future we plan to perform more application studies using the compiler
platform and demonstrate the usefulness of the approach in implementing run-
time reconfiguration of radar signal processing applications.
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Abstract. Biometric-based speaker identification is a method of identifying 
persons from their voice. Speaker-specific characteristics exist in speech signals 
due to different speakers having different resonances of the vocal tract and 
these can be exploited by extracting feature vectors such as Mel frequency 
cepstral coefficients (MFCCs) from the speech signal. A well-known statistical 
model, Gaussian Mixture Model (GMM) then models the distribution of each 
speaker’s MFCCs in a multidimensional acoustic space. The GMM-based 
speaker identification system has features that make it promising for hardware 
acceleration. This paper describes the classification hardware implementation of 
a text-independent GMM-based speaker identification system. A speed factor of 
90 was achieved compared to software-based implementation on a standard PC.  

Keywords: Speaker Identification, MFCC, GMM, Field Programmable Gate 
Array (FPGA).  

1   Introduction 

Speaker recognition is an important branch of speech processing. It is the process of 
automatically recognizing who is speaking by using speaker-specific information 
included in the speech waveform and receiving increasing attention due to its 
practical value. It has applications ranging from police work to automation of call 
centres. Speaker recognition can be classified into speaker identification (discovering 
identity) and speaker verification (authenticating a claim of identity). A closed-set 
speaker identification system selects the speaker in the training set who best matches 
the unknown speaker. Open-set speaker identification allows for the possibility that 
the unknown speaker may not exist in the training set; thus an additional decision 
alternative is required for the unknown speaker who does not match any of the models 
in the training set [1]. 

Most speaker identification systems have been based on software running on a 
single microprocessor. The problem with software is that its sequential operation 
means that it can be slow for high throughput real time signal processing applications. 
Improvements in FPGA technology and design tools have recently introduced a new 
option for Digital Signal Processing (DSP) applications that require high performance 
and low development costs. The latest FPGAs have a very high logic capacity and 
contain embedded Arithmetic Logic Units (ALUs) to optimize signal processing 
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performance [2]. FPGAs have been used in many areas to accelerate algorithms that 
can make use of massive parallelism, improving the flexibility and reducing costs as 
well as time to market. FPGAs are also able to exploit pipelining and parallelism in a 
much more thorough way that can be done with parallel computers using general-
purpose microprocessors. 

In this paper we present results for the implementation of speaker identification 
classification on a platform consisting of an Alpha Data RC2000 PCI card equipped 
with a single Xilinx Virtex-II XC2V6000 FPGA. The goal was to achieve a system 
that can process a large number of voice streams simultaneously in real time.  

2   Speaker Identification System 

A block diagram shown in figure 1 is the top-level system designed to implement text 
independent speaker identification. The input speech is sampled and converted into 
digital format. Feature vectors are extracted from the input speech in the form of 
MFCCs. The system then branches into two separate phases; training and 
classification.  In the training phase, each registered speaker has to provide samples of 
their speech so that the system can train reference models for that speaker, whilst in 
the classification phase the input speech is matched with the stored reference models 
and identification is made. 
 

 
 
 
 

 

Fig. 1. Top-level structure of speaker identification system 

2.1   Feature Extraction 

The speech waveform is extracted into a set of features for further analysis. The 
speech signal is a slowly time varying signal and when it examined over a sufficient 
short period of time, its characteristics are fairly stationary, whilst over long periods 
of time the signal characteristics change to reflect the different speech sounds being 
spoken. In many cases, short time spectral analysis is the most common way to 
characterize the speech signal. Several possibilities exist for parametrically 
representing the speech signal for the speaker identification task, such as MFCC, 
Linear Prediction Coding (LPC), and others. In this work MFCCs are chosen because 
they are based on the perceptual characteristics of the human auditory system [3], [6]. 
     Figure 2 shows a block diagram of the MFCC feature extraction. The digital 
speech signal is blocked into frames of N samples, with adjacent frames being 
separated  by  M samples.   The first frame consists of the first N samples. The second 
frame begins M samples after the first frame, and overlaps it by N-M samples and so 
on. Each individual frame is windowed so as to minimize the signal discontinuity at 
the beginning and  end of  each frame. The  FFT converts each frame of samples from 

Feature Extraction Classification Speaker # ID 

Training  Stored speaker models 
model 

model 
xt 

Input Speech 
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Fig. 2. MFCC feature extraction block diagram. 

time domain into the frequency domain. The frequency scale is then converted from 
the hertz to the mel scale, using filter banks, with frequency spaced linearly at low 
frequencies and logarithmically at high frequencies, and the logarithm is then taken. 
This stage is done in order to capture the phonetically important characteristics of 
speech in a manner that reflects the human perceptual system. The DCT is then 
applied to the output to produce a cepstrum. The first 17 cepstral coefficients of the 
series are retained, their means are removed and their first order derivatives are 
computed. This results in a feature vector of 34 elements, 17 MFCCs and 17 deltas. 
These vectors (xt) are then passed on to the training or classification stages. 

2.2   Gaussian Mixture Models (GMM) 

The GMM forms the basis for both the training and classification processes. This is a 
statistical method that classifies the speaker based on the probability that the test data 
could have originated from each speaker in the set [1], [4], [5],[7].  

2.2.1   Training 

A statistical model for each speaker in the set is developed and denoted by λ. For 
instance, speaker s in the set of size speaker S can be written as follows 

λs = {w i, µi, σi}       i = 1,…..,M ; s= 1,…….,S (1) 

                    where, w: weight, µ: mean, and σ: diagonal covariance 

A diagonal covariance, σ is used rather than a full covariance matrix, Σ, for the 
speaker model in order to simplify the hardware design. However, this means that a 
greater number of mixture components will need to be used to provide adequate 
classification performance. The training phase consists of two steps, namely 
initialisation and expectation maximisation (EM). The initialisation step provides 
initial estimates of the means for each Gaussian component in the GMM model. The 
EM algorithm recomputes the µ, σ and w of each component in the GMM iteratively. 
The algorithm is monotonically increasing hence each iteration provides increased 
accuracy in the estimates of all three parameters. The EM algorithm [1], [4], [5] are, 
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2.2.2 Classification 

In this stage a series of input vectors are compared and a decision is made as to which 
of the speakers in the set is the most likely to have spoken the test data. The input to 
the classification system is denoted as X = {x1, x2, x3,………..,xT}. The rule to 
determine if X has come from speaker s can be stated as, 

p(λs | X) > p(λr | X)    r =1,2,……S (r ≠ s) (6) 

Therefore, for each speaker s in the speaker set, the classification system needs to 
compute and find the value of s that maximizes p(λs|X) according to  
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The classification is based on a comparison between the probabilities for each 
speaker. If it can be assumed that the prior probability of each speaker is equal, then 
the term of p(λs) can be ignored. The term p(X) can also be ignored as this value is the 
same for each speaker [1], so we are seeking the value of s that maximizes 
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Practically the individual probabilities, p(xt | λs), are typically in the range 10-3 to 10-8. 
There are 1000 test vectors with a test input of 10 seconds. When 10-8 is multiplied to 
itself 1000 times a standard computer and certainly any system implemented on an 
FPGA will underflow and the probability for all speakers will be calculated as zero. 
Thus p(X | λs) is computed in the log domain in order to avoid this problem. The 
likelihood of any speaker having spoken the test data is then referred to as the log-
likelihood and is represented by the symbol L [1].  
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The speaker of the test data is statistically chosen by the following, 
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3 Hardware Implementation of Speaker Identification 
Classification 

The designed of hardware is based on working system in software. The reason for 
using hardware is to obtain significant speed improvements over software and allow 
processing of multiple voice streams on an increased population of speakers. The 
generation of the feature vectors for the classification stage was performed offline. 
Both the speaker models and feature vectors from the test data were stored in random 
access memory (RAM) connected to the FPGA. Equations 9, 10, 11 and 12 are used 
in hardware implementation. 
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The classification phase of the speaker identification system was designed using 
separate datapath and control circuitry. The link between the two is through control 
signals and flags. 
 
