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ABSTRACT 
The TERAFLUX project is a Future and Emerging Technologies 
(FET) Large-Scale Project funded by the European Union. 
TERAFLUX is at the forefront of major research challenges such 
as programmability, manageable architecture design, reliability of 
many-core or 1000+ core chips. In the near future, new computing 
systems will consist of a huge number of transistors - probably 1 
Tera or 1000 billions by 2020: we name such systems as 
"Teradevices". In this project, the aim is to solve the three 
challenges at once by using the dataflow principles wherever they 
are applicable or make sense in the general economy of the 
system. An Instruction Set Extension (ISE) for the x86-64 is 
illustrated. This ISE supports the dataflow execution of threads. 

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures---
Teradevices; C.1.3 [Other Architecture Style]: Dataflow; D.1.3 
[Programming Techniques]: Concurrent Programming; B.8.0 
[Performance and Reliability]: General; D.3.4 [Processors]: 
Compilers. 

General Terms 
Performance, Design, Reliability, Languages. 

Keywords 
Keywords are your own designated keywords. 

1. INTRODUCTION 
Most recent updates in the worldwide scenario include the 

availability of a new type of transistor (3D transistor), which 
marks the biggest change in the semiconductor industry since 
1948 with the introduction of the transistor itself. New materials 
like Graphene may allow even greater power saving. The 
technology-node scaling has reached 22nm, with 14nm silicon 
foundries to be operative by 2013, and it seems the pace will 
continue at least until 8nm. The 3D layering gives new lymph to 
the Moore's law too. In this scenario, and in perspective beyond 
the year 2020, the TERAFLUX project ]2] brings together 10 
industrial and academic partners to give their best contribution  in 
order to find a common ground to solve at once all the above 
three challenges. 

The research in this project is inspired by the Dataflow 
principle. As recalled by Jack Dennis [1], dataflow is "a Scheme 
of Computation in which an activity is initiated by presence of the 
data it needs to perform its function”. We believe that, if properly 
exploited, dataflow can enable parallelism which is orders of 
magnitude greater than what is achievable by control-flow 
dominated execution models. To investigate our concepts, we are 
studying dataflow principles at any level of a complete 
transformation hierarchy, starting from general and complex 
applications able to load properly a Teradevice through 
programming models, compilation tools, reliability techniques 
and architecture. 

One key point it is also the evaluation of this system: our 
choice has been to rely on an existing simulation infrastructure 
(HPLabs COTSon) that immediately enabled us to start from a 
nowadays Teradevice (i.e., a 1000+ cluster of nodes, where each 
node consists of tens of cores) and progressively evolve such 
system into a more ambitious system where we can gradually 
remove major bottlenecks. While relying on solid and well-known 
reference points such as the x86-64 ISA, GCC tools, StarSs 
programming model and applications, we wish to demonstrate the 
validity of our research in such common evaluation infrastructure. 

Below, we focus on some part of dataflow execution model 
as proposed by the partner University of Siena with the author’s 
guidance. 

2. THE DATAFLOW THREADS 
The TERAFLUX system is not forced to follow entirely the 

dataflow paradigm: in fact, we distinguish among legacy and 
system-threads (L-, S-threads) and dataflow threads (DF-threads): 
this will allow for a progressive migration of programs to the new 
"dataflow paradigm", while accelerating the available DF-threads 
on the more dataflow-friendly cores [4]. One other important 
choice is the exploration of synchronization mechanisms such as 
transactional memory, and the repetition of a thread on a different 
core by using the dataflow principles [5] in cases when the cores 
are detected as failing. We can currently afford to run with an 
acceptable slowdown and accuracy, parallel, scalable, full-system 
(with unmodified Linux) simulations of 1000+ x86-64 cores [6] 
while experimenting with very ambitious changes in the execution 
model implying a major effort to support the execution model 
based on dataflow threads [3], especially from the compiler point 
of view. 

Moreover, in recent experiments we were able to boot a 
kind of “datacenter-in-a-box”, thanks to a simulation host HP DL-
585-G7 with 64 AMD cores and 1 TB of shared memory. The 
simulation environment has been able to boot about 7000 guest 
cores, thanks to the off-the-shelf capabilities of COTSon. 
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3. THE T-STAR ISA EXTENSION 
In order to support the execution of DF-Threads, we 

designed a minimalistic extension of the x86-64 ISA, that we call 
T-Star (or T-*) [3] shown in Table 1. The key-points of this ISE 
are: i) it enables an asynchronous execution of threads, that will 
execute not under the control-flow of the program but under the 
data-flow of it; ii) the execution of a DF-thread is decided by an 

core-external component that we call DTS (or Distributed Thread 
Scheduler) [3]; iii) the types of memory that are used are 
distinguished in 4 main types (1-to-1 communication or Thread 
Local Storage, N-to-1 or Frame Memory, 1-to-N or Owner 
Writable Memory, and N-to-N or Transactional Memory. More 
details are available in the public deliverables of the project (see 
http://teraflux.eu).  

 

Table 1: T* Instruction Set Extension (ISE) for the x86-64 ISA 
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Synopsis TSCHEDULE RS1, RS2, RD TSCHEDULE(<IP>, <SC>,  &<frame_pointer>) 

Description This instruction allocates the resources (a DF-frame of size RS2 words and a corresponding entry in the Distributed Thread 
Scheduler – or DTS) for a new DF-thread and returns its Frame Pointer (FP) in RD. RS1 specifies the Instruction Pointer (IP) of the 
first instruction of the code of this DF-thread and RS2 specifies the Synchronization Count (SC).  

Notes The allocated DF-thread is not executed until its SC reaches 0. The TSCHEDULE can be conditional or non-conditional based on 
the value stored in the zero flag. If the zero flag is set to 1 then the TSCHEDULE will take effect, otherwise it is ignored.  

Synopsis TDESTROY TDESTROY 

Description The thread that invokes TDESTROY finishes and its DF-frame is freed, (the corresponding entry in the Distributed Thread 
Scheduler is also freed). 

Synopsis TWRITE RS, RD, offset *(<frame_pointer> + <offset>) = (<source_register>) 

Description The data in RS is stored into the DF-frame pointed to by RD at the specified offset. 

Notes Side Effect: The Distributed Thread Scheduler decrements the SC of the corresponding DF-thread entry (located through the FP):    
SCFP = SCFP-1 

Synopsis TREAD offset, RD (<destination_register>) = *(<self_frame_pointer> + <offset>) 

Description Loads the data indexed by ‘offset’ from the self (current thread) DF-frame into RD. 

Notes Assumption: the DTS has to load into the register implicitly used by TREAD the value <self_frame_pointer>. In a x86-64 
implementation, we can reserve RAX for this purpose. 

Synopsis TALLOC RS1, RS2, RD <pointer> = TALLOC (<size>, <type>) 

Description Allocates a block of memory of RS1 words. The pointer to it is stored in RD. RS2 specifies the special purpose memory type. 
Notes The Distributed Thread Scheduler tracks the memory allocated. An implementation can code <type> in the 2 LSBs of <size> 

Synopsis TFREE RS TFREE(<pointer>) 

Description Frees memory pointed to by RS. 
Notes The Distributed Thread Scheduler tracks the memory deallocated. 


