Architectural Simulation in the Kilo-core Era

R. Giorgi
University of Siena
Department of Information Engineering
giorgi@dii.unisi.it
A. Portero
University of Siena
Department of Information Engineering
portero@dii.unisi.it

ABSTRACT

The continuos improvements offered by the silicon technol-
ogy make possible the integration of always increasing num-
ber of cores on a single chip. Following this trend, it is ex-
pected to approach microprocessor architectures composed
of thousands of cores (i.e., kilo-cores architectures) in the
next future. In this context simulation tools represent a
crucial factor for designing architecture at such core scale.
This paper proposes a framework based on the COTSon
simulator [2], and able of scaling towards heterogeous kilo-
cores architectures. Compared with current state-of the-art
architectural simulators, the proposed framework provides
full-system simulation, a well balanced trade-off between
simulation speed and accuracy, and the support for power
consumption estimation. Experimental results confirm the
ability of the framework to scale up at least to 2000 cores’.

Categories and Subject Descriptors

B.2.2 [Arithmetic and Logic Structures]: Performance
Analysis and Design Aids—Simulation, Verification, Worst-
case analysis; B.3.3 [Memory Structures|: Performance
Analysis and Design Aids—Simulation, Verification, Worst-
case analysis

General Terms
Measurement, Performance

Keywords

Many-core system simulation

1. INTRODUCTION

Looking at the Moore’s Law, the continuos improvements
offered by silicon technology make possible placing always

IThis work has been supported by the IST-FET project
TERAFLUX, funded under the EU’s 7th Framework Pro-
gramme.

A. Scionti
University of Siena
Department of Information Engineering
scionti@dii.unisi.it
P. Faraboschi
HP Labs - Exascale Computing Lab

paolo.faraboschi@hp.com

increasing number of transistors on a single chip. Following
this trend, it is expected that future high performance mi-
croprocessor systems will be composed of thousand of cores
(i-e., kilo-cores architectures) connected each other through
a high bandwidth network-on-chip. Matching the perfor-
mance request with the power consumption requirement will
bring to a massive adoption of heterogeneous architectures.
More than in the past, the adoption of architectural simula-
tors has become essential for assuring the correctness of the
design. Architectural simulators historically suffered from
low simulation speed and accuracy, imposing serious limi-
tations on the ability of predicting correct behaviors of the
designed architecture, especially in the many-core era. With
the aim of providing a tool characterized by a high simula-
tion speed and accuracy for an heterogeneous kilo-core ar-
chitecture, this paper proposes a framework based on the
COTSon infrastructure. Compared with current state-of-
the-art simulation platforms, the proposed one offers a com-
plete environment for a full-system simulation and for the
power consumption estimation. In order to guarantuee fast
simulations, the framework implements a functional-directed
approach, where functional emulation is alternated to a com-
plete timing-based simulation. The result is the ability of
supporting the full stack of applications, middlewares and
OSs. The adoption of the open source Qemu [3] based func-
tional emulator opens the door to the support of several
core architectures. Finally, the integration of the proposed
framework with the McPAT tool [4], provides the ability of
predicting the power consumption for a given design.

2. PREVIOUS WORK

Recent works proposed different approaches aiming at the
simulation of kilo-core systems. In [5] the authors present
HORNET, an architectural simulator based on a highly con-
figurable network-on-chip engine. It may use processor traces,
execute a MIPS-based timing simulation or execute native
code using the Pin instrumentation tool. Although it tar-
gets kilo-core systems, it exploits a network oriented design,
with limited support for accurate heterogeneous core timing
simulations and the inability of running full-system simu-
lations. Similarly, in [8] the authors describe Multi2Sim,
a framework for multi-threaded multi-core processor sim-
ulations. It is composed of a functional emulation and a
timing-simulation layers. The main limitations are given by
the only support to the MIPS architecture and the inabil-
ity of supporting full-system simulation. MARSS-x86 [7]



MGcPAT - Power Estimation

f

Timing Simulation

Qsim Library

x
£8
3§

T

CACHE
HIERARCHY

Figure 1: The proposed kilo-core simulation frame-
work

is a fast cycle-accurate full-system simulator for heteroge-
neous architectures. It combines the functional emulation
provided by Qemu with the timing simulation of PTLsim
[9]. While the Qemu emulation makes possible to target
several core architectures, PTLsim only offers accurate tim-
ing models for the x86-64, requiring additional code to target
different systems. Furthermore, PTLsim has not been de-
signed to work on a kilo-core scale. Furthermore, neither
Multi2Sim nor MARSS-x86 are able to estimate power con-
sumption. MANIFOLD [1] is a simulator designed with a
similar approach to our proposed framework. It decouples
functional and timing simulations. Functional simulation
is based the Qsim library, while the timing model is based
on a dedicated module. It supports also the integration of
thermal and power modeling, however it appears to a pre-
mature stage of development. Finally, GRAPHITE [6] is a
multicore simulator designed to provide high level of simu-
lation performance by distributing the simulation workload.
Although its ability of scaling up to kilo-core architectures
keeping a fast simulation process, it does not provide an ac-
curate simulation model, only providing accurate estimation
methods.