 
 
 
 
 
 

Fig. 3. Top level of speaker identification classification. 

Figure 3 forms the top level overview of the speaker identification classification 
system and shows the link between PC, RAM and FPGA. The datapath section 
performs all the mathematical operations and the control system is a finite state 
machine (FSM) which produces control signals based on the current state and current 
inputs.  
      Figure 4 shows the datapath broken down further into its individual operations. 
The stage computing the natural log of the probability of each vectors having come 
from a particular component of a given speaker model will be repeated as many times 
as the area of the FPGA allows. 
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Fig. 4. Datapath represented into three main segments. 

3.1 Log-Add Algorithm 

The reason for starting with the middle block in figure 4 is that the changes in the 
GMM formulae are more easily explained with reference to this stage and these 
changes govern the changes in the preceding and following stages. Equation 9 
requires the natural logarithm of the result for each vector from equation 11 to be 
computed. This is shown in equation 13. 
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     In software implementation equation 13 is computed exactly as stated; the 
probability of an input vector having come from a speaker model is calculated, the 
logarithm is taken and then the sum is taken over all input vectors. To mirror software 
implementation in hardware exactly would require the computation of the exponential 
term in equation 12. It requires a large LUT to compute an exponential term in 
hardware if high accuracy is required. A large LUT table is expensive in hardware 
and should be avoided. Modification needed to be done to avoid calculating the 
exponential term. At first glance it appears that it is not possible to avoid calculating 
equation 12 directly because the logarithm term in equation 9 is a summation over all 
32 Gaussian components and there is no obvious way to compute the logarithm of a 
summation without computing the sum first. However, there is an algorithm for 
computing the logarithm of a summation without computing the sum first [8], [9].  
     Equation 14 shows the basic theory behind the log-add algorithm. 
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                  where,   A > B;   if A<B then switch A and B in formula. 
 

For the ln(1+B/A) term the system can calculate, 
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A LUT can then be used to map ln(B/A) to ln(1+B/A). The LUT table required here is 
much smaller than the one required for calculating an exponential term. This is due to 
the constraint imposed on A and B. The term B/A is limited to the interval [0,1], 
hence the term 1+B/A is limited to the interval [1,2]. Limiting the range of numbers in 
this way obviously reduces the size of LUT required. All necessary computations can 
be performed on the logarithm of the individual elements of the summation. Hence 
the input to the log-add algorithm is the logarithm of each element of the summation. 
This is shown in equation 16. This equation is implemented in the first column of 
blocks shown in figure 4. It is the datapath for calculating this equation that forms the 
most logic resource intensive section of the datapath.  
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3.2 Log probability computation 

The first block shown in figure 4 calculates the log of the probability of each input 
vector having come from the ith component in a speaker model for all components of 
the GMM. Due to hardware limitations it is not possible to calculate all 32 
components at once. Therefore each datapath will compute equation 16 for eight 
(32/4) components of the GMM. Figure 5 shows the datapath for computing equation 
16 for one component of the GMM. The feature vector (xt), mean (µ), covariance (σ) 

and constant ( )ii

D
w ∑−− ln

2

1
)2ln(

2
)ln( π  are generated during the offline 

training of the speaker model and are read from the RAM when required.  
     The datapath shown in figure 5 contains some simplifications of equation 16. 
These simplifications exist because the covariance matrix is diagonal. Firstly, having 
subtracted the mean from the feature vector each element is squared. Then the square 
is multiplied by the inverse of the corresponding element in the covariance diagonal. 
The inverse covariance is stored so that multiplication is required in hardware and not 
division. Finally all 34 elements are summed together. This section of the datapath 
just described is equivalent to ( ) ( )itiit xx µµ −∑

′− − 1    of equation 16. The rest of 

the datapath is self explanatory except before squaring each element the signal can be 
positive or negative as the feature vectors and means can be positive or negative. 
After squaring each element the signal is always positive. The covariances are also 
always positive and hence the signal is always positive until it is multiplied by -0.5. 
As the constant is always negative the signal after being multiplied by -0.5 is always 
negative. Hence after the squaring of the signal its sign is always known and only the 
magnitude of the signal is stored. Therefore the output of the system is the magnitude 
of ln(wibi(xt)) and is known to be always negative. The inputs to both multipliers are 
16 bits and the output is also 16 bits. The output from the first multiplier is in fact 32 
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bits. If full 32 bits were kept the output from the second multiplier would be 48 bits 
(32 + 16) and it is not practical to pass all 48 bits to the rest of the system. The 32 bits 
output from the first multiplier is limited to 16 bits. The output from the second 
multiplier is also limited to 16 bits to reduce the word size in the rest of the system. 
The inputs to and outputs from both multipliers are therefore 16 bits and the 
multiplier operations can share the same hardware multiplier block with a multiplexer 
controlling the inputs. 

 
 

 

 

                                                         

 
 

Fig. 5. Dataflow showing the calculation of equation 16. 

 
When reducing the multiplier outputs from 32 to 16 bits if the upper 16 bits of the 32 
bit output were kept there would be a significant loss of accuracy when small 
numbers were involved. In fact the number would often be reduced to zero. To avoid 
this problem the 16 bits that are kept are allowed to vary based on the first most 
significant bit that is logic level ‘1’. The outputs from both multipliers are positive 
hence the binary representation is unsigned and the MSB that is logic level ‘1’ 
indicates the start of the number and not the sign.  

3.3   Logic Resource Requirements 

The most logic resource intensive section of the datapath is to compute ln[p(xt | λs)]. 
The reason for this can be seen by recognising that equation 16 must be computed 
once for each GMM component and by examining the dataflow diagram for 
computing as shown in figure 5. The limiting logic factor in the datapath is the 
multipliers. Two 16 bit multipliers are required per element of xt. These can be 
multiplexed together meaning 34 multipliers are required (i.e. one per component of 
xt). The standard multipliers on the XC2V6000 are 18 bit by 18 bit. If the word size 
was increased above 18 bits (eg: 24 bit) then three multipliers are required per 
element of xt. Hence, a total of 102 multipliers are required in total. When considering 
that the datapath in figure 5 must be repeated once per component then for a word 
length of 16 bits with 32 components the required number of multipliers is 1088. 
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4    Results 

4.1   Hardware Resources Utilization 

The breakdowns of hardware resources utilization for the speaker identification 
classification system are presented in table 1. 

Table 1.  Logic resources for speaker identification classification. 

Logic Resources Numbers 
Slices 23251 
FFs 35104 
LUTs 39452 
Block RAMs 24 
IOBs 295 
MULT18x18 136 

 

4.2   Accuracy 

The testing of speech was carried out on the hardware system only uses a period of 5s 
same as the data used for the software. Table 2 restates these results for both hardware 
and software. The accuracy is fairly similar with the software system showing a slight 
improvement over the hardware system. This is to be expected as the software 
implementation uses full double precision accuracy. A test utterance greater than 5s 
should be used to achieve higher accuracy. Further accuracy improvements can also 
be achieved by removing segments of number speech from the speech signal [4], [10].   

Table 2.  Hardware and software results for testing with 5s of test utterance. 

Utterance length Software – 5 seconds Hardware – 5 seconds 
Test 1 80.77% 78.30% 
Test 2 56.40% 55.20% 
Test 3 68.54% 64.90% 
Test 4 72.75% 69.40% 
Test 5 65.62% 64.95% 

4.3   Speed 

The speed of the software system was measured using a speaker set of size 20. Test 
data from one of the speakers was used and the experiment was repeated 100 times 
consecutively with an average being computed over the hundred. Table 3 presents the 
results from the software testing along with the results from the hardware testing on 
the XC2V6000 board.  The classification part of the speaker identification system 
implemented on the XC2V6000 platform is about 90 times faster than software. When 
considering real time implementation of speaker identification with feature vectors 
from one speech input being provided every 10ms the software system would only be 
able to perform calculations on five speaker models. 
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Table 3.  Hardware and software timing parameters. 

Parameter 
System 

Hardware – XC2V6000 Software - Matlab 

Data Transfer 
16.8ms for 500 vector 
transfer Not applicable 

Classification 
0.8ms per vector for 
speaker set of size 20 

69ms per vector for 
speaker set of size 20 

5    Conclusion 

The analysis of hardware versus software has demonstrated that speaker identification 
classification is about 90 times faster on hardware. This means that the hardware 
system is capable of processing 90 times more audio streams in real time than could 
be done in a PC. The limiting factor for implementation on the XC2V6000 device is 
the number of multipliers and its maximum clock speed. The future improvement step 
will be generating a real time implementation of open-set text independent speaker 
identification with greater length of speech utterance. The design will also be 
optimized to reduce latency and to optimize use of memory on the platform of Xilinx 
Virtex-IV XC4LX160-FF1148 grade 11 FPGA. 
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Abstract. We present an approach to the automatic generation of efficient Field Programmable
Gate Arrays (FPGAs) circuits for regular expression-basedpattern matching problems. This
paper focuses on the optimisation of the character class construct that is widely used in regular
expressions. The optimisation technique uses a novel design strategy that can be used to gen-
erate circuits that are highly area-and-time-efficient forarbitrary sets of regular expressions.
Thus, the technique is suitable for applications that must handle very large sets of patterns
at high speed, such as in network security and intrusion detection domains. Empirical results
demonstrate the advantages of our approach when applied to regular expressions in the official
rulesets of the Snort intrusion detection system.

1 Introduction

Regular expressions are widely used in computing applications to find patterns or strings of interest
in a given stream of data or text. The usefulness of regular expressions stems from the fact that they
can concisely represent quite complex combinations of different patterns, saving on the storage re-
quirements. A very important application of regular expressions is in Network Intrusion Detection
Systems (NIDS), where malicious traffic is identified by matching against previously known set of
patterns or strings, represented in the form of regular expressions. However, a relatively high pro-
portion of the computational load in NIDS applications can involve regular expression matching,
which thus consumes a high percentage of the computational time as the size of the set of regular
expression being processed increases as new attack patterns are discovered. This can turn the NIDS
into a bottleneck when it is used for intrusion prevention, especially when network speeds have to
keep up with user demands for higher quality of services and rising multimedia volumes of traffic
arising from ambient and social computing spaces. The need for more and faster traffic throughput
suggests that a hardware solution would be a compelling requirement for NIDS systems that must
operate in gigabit-speed networks.

In the NIDS domain, the set of patterns to be examined is expected to continue to grow as well
as change over time, which means that the underlying computation needs to be reconfigurable to
accommodate the changing patterns. Therefore, Field Programmable Gate Array (FPGA) devices
are suitable due to their inherent characteristics of reconfigurability and their parallel processing
potential that confers a capability for dynamically reprogrammable hardware-based logic which
supports ultra-fast computation in a domain such as intrusion detection and prevention.

Regular expressions with their space compacting properties and FPGA logic with its reconfig-
urable and efficient computational capabilities can thus bebrought together to offer very efficient
solutions to pattern matching problems in domains such as NIDS, lexical analysis, virus detec-
tion, forensics, DNA analysis, and data mining where frequent updates to the reference patterns
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are required. FPGAs and regular expressions have thereforebeen the technologies of choice in
these domains, and there has been a considerable interest inoptimising methods for the automatic
generation of efficient FPGA circuits for a given set of regular expressions [9, 6, 11, 8, 10].

Our approach builds on existing works such as [7, 9, 10], by using the similar circuitry for
regular expression constructs such as concatenation (r1r2), alternation (r1|r2), Kleene star closure
(r∗), and other metacharacter constructions such asr? andr+. However, this paper presents a novel
technique for the generation of area and time efficient circuits for the character class construct,
[c0c1 . . . c

n
], which is often used heavily in regular expressions1. The technique leads to significant

reductions in the number of comparators needed to implementcharacter classes in large sets of
regular expressions without any overhead in time efficiency. To demonstrate the efficacy of our
approach, we applied the technique to the regular expressions in the Snort [1] IDS rulesets, where
as much as90% area reduction was achieved in some rulesets when compared with the traditional
singleton character matching approach.

2 Regular Expressions

We shall start with a description of commonly used regular expression constructors, and introduce
notational conventions that we shall follow. We adopt the Perl-Compatible Regular Expression
(PCRE) regular expression syntax. We assume in general thatcharacters are drawn from a coding
scheme where all characters are encoded in a fixed number of bits. In this paper, we assume an
8-bit character encoding scheme. This assumption also accommodates characters which are drawn
from a stream with less than 8-bit encoding, such as the 7-bitASCII character set. However, the
technique presented in this paper does not depend on the particular underlying encoding scheme
that is used. We assume thatC is the alphabet set of all the possible characters considered, so that
in this paper|C| = 256. For anyc ∈ C, we writecH for the four Most Significant Bits (MSBs) and
cL for the four Least Significant Bits (LSBs). In particular, under the ASCII coding scheme, the
charactera corresponds to the binary code point01100001; hence,aH = 0110 andaL = 0001.
The notationcH

1
cL

2
stands for the character obtained by concatenating the fourMSBs ofc1 and the

four LSBs ofc2. For example,aLaH now stands for the character at the code point00010110.
We use the typefacea,b,c,. . . for characters used to construct regular expressions and the type-

face c, c
i
, . . . for charactervariablesand r, r

i
, . . . for general regular expressionvariables. For

example, a regular expressionr is [c0c1 . . . c5], and an instance ofr is [abcdef]; where,c0 is the
charactera, c1 is the characterb, and so on. Under the PCRE scheme, the semantics of the expres-
sion [abcdef] is to match any of the charactersa, b, c, d, e, or f. The character class constructor
[· · · ], can be “negated” or “inverted” by prefixing the characters with a ˆ, so that[ˆc0 . . . c

n
] now

matches any single character, except those in the set{c0, . . . , cn
}.

In addition to the character class constructor, we also refer to other standard constructors such
as the alternation|, wherer1|r2 matches either ofr1 or r2; and concatenation, wherer1r2 matches
only when patternr1 is matched first, immediately followed by a matching of pattern r2. We also
consider quantifier metacharacters such as∗ (match 0 or more times),? (optionally match, but at
most once), and,+ (match at least one or more times). The matching semantics are all standard [4].