3. COTSON-BASED FRAMEWORK

Figure 1 sketches the architecture of the proposed simula-
tion framework. It is composed of three main blocks con-
nected each other. The left side of the figure shows the
functional emulation block, formed by the open source Qemu
full-system emulator. We opted for this open source func-
tional layer, since it offers the largest architectural support
(e.g., x86-64, Microblaze, MIPS, PowerPC, etc.), allowing
us to simulate heterogeneous architectures. The right side
of the figure shows the timing simulation block. For each
component (i.e., cores, caches, memory, disks and network
interfaces) of the target architecture, there is a specific tim-
ing model. Periodically, the functional emulation is paused
in order to perform the timing simulation. The timing sim-
ulator block collects a set of events (e.g., instruction counts,
memory acceses, etc.) from the functional emulator, and
uses its accurate internal models to adjust the global simu-
lation time and the speed of the functional emulation. For
correctly managing events produced by a many-core target
architecture, a set of event queues are implemented. The
support for a kilo-core system is given by interconnecting
a large number of nodes. Each node is compose of a cer-
tain number of cores with their cache hierarchies, memory

blocks, network interfaces and disks. The nodes are con-
nected each other through their network interfaces. Prop-
erly setting the timing model of the network interfaces it
is possible to correctly simulate the presence of a network-
on-chip. With the aim of decoupling functional emulation
from timing simulation, we designed a communication inter-
face, that simplifies exchanging events and feedbacks infor-
mation. On the functional emulator side we exploit Qsim,
a library that simplifies the extraction of events from the
Qemu emulator. As previously mentioned, one of the main
issues when design an architectural simulator concerns the
trade-off between simulation speed and accuracy. Since tim-
ing simulation is a time consuming process that causes the
main slowdown, we choose to limit the timing simulation
only to those application phases of interest. This goal is
accomplished by implementing a sampling mechanism: the
functional emulation is monitored, and whenever one of the
phases is reached the timing simulation is enabled. Finally,
with the aim of providing power consumption estimation for
the targeted system, we directly interfaced our framework
with the McPAT tool. The power consumption estimation
can be performed both at the end and during the simula-
tion process, by querying and processing simulation events
collected in a local database.

4. EXPERIMENTAL RESULTS

In order to show the capability of the proposed framework
to efficiently simulate target systems on the scale of 1000-
cores, we implemented a parallelized matrix multiplication
algorithm. As an initial experiment, we correctly run the
benchmark on a system composed of 32 nodes, each of them
composed of 32 cores (i.e., for the experiments we used stan-
dard x86-64 cores). We run the matrix multiplication using
two matrices of 1024 elements. Further experiments demon-
strate that the system can easily target the matrix multipli-
cation algorithm on a system composed of up to 2000-cores.

5. CONCLUSIONS

This work presents a simulation framework targeting future
heterogeneous kilo-core architectures. The framework de-
couples the functional emulation from the accurate timing
simulation. Enabling timing simulation only for the appli-
cation phases of interest, allows exposing a well balanced
trade-off between simulation speed and accuracy. Thanks
to the large number of supported architectures by the open
source emulator, and to a core clustering approach, it easily
supports the simulation of heterogeneous systems. Exper-
imental results confirmed the ability of simulating future
kilo-core systems.

6. REFERENCES

[1] www.ece.gatech.edu/research/labs/casl/multicore.html.

[2] E. Argollo and et al. Cotson: Infrastructure for full
system simulation. SIGOPS Oper. Syst. Rev.,
43(1):52-61, January 2009.

[3] F. Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the 2005 USENIX Annual
Technical Conference, 2005.

[4] S. Li and et al. Mcpat: An integrated power, area, and
timing modeling framework for multicore and manycore
architectures. In Proceedings of the 42nd Annual



International Symposium on Microarchitecture, pages
469-480. IEEE/ACM, December 2009.

M. Lis and et al. Scalable, accurate multicore
simulation in the 1000-core era. In ISPASS, pages
175-185, April 2011.

J. E. Miller and et al. Graphite: A distributed parallel
simulator for multicores. In HPCA, 2010.

A. Patel and et al. Marss-x86: A gemu-based
micro-architectural and systems simulator for x86
multicore processors. In I1st International Qemu Users’
Forum, pages 29-30, 2011.

R. Ubal and et al. Multi2sim: A simulation framework
to evaluate multicore-multithreaded processors. In
SBAC-PAD, pages 62-68, 2007.

M. T. Yourst. Ptlsim: A cycle accurate full system
x86-64 microarchitectural simulator. In ISPASS, pages
23-34, April 2007.