1 The optimisation technique is also applicable to equivalent constructions such asc0|c1| · · · |cn, where char-
acters or their classes are alternated instead.
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2.1 Regular expression matching circuits

The key challenge that we wish to address is the optimal implementation of efficient pattern match-
ing circuits based on a given set of regular expressions, in an environment (such as in network
security and intrusion detection and prevention systems) where there might be several thousands
of regular expressions to be encoded, and where the regular expressions might change over time.
This makes an FPGA-based architecture suitable, firstly because of the amount of functional units
available in modern hardware and the ability to re-program the system. We present in the remainder
of this section, the general building blocks for FPGA-basedregular expression patter matching.

Modelling the matching state Regular expression matchers can be implemented via finite state
machines such as Deterministic Finite Automata (DFA) or Nondeterministic Finite Automata (NFA)
which accept precisely the same strings as the regular expression. We shall use NFAs to model the
regular expression matching state similarly to the technique originally proposed by [9]. The basic
idea is that a regular expression may be viewed as a sequence of subexpressions denoting matching
points in the pattern to be matched. Each matching point corresponds to a relevant regular expres-
sion circuit whose result must be activated when that point is reached in the matching process.
Sequential Flip Flops are used to keep track of the current matching point in parallel2 as it rip-
ples through the Flip Flop sequence whose outputs are combined with AND gates to the current
matching circuit to “activate” the next matching stage. This setup is illustrated in Fig. 1(a) for the
expressionr1r2 · · · rn

, wherer
i

is the circuit for theith regular expression matching point. The
AND gate connected to ther

n
circuit is active at thenth clock cycle if the Flip Flop input is 1 at

the(n − 1)th clock cycle.

r1

CLK

1

r2

CLK

Input data

. . .

. . .

r
n

CLK

Match

(a) Concatenation

r

CLK

i o

(b) Matching Unit

r
i

o

(c) Schematic of
the Matching Unit

Fig. 1: Modelling regular expression matching state

The basic matching unit for the regular expressionr is shown in Fig. 1(b). It consists of a
matching circuitry for the expressionr itself, a Flip Flop that becomes active whenr is ready to be
matched, and anANDgate which becomes active whenr is matched and the Flip Flop is active. The
schematic diagram of Fig. 1(c) summarises this setup. The circuitry for common regular expression
constructors are shown in Fig. 2. In the circuit diagramsr andr

i
could be any arbitrary regular

expression.

2 There may be more than one active matching point at a time.
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(d) Constructor forr1 | r2

Fig. 2: Common regular expression constructors

3 FPGA Design

In this section we present the design strategy for efficient and optimal implementation regular
expression-based pattern matching circuits using FPGA technology. This paper focuses on the effi-
cient encoding of the regular expression character class construct[· · · ] and semantically equivalent
constructs, such asc1|c2| · · · |cn

, where eachc
i

is a single character. It is standard practice to im-
plement the characters in a regular expression via dedicated matching units such as is shown in
Fig. 1(b), wherer is a unique character [7, 9, 10]. This means that a construct such asc1|c2| · · · |cn

consisting ofn unique characters would needn such basic matching units. Thus, when implement-
ing a large set of regular expressions in hardware, this can result in high area cost and poor timing
performances, even when matching units are shared among regular expression implementations.

The main contribution of this paper is the innovative use of the basic matching unit to imple-
ment character classes. The approach leads to significant area and timing efficiency when applied
to large sets of regular expressions. The key idea is that thesemantics of the[· · · ] and equivalent
constructors implement a set of characters, whose operational interpretation is to test a given char-
acter for membership of that set. In the traditional approach [9], the basic matching unit is a circuit
that tests membership of a singleton set - the set consistingof the single character that the matching
unit encodes. A generalisation of this to arbitrary sets leads to significant gains in area efficiency
without any overhead added to the matching and timing efficiency of the basic matching unit. In the
remainder of this section we shall motivate the approach anddevelop techniques for the automatic
generation of circuits, which take advantage of this semantics-based optimisation technique.

3.1 Efficiently encoding a set of characters

The basic logic construction that we use as acomparatoris the same as that used in [9] as shown
in Fig. 3. It consists of two 16-to-1 bit multiplexers, whichvery efficiently match a single 8-bit
character. However, we present a novel technique whereby a single comparator can be used toen-
codea setof characters, as opposed toonecharacter as proposed in [9]. We say that a comparator
encodesa set of characters if it matches a characterif and only if that character is in that set. As
mentioned earlier, under this definition, the comparator of[9] is simply a singleton set comparator.
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The definition generalises to arbitrarily-sized sets, and the larger the size of a set that is encoded
by a comparator the more utilisation of hardware that is achieved by that comparator. In other
words, the comparator which encodes a setS ⊆ C implements the set membership relation∈ over
S. The technique results in a very significant utilisation of hardware without altering the intrin-
sic character-matching efficiency of the comparator. In particular, the comparator can efficiently
encode up to the theoretical limit3 of |C| = 256 characters.

16-to-1 Multiplexer

16-to-1 Multiplexer

s4
s5
s6
s7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

l31 · · · l16

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

s3
s2
s1
s0

l15 · · · l0

Fig. 3: An efficient comparator showing input line values(l0, . . . , l31) to match the regular expression[ab].

For ease of reference, we have assigned names to the comparator inputs as shown in Fig. 3. The
comparator implements a look-up table with the two 16-to-1 bit multiplexers, and has altogether
32 control inputslabelledl0, . . . , l31; and an 8-bitselectorlabelled ass0, . . . , s7. The control in-
puts encode the set of characters against which a character may be matched. The incoming 8-bit
character4 to be matched is assigned, in order, to the selector lines with the LSB on lines0 and the
MSB on lines7. The detail of how to assign values to the control lines, based on the intended set
of characters to be matched, is presented in section 3.1.

To illustrate the area efficiency that can be achieved by encoding set of characters in a compara-
tor, suppose that in an e-mail related application we wish tocheck that a given character is not@ or
any of the ASCII characters betweenA andO inclusive. This requirement may be captured by the
regular expression [ˆ@A-O], which matches any character in the setS = C\{@, A, B, . . . , O}.
Using the technique presented in section 3.1 we discover that the setS, which has a cardinality
of 240, can be implemented on a single comparator with all the inputbits, exceptl19, set to 1.
This is a very significant save in area and complexity of circuitry as opposed to; a scenario (a),
where the same regular expression is naı̈vely implemented using a comparator foreachcharacter
in S combined together withORgates; or even in the scenario (b), where the characters of the set
{@, A, B, . . . , O} are loaded in a comparator each, and theirORcombination inverted.

3 Although in practice this particular configuration is superfluous, because an output line set to 1 achieves
the same effect of matching all possible characters.

4 The reader should note that the techniques presented in thispaper can be similarly applied to anyn-bit
character encoding schemes.
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Assigning control line values We now show how to assign the control lines in a comparator in
order to encode a set of characters. Letdec(·) be a function which converts a binary number to its
decimal value. Given a setS ⊆ C of characters to be encoded, we define a functionE (for Enable)
that returns a set of control line indices that must be enabled in order to match all the characters in
the setS as

E(S) ,
{

l
i
, l

j
| ∃c ∈ S, i = dec(cL),j = 16+dec(cH)

}

. (1)

Applying (1) to the setS = {a,b}, since the ASCII code fora andb respectively are 01100001
and 01100010, we havedec(aH) = dec(bH) = 6 anddec(aL) = 1 anddec(bL) = 2. Hence,
E(S) = {l1, l2, l22}, as demonstrated by the enabled control lines of Fig. 3. The comparator
encoding shown Fig. 3 matches precisely onlya or b, however for arbitrary setsS ⊆ C, enabling
the linesE(S) in a singlecomparator may lead to matching of characters not inS: a situation that
we refer to ascode collisionin the comparator. Thus, in order to encode an arbitrary setS we must
encode only collision-free subsets ofS in comparators whose results are then combined in anOR
formation. We start by presenting the property of collision-free subsets of an arbitrary subset ofC,
and then present an efficient technique for computing one.

Deriving collision-free subsets Code collision results in a comparator matching more than the
intended set of characters. To illustrate this problem, consider the regular expression[aR], whose
semantics is to match any character in the setS = {a,R}. Using equation (1), if we enabled
the linesE(S) = {l1, l2, l21, l22} in a single comparator, that comparator will match not only
charactersa andR, but alsob andQ. This is because the character code ofb can be derived by
pairingaHRL; and similarly,Q has the codeRHaL. This problem is easily avoided by using only
collision-freesubsets ofS in each comparator: which, in this example, is the singletonsubsets of
{a,R}. Let us now present the detail in the more general case.

The general problem is that given a setS ⊆ C, we want to find the minimal number of com-
parators such that a characterc is matched if and only ifc ∈ S. Any subsetS′ ⊆ S is collision-free
(with respect toS), if for any pair of charactersc1, c2 ∈ S′ we also have thatcH

1
cL

2
, cH

2
cL

1
∈ S.

This means that by swapping the four LSBs of any pair of characters inS′, no new character can
be derived (and thus matched) that is not inS. The setS′ can thus be loaded into a comparator
with the guaranteed property that the comparator matches only characters inS. The next step is to
ensure that wecoverthe setS by using enough collision-free subsets so thatall characters inS are
matched.

This problem can be constructed as the standardset-coveringproblem [2] as follows. Define
the set of all collision-free subsets ofS as

F
S

, {S′
⊆ S | c1, c2 ∈S′

⇒cH

1
cL

2
, cH

2
cL

1
∈S}. (2)

Find a minimum-size subsetF ⊆ F
S

such that
⋃

S
′∈F

S′ = S. (3)

Finding minimal systems of comparators The optimisation problem posed by (2) and (3) is
NP-hard [5]. However, greedy set-covering algorithms [3] can be implemented to run in time poly-
nomial in|S| and|F

S
|.
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Given an arbitrary setS ⊆ C, the first problem is to computeF
S

efficiently. Secondly, a
minimal subset ofF

S
must be chosen, which coversS. We propose in this paper a technique

which uses partial equivalence relations5 (PERs) overC, to efficiently compute minimal collision-
free subsets ofS, which can be efficiently implemented in a simple algorithm which runs in time
linear in |S|. The algorithm takes advantage of the algebraic propertiesof PERs to systematically
compute collision-free subsets of an arbitrary setS ⊆ C, that minimally coverS.

Define an equivalence relation,R
S

, overS such that for anyc1, c2 ∈ C, c1 R
S

c2 iff c1, c2 ∈ S
and

{cL

3 | c3 ∈ S, cH

3 = cH

1 } = {cL

4 | c4 ∈ S, cH

4 = cH

2 }. (4)

The relationR
S

is an equivalence relation overS, and in general a partial equivalence relation
overC. Intuitively, two elementsc1 andc2 of S are related byR

S
if by replacing the four LSBs

of c1 with those ofc2, or vice versa, no new character can be derived that is not inS. That is,
c1 R

S
c2 =⇒ cH

1
cL

2
, cH

2
cL

1
∈ S. The definition ofR

S
ensures that each equivalence class

of R
S

is closed under this property. This property means that if a comparator is encoded with
only characters that are all related byR

S
, then no character can be incorrectly matched. This

guarantees the semantic correctness of the matching unit, regardless of the number of characters
that the comparator encodes: only characters inS will be matched.

We now have a strategy for obtaining minimal matching circuits: given an arbitrary setS of
characters to be matched, we partition it viaR

S
and encode each (collision-free) equivalence class

in a comparator. When this results in more than one comparator, that is, wheneverR
S

has more
than one equivalence class, the resulting comparators are combined together in anORformation to
obtain a matching circuit that covers the setS. Because of the reflexivity property ofR

S
overS and

the algebraic property that each character belongs to exactly one equivalence class ofR
S

, we know
that the union of the equivalence classes ofR

S
coversS minimally. Since the equivalence classes

of R
S

are, by definition, collision-free with respect toS, we obtain on this basis the collision-free
subsets ofS, given by

c-free(S) , {[c]
RS

| c ∈ S}. (5)

As usual, the standard notation[c]
RS

stands for theequivalence classof c under the equivalence
relationR

S
.

By exploiting thereflexive and transitive closureproperty of equivalence relations, we can
efficiently compute the setsc-free(S) of the equivalence classes ofR

S
. In particular, letI =

{cH | c ∈ S} be an index set of theH-bits of characters inS; reflexivity of R
S

means that for any
i ∈ I, all elements of the setS

i
, {c ∈ S | cH = i} belong to the same equivalence class ofR

S
.

Furthermore, if we defineSL

i

, {cL | c ∈ S
i
} for any i ∈ I, the transitivity ofR

S
allows us to

traverse the setS once, and means that for any pairi, j ∈ I such thatSL

i

= SL

j

then all elements
of the setS

i
∪ S

j
also belong to the same equivalence class ofR

S
. This gives us a straightforward

algorithm to computeR
S

for any setS. This is shown in Algorithm 1, which efficiently computes
c-free(S).

5 Recall that a relationR over a setS is a partial equivalence relation if it is symmetric (sR s′ =⇒ s′ R s),
and transitive (s R s′, s′ R s′′ =⇒ s R s′′) for all s, s′, s′′ ∈ S. If, in addition,R is reflexive (s R s), then
it is an equivalence relation.
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Input : SetS of characters.
Output : Collision-free subsets{Sj | j ∈ J} of S.
/* Partition S to subsets, indexed by the set I of H-bits. */
I � ∅

forall c ∈ S do
if cH /∈ I then

ScH � {c}
I � I ∪ {cH}

else
ScH � ScH ∪ {c}

end
end

For all i ∈ I , let SL
i = {cL | c ∈ Si}

/* Merge equivalence classes, and create a new index set J */
J � ∅

K � ∅

while i ∈ I\K do
J � J ∪ {i}
K � K ∪ J
forall k ∈ I\K do

if Si = Sk then
Si � Si ∪ Sk

K � K ∪ {k}
end

end
end

Algorithm 1 : Computing collision-free subsets

4 Empirical Analysis

We demonstrate the area efficiency properties of our approach by applying the analysis technique
to the Snort [1] ruleset. Snort is a leading open source NIDS,which supports the use of regular
expressions in its pattern matching rules. We have applied the technique to the usage of character
class construct in the official Snort rules6. For simplicity, we only applied the technique to character
classes explicitly created through the[· · · ] construct. The characters in the class are counted, and
the number of comparator units required to implement the class is computed. For example the
class[@A-O] contains 16 characters, namely,@ and the 15 charactersA, B, . . . , O betweenA
andO inclusive in the underlying character encoding system. Thecharacter class[@A-O] requires
only one comparator unit, when we apply the analysis technique. In the analysis, built-in character
classes are expanded into the constituent characters that they represent: for example,\w, which is
a shorthand for the character class[a-zA-Z0-9], is made up of 62 characters.

We show the results obtained when we apply the PER-based technique in Table 1. For each
rules file in the Snort ruleset, column “# of characters” shows the number of characters in total

6 This refers to the version released on 08 October 2009.
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used in that file. For each character class construct used in arules file, we compute the number
of comparators needed to implement that construct, and the column “# of comparators needed”
contains the total of all such comparator needed for the file.The column “% area reduction” shows
the reduction in area obtained by applying the technique.

Ruleset # of chars# of comparators needed% area reduction
chat.rules 393 39 90.08
ddos.rules 20 2 90.00
specific-threats.rules236 35 85.17
exploit.rules 1868 330 82.33
web-client.rules 1488 349 75.55
smtp.rules 2034 529 73.99
deleted.rules 1361 386 72.96
spyware-put.rules 1930 603 68.76
oracle.rules 9774 4648 52.45
web-activex.rules 6925 3546 48.79
...

...
...

...

Table 1: Area reduction in Snort Rulesets

Since the same character class is often reused in a single file, Table 2 shows the same analysis,
but with sharing of matching units that implement a given character class. So, for each unique
character class in a rules file, only one matching unit is created. As the table demonstrates, we
obtain even more significant reduction in the overall logic block area, although this is usually a
trade-off against more complex interconnectivity. The significant gain is due to the fact that the
same character class is often heavily reused within a rules file, and even within the same regular
expression. For example, the number of characters in theoracle.rulesfile is relatively large due to
the repeated use of the classes[\r \n \s], [ˆ\x22] and[ˆ\x27]. When unique character classes are
considered, this leads to a reduction from9774 to 71, which requires the use of only7 comparators.
Similar gains are achieved in theweb-activex.rulesfile.

5 Conclusion and Future Work

We have presented a framework for the generation of efficientFPGA circuitry for regular-expression-
based pattern matching problems. The current work has focused on the character class construct,
which, on the basis of its matching semantics allows multiple characters to be encoded in a single
comparator unit. We have developed a PER-based model for generating minimal circuits that im-
plement a given character class construct. The advantage ofthis approach is that the PER-based
model can be implemented in a very efficient and simple algorithm.

To demonstrate the usefulness of our approach, we applied the technique to the rules files of the
Snort IDS. We see that significant reductions in area can be obtained by reusing matching circuits
for unique character classes in each file. The metric used, which is based on the relative reduction in
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Ruleset # of chars # of comparators needed% area reduction
chat.rules 62 7 88.71
ddos.rules 10 1 90.00
specific-threats.rules68 8 88.24
exploit.rules 256 16 93.75
web-client.rules 106 9 91.51
smtp.rules 86 7 91.86
deleted.rules 78 7 91.03
spyware-put.rules 81 7 91.36
oracle.rules 71 7 90.14
web-activex.rules 11 3 72.73
...

...
...

...

Table 2: Area reduction in Snort Rulesets when Matching Units are shared

number of matching units under our approach against the number of units in a system that encodes
a character per unit, does not consider the interconnectivity implications. In practice the intercon-
nectivity metric is equally as important and will be the subject of future study, where we seek to
develop techniques for optimal tradeoffs between matchingunits and the overall interconnect costs.
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Abstract. Sparse Matrix-Vector Multiplication (SMVM) is the critical
computational kernel of many iterative solvers for systems of sparse lin-
ear equations. In this paper we propose an FPGA design for SMVM which
interleaves CRS (Compressed Row Storage) format so that just a single
floating point accumulator is needed, which simplifies control, avoids any
idle clock cycles and sustains high throughput. For the evaluation of the
proposed design we use a RASC RC 100 blade attached to a SGI Altix
multiprocessor architecture. The limited memory bandwidth of this archi-
tecture heavily constraints the performance demonstrated. However, the
use of FIFO buffers to stream input data makes the design portable to
other FPGA-based platforms with higher memory bandwith.

Key words: Sparse Matrix Vector Multiplication, Floating Point, FPGA,
Compressed Row Storage

1 Introduction

As floating-point performance achievable on FPGA has risen beyond that of pro-
cessors [1] the motivation for the science community to move computationally
intensive kernels to FPGA and improve performance of scientific application
has grown considerably. When computing SMVM, microprocessors have been
shown to achieve very low floating point efficiency [2]. Compared to dense ker-
nels, sparse kernels incur more overhead per non-zero matrix entry due to extra
instructions and indirect, irregular memory accesses. Also, the large number of
operands required per result and minimal reuse stress load/store units while
floating point units are often under-utilized. In FPGA implementation, data
structure interpretation is performed by spatial logic. Thus, by using streaming
of data to/from memory and fully pipelined functional units, FPGA systems
can obtain high levels of performance compared to their clock speeds. Current
FPGAs contain many more configurable logic blocks which allows implementing
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multiple copies of the same computations.
Given the importance of the SMVM kernel, many early attempts to imple-

ment this algorithm on FPGAs exist. Zhuo [6] and Sun [7] both implemented an
adder tree based design with an optimized reduction circuit that requires only a
few floating point adders. These designs streamed the matrices using the Com-
pressed Row Storage (CRS) format. However, this design creates complications
in the accumulator circuitry as a new element to be accumulated is generated
every cycle, far too much for a single floating point adder implemented in FPGA.

In this paper we propose to overcome this problem by streaming the matrix
in a row-interleaved variant of the CRS format for sparse matrix representation.
By packing the matrix in this way independent dot products are interleaved on
a single floating point adder, which can then implement the reduction all by
itself. By using less logic resources for reduction circuit we achieve both power
and area savings. As another important feature, our design doesn’t depend on
the sparsity structure of the matrix or on the number of non zero elements per
row.

To evaluate these ideas we implemented the design using a binary adder tree
with 4 leaves on a Virtex4 LX200 device present in a RASC RC100 blade of a SGI
Altix machine. Test matrices for our design were created in software with com-
pletely random structure. Given the amount of Block RAMs (BRAM) present in
the FPGA device, matrices cannot have more than 16,000 columns. Since rows
of matrices are streamed one after another, no limitation exists on the number
of rows. On the V4LX200 device, the algorithm requires up to 50% less slices
than competing approaches. Running at 200MHz, a maximum troughput of 1.6
GFLOPS can be achieved, although this value is limited by the parameters of
the platform.

The rest of the paper is organized as follows. In Section 2 we introduce the
SMVM algorithm used in this paper. We then elaborate on basic SMVM designs
in FPGA and propose our design (Section 3). Implementation details on our
target hardware are given in Section 4, while the design is evaluated in Section
5. Some additional related work is presented in Section 6 in the context of our
design. Finally, we conclude the paper with some ideas for future work that can
further improve the design.

2 SMVM Problem

Sparse matrix vector multiplication in the standard form y = Ax is one of the
most time consuming computational kernels for iterative solvers of sparse linear
systems such as Conjugate Gradient method (CG) [3]. The extra computations
besides SMVM in CG are some vector parallel operations which are small com-
pared to SMVM. Profiling PETSc’s [4] CG algorithm for the bi-laplacian stencil
we obtain that more than 75 % of all computations are spent on SMVM. In
general, the SMVM y=Ax is defined as:

y
i
= ΣN

j=0
a

i,j
x

j
, (0 ≤ i < M)
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Row interleaved streaming data flow implementation of SMVM in FPGA 3

Where A is an M ×N matrix, while y and x are M × 1 and N × 1 vectors,
respectively. In general some kind of compressed storage that just saves non
zero elements, such as Compressed Row Storage (CRS), is used to store sparse
matrices.

A square sparse matrix A with dimensions n × n and with m non zeros, is
represented with three arrays in the CRS format:

– rowID : Stores the starting index of the first non zero element of each row.
Has the same length as the dimension of the matrix plus one n+1.

– Col : Stores the column indices of non-zero elements. The length is the num-
ber of non-zeros m.

– Val : Stores all non-zero elements in row major order. The size is the number
of non-zeros m.

3 SMVM design in FPGA

In this paper we show an innovative SMVM design for FPGA. In order to do
so we will first explain a design for pure CRS that is based on the works of
Zhuo and Prasanna [6] and Sun and Peterson [7] which also serve as this work’s
motivation.

3.1 SMVM design using CRS

To achieve high frequency, floating point adders are usually deeply pipelined,
which difficults accumulation of floating point data. To fully exploit computa-
tional throughput of the FPGA and avoid any idle cycles we want to pipeline
the dot-product accumulation as heavily as possible.
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Fig. 1. Complete SMVM design using CRS

On the front end of our design (Fig. 1) the binary tree with k leaves accepts
data, every leaf contains one multiplier and BRAM in which the multiplicand
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vector X is preloaded which is addressed by the Col vector. Obtained products
are then accumulated by internal adders in the binary tree and finally one partial
sum is produced every clock cycle. On the back end, the latency prevents us from
pipelining partial results from adder tree so we need temporary storage (BRAM)
with the same size as the latency of the adder, L

add
. Once the BRAM is full we

employ a reduction circuit. The first part of the reduction circuit is an adder
tree from which we obtain new partial sum. The partial sum is then passed to
the adder which works like a back loop adder that provides us with a final result
for the corresponding row.

An improvement can be made in reduction circuit by using instead of the
adder tree just a pipeline of adders with buffers [6] [7], (Fig. 2) where all circuit
is driven just by data flow and without any control logic. When the first adder
gives output, the value is passed through one buffer register in order that next
adder start when both inputs are available. Adders at different levels will be
used at different cycles producing finally one accumulated result. But in order
to work for different matrices independently of number of non zeros per row one
BRAM, size of vector X, has to be implemented as a temporary storage.

� �
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�
�
�
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Fig. 2. Reduction Circuit

3.2 SMVM design with new interleaved CRS

In the new design, the front end is not changed but the back end is consider-
ably simplified, (Fig. 3). As we mentioned adder latency L

add
prevents us from

pipelining the partial result obtained from front end but we can interleave the
independent partial result on a single floating point adder and achieve maximum
throughput. Thus, adder latency L

add
becomes the interleaving factor. By mod-

ifying traditional CRS format on software side we achieve that after every L
add

cycles we get a new dot product that can be added to the last corresponding
partial dot product. So the idea is to use a kind of window whose slots get filling
with independent dot products (rows) of the matrix. The size of the window
should be equal to L

add
to achieve paralelization due to pipelining. Every clock

cycle k (on Fig. 3 k=4 ) elements of vector Val size of 64 bit and k elements of
vector Col size of 16 bit are streamed respectively to multipliers and BRAMs
in this new rescheduled CRS format. If the number of non zeros in a row is
not multiple of the number of k we have to pad them with zeros. When some
slot of the window is empty (there are no more elements in current row) this
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slot is granted to next corresponding row. By doing this the throughput of the
pipeline adder is sustained. As we see by using single floating point pipeline we
can calculate dot product for every row without almost any idle clock cycles.
At the end of the design due to different number of non zero elements in rows
some bubbles have to be introduced in order to finish summation correctly. The
bubbles are not introduced physically in the sense that they are streamed with
non zeros. What happens is that when some element of vector Len is zero(there
are no more non zero elements for that row and there are no new rows) and still
some rows have to finish their accumulation, the reading from input FIFOs is
stopped but multipliers and adder tree continue in order to deliver new elements
to single adder loop at the correct cycle.
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Fig. 3. Complete SMVM design using rescheduled CRS

Because the time for accumulating a full row on the single pipeline adder
depends on how many non zeros that row has, results will not get out in row
major order. For example if row X has less than k non zero elements and first
row has multiple number of non zeros, accumulation for row X will be finished in
just one pass through adder pipeline. Thus, to have in every moment control and
also to be sure that all non zeros are accumulated for some row, FSM with L

add

states is implemented. As was mentioned earlier about vector X also vector Len

of CRS format are preloaded to FPGA BRAM before starting any computation.
The FSM controls two arrays row index and len comp which have size of L

add
.

The FSM and computation are started when “empty” signal of entry FIFOs is
pulled to zero. In the row index array we keep the indexes of actual rows that
are to be computed. len comp contains the corresponding number of elements
that need to be computed to obtain final result. After every new k elements are
feed to multiplier, vector len comp is updated. When value of vector len comp

for corresponding row reaches 0 the row computation is completed and the result
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is written to row index location in SRAM memory. To be sure that the flag for
the corresponding row that indicates that the last elements of some row are sent
to multipliers, a FIFO buffer is introduced so that the flag and result match up
at the output of single adder pipeline. If the flag is not pulled up this means
that there are still some non zeros in a row that have to be calculated so the
output is back-looped. In Table 1. results for the total number of LUTs spent
for adders and multipliers are shown for all three designs explained here.

Table 1.Sum of LUTs used by floating point multiplier and adder

Type of storage Number of LUTs Design of back end
CRS format 24612 binary adder tree
CRS format 10500 optimized reduction circuit

Interleaved CRS format 6972 single floating point adder

4 Implementation details

4.1 Targeted platform

Altix is Silicon Graphics’ line of servers and supercomputers based on Intel Ita-
nium processors. In this work we target the ALTIX 4700 platform. The SGI
Altix 4700 platform is comprised of modular blades: interchangeable compute,
memory, I/O and special purpose blades for ’plug and solve’ configuration flexi-
bility. Besides microprocessor nodes, it also features reconfigurable nodes named
SGI RASC RC100 [9], (Fig. 4), which have 2 Virtex 4 XC4VLX200 FPGAs and
5× SRAM local memories for every FPGA. The peak transfer rate between host
and RC 100 blade is provided as 3.2 GB/s in each direction.
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Fig. 4. RC100 blade on Altix 4700

4.2 CLB utilization and IP cores

The majority of logic is used for generation of mathematical operators. We used
Xilinx IP cores which follow the IEEE 754 standard that can be customized for
generation of mathematical operators and memories. For generation of mathe-
matical operators we used DSP48 slices [10]. Virtex 4 XC4VLX200 has 96 DSP48
slices and for generation of floating point IP multipliers 16 DPS48 slices are used
in “full usage” mode, so in the case where k=4 it’s possible to generate all mul-
tipliers with DSP48, and even to use DSP48 to create the adders. With respect
a floating point adders using just logic doesn’t result in an important increase
of slices while in case of multipliers this drastically change. In Table 2. main
characteristics of the design are shown.
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Table 2.Main characteristic of 64-bit SMVM design

Total slices 22898(25%)
BRAMs 311 (92%)
Multiplier latency 22
Adder latency 10
Required I/O bandwidth 8 GB/sec
Available I/O bandwidth 3.2 GB/sec
Operation Frequency 200 MHz

4.3 BRAM

In the design we used 4 BRAMs for vector X whose length is n and width is
of 64 bits. Also, 1 BRAM is used for vector Len with length of n and width of
32 bits. The Virtex-4 LX200 FPGA contains 336 BRAM units, each with the
capacity of 18Kb. This yields an internal high speed memory capacity of 6,048
Kb = 756 KB. For example, for storing vector X of size of 16.000 in BRAM
would require 125 KB. For the design to support SMVM with matrices of up
to 16.000 rows, 311 BRAM units are needed which represents 92% usage of
BRAM memory. Thus, we can see that this can be a limiting factor for the size
of matrices that can be calculated using the FPGA implementation. If memory
bandwidth increases, it would be even worst, as we would need more copies of
vector X, which would lead to further reduction of the size of matrices in order
to fit all vectors in BRAM.

5 Evaluation of proposed design

5.1 Performance

In our design we have 8 fully pipelined floating point units, so with operation
frequency at 200 MHz for this implementation we get peak floating point perfor-
mance of 1.6 GFlops/sec. Considering that the available bandwith is 3.2 GB/sec
and that design needs 8 GB/sec to reach peak performance we get that peak
theoretical efficiency of our design can be:

3.2 GB/sec

8 GB/sec

= 0.4 ∗ 100% = 40%

Thus, peak floating point performance that can be achieved is:

1.6 GFlops ∗ 0.4 = 640 MFlops

The area efficiency of our design is:

1.6 GFlops

22898 slice

≈ 0.07 MFlops/slice .

The idea of this work wasn’t to achieve any spectacular performance for
ALTIX platform but to show that on another platforms with the reasonable good
memory bandwith portability is preserve in order to achieve good performance
with low slice usage.
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5.2 Scalability of design

The implementation of this design is done with k=4, but to be in position to feed
all multipliers with new data every cycle we need 8 GB/sec of memory bandwith.
We need 4 non zeros form vector Val size of 64 bit and 4 elements from vector
Col of 16 bit, in total 8B × 4 + 2B × 4 = 40B, which gives the needed memory
bandwith of 8 GB/sec at 200MHz clock speed. In ALTIX platform for streaming,
independently of how many streams we use, total rate remain 3.2GB/sec. The
idea was to show that if memory bandwith increase our design can adopt, but also
if it increase more that 8 GB/sec the implementation can be easily augmented
by simple instantiations of more multipliers, adders and FIFOs in the front end
but the overall design would stay the same.

6 Comparison with other designs for SMVM

We focus on three works that implemented SMVM on FPGA, that we consider
the most relevant and novel. Some of them are meant to work iteratively by
doing SMVM multiple times on FPGA with some other operations included in
iterative solvers others just do SMVM and stream the result out. The great
majority of them use CRS as a standard compressed format. Thus, we will try
to stand out what could be the disadvantages of their designs. We start with
the work of Zhuo and Prasanna [6] who designed an adder tree based SMVM
implementation for double precision floating point where multiplicand vector X

is preloaded into FPGA. Computation is done row by row where the row is di-
vided into subrows. The length of subrows is equal to number of leaves k of front
end binary tree. Zero padding is implemented when the number of non zeros is
not multiple of k. They propose technique called merging in order to reduce the
overhead that can result from zero padding. To accumulate all subrows they use
reduction circuit that contains 7 floating point adders. By using just 7 adders
they limit the number of non zeros per row that can be calculated to 27 × k.
This means that matrices that have rows with more than 27 × k non zeros can
not be calculated and that design needs to be modified. In contrast thanks to
interleaving, our design accepts any input matrices with no hardware changes
required with just one single pipeline adder as reduction circuit.

Sun and Peterson [7] proposed Row Blocked CRS to represent sparse matrix.
They use multiple processing elements PEs along with reduction circuit to per-
form the SMVM. PEs are basically multipliers with FIFOs for storing intermedi-
ate results. By implementing simple PEs instead of an adder tree, zero padding
is avoided. For reduction circuit they proposed a similar circuit to [6] with one
exception that circuit has one input from resulting BRAM which enables per-
forming accumulation independently of the number of non zeros per row. They
use 4 adders along with buffers in reduction circuit whereas the design presented
here achieves reduction with just one simple pipeline adder. Because time spent
on I/O is greater than time needed by reduction circuit to finish SMVM, reduc-
tion circuit is shared between PEs. In the case that larger bandwidth is available
this can be bottleneck, in the sense that more reduction circuitry would need to
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be implemented which can considerably increase number of slices used.
The design of deLorimier and DeHon [8] computes iteratively Ai × X = Y

and uses exclusively on-chip BRAM to hold all of the SMVM data in order to
achieve big memory bandwidth. Here, the matrix is partition across multiples
PEs. The number of dot products assigned to PE should be the size of latency of
adder, L

add
to achieve parallelism due to pipelining. By scheduling parts of dot

products in correct order parallelism is obtained and any stalls are avoided. To
achieve good efficiency all PEs should get approximately same number of non
zeros. At the end of computation, some slots can not be fed and some bubbles
have to be introduced. This design is very similar to ours in the sense that both
reschedule the rows in order to achieve parallelism and avoid any stalls. The
difference is that in our design rescheduling is done for all non zero values of
matrix in such a way that when there are no more non zeros in a window slot
a new row with its non zeros is introduced to that slot. By this we will have
just some bubbles at the end and not at every partition part of design. Also in
our design all accumulation is done on single floating point adder while they are
using one adder for every PEs. Also due to the fact that all SMVM data resides
inside the FPGA before computation starts these extra bubbles can affect the
size of BRAM used. In contrast, in our case instead of putting all SMVM data
on FPGA we just stream vectors Val and X inside the FPGA.

7 Future Work

For future implementations we believe it is necessary to further improve the
design by overcoming the space limitations due to multiple instances of the X
vector. This will be particularly important for higher bandwidths, as in this case
even more copies of the vector will need to be stored. To reduce the storage
required by X we want to study the possibility of distributing a single copy of
the vector across several multi-ported memory banks. Each bank will then hold a
subset of the vector and can be accessed independently. In order for this to work,
the elements of the rows will need to be scheduled so to avoid conflicts when too
many multipliers want to access X vector elements that reside in the same bank.
Row elements can be rearranged and reordered for this to happen. Although it
might not always be possible to find row elements that avoid access conflicts,
and thus performance may slightly degrade, the possibility of storing a single
copy of vector X in the FPGA would have obvious advantages both in terms of
matrix size and as well as area efficiency. Thus we consider it worth to take a
look at this optimization. The area reduction, for instance, would simplify the
possibility of integrating the SMVM design together with a complete conjugate
gradient implementation.

8 Conclusions

In this paper we haved developed a design for interleaved CRS. We show how
using this new arrangement we can reduce the number of slices of the imple-
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mentation. As a consequence, both the area and power efficiency of the design
are improved. The design does not need to be changed for different matrices and
overall performance just depends on the total number of non zeros of the matrix.
One of the goals of the design is portability to other FPGA-based platforms with
higher I/O bandwidth. Also, the overall scalability of the design is preserved by
using a k binary tree structure in the front end. Based on our experience imple-
menting this design we identify the size of the on-chip memory as an important
bottleneck as it limits the size of the matrices that can be computed. Thus our
further efforts will concentrate on trying to solve this issue.
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