
TERAFLUX: Exploiting Dataflow Parallelism in Teradevices

Roberto Giorgi
Universita’ degli Studi di Siena

Via Roma 56, Siena, ITALY

http://www.dii.unisi.it/~giorgi

ABSTRACT
The TERAFLUX project is a Future and Emerging Technologies
(FET) Large-Scale Project funded by the European Union.
TERAFLUX is at the forefront of major research challenges such
as programmability, manageable architecture design, reliability of
many-core or 1000+ core chips. In the near future, new computing
systems will consist of a huge number of transistors - probably 1
Tera or 1000 billions by 2020: we name such systems as
"Teradevices". In this project, the aim is to solve the three
challenges at once by using the dataflow principles wherever they
are applicable or make sense in the general economy of the
system. An Instruction Set Extension (ISE) for the x86-64 is
illustrated. This ISE supports the dataflow execution of threads.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures---
Teradevices; C.1.3 [Other Architecture Style]: Dataflow; D.1.3
[Programming Techniques]: Concurrent Programming; B.8.0
[Performance and Reliability]: General; D.3.4 [Processors]:
Compilers.

General Terms
Performance, Design, Reliability, Languages.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Most recent updates in the worldwide scenario include the

availability of a new type of transistor (3D transistor), which
marks the biggest change in the semiconductor industry since
1948 with the introduction of the transistor itself. New materials
like Graphene may allow even greater power saving. The
technology-node scaling has reached 22nm, with 14nm silicon
foundries to be operative by 2013, and it seems the pace will
continue at least until 8nm. The 3D layering gives new lymph to
the Moore's law too. In this scenario, and in perspective beyond
the year 2020, the TERAFLUX project]2] brings together 10
industrial and academic partners to give their best contribution in
order to find a common ground to solve at once all the above
three challenges.

The research in this project is inspired by the Dataflow
principle. As recalled by Jack Dennis [1], dataflow is "a Scheme
of Computation in which an activity is initiated by presence of the
data it needs to perform its function”. We believe that, if properly
exploited, dataflow can enable parallelism which is orders of
magnitude greater than what is achievable by control-flow
dominated execution models. To investigate our concepts, we are
studying dataflow principles at any level of a complete
transformation hierarchy, starting from general and complex
applications able to load properly a Teradevice through
programming models, compilation tools, reliability techniques
and architecture.

One key point it is also the evaluation of this system: our
choice has been to rely on an existing simulation infrastructure
(HPLabs COTSon) that immediately enabled us to start from a
nowadays Teradevice (i.e., a 1000+ cluster of nodes, where each
node consists of tens of cores) and progressively evolve such
system into a more ambitious system where we can gradually
remove major bottlenecks. While relying on solid and well-known
reference points such as the x86-64 ISA, GCC tools, StarSs
programming model and applications, we wish to demonstrate the
validity of our research in such common evaluation infrastructure.

Below, we focus on some part of dataflow execution model
as proposed by the partner University of Siena with the author’s
guidance.

2. THE DATAFLOW THREADS
The TERAFLUX system is not forced to follow entirely the

dataflow paradigm: in fact, we distinguish among legacy and
system-threads (L-, S-threads) and dataflow threads (DF-threads):
this will allow for a progressive migration of programs to the new
"dataflow paradigm", while accelerating the available DF-threads
on the more dataflow-friendly cores [4]. One other important
choice is the exploration of synchronization mechanisms such as
transactional memory, and the repetition of a thread on a different
core by using the dataflow principles [5] in cases when the cores
are detected as failing. We can currently afford to run with an
acceptable slowdown and accuracy, parallel, scalable, full-system
(with unmodified Linux) simulations of 1000+ x86-64 cores [6]
while experimenting with very ambitious changes in the execution
model implying a major effort to support the execution model
based on dataflow threads [3], especially from the compiler point
of view.

Moreover, in recent experiments we were able to boot a
kind of “datacenter-in-a-box”, thanks to a simulation host HP DL-
585-G7 with 64 AMD cores and 1 TB of shared memory. The
simulation environment has been able to boot about 7000 guest
cores, thanks to the off-the-shelf capabilities of COTSon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright is held by the author/owner(s).
CF’12, May 15–17, 2012, Cagliari, Italy.
ACM 978-1-4503-1215-8/12/05.…$10.00.

3. THE T-STAR ISA EXTENSION
In order to support the execution of DF-Threads, we

designed a minimalistic extension of the x86-64 ISA, that we call
T-Star (or T-*) [3] shown in Table 1. The key-points of this ISE
are: i) it enables an asynchronous execution of threads, that will
execute not under the control-flow of the program but under the
data-flow of it; ii) the execution of a DF-thread is decided by an

core-external component that we call DTS (or Distributed Thread
Scheduler) [3]; iii) the types of memory that are used are
distinguished in 4 main types (1-to-1 communication or Thread
Local Storage, N-to-1 or Frame Memory, 1-to-N or Owner
Writable Memory, and N-to-N or Transactional Memory. More
details are available in the public deliverables of the project (see
http://teraflux.eu).

Table 1: T* Instruction Set Extension (ISE) for the x86-64 ISA

4. ACKNOWLEDGMENTS
This work was partly funded by the European FP7 projects

TERAFLUX id. 249013 http://www.teraflux.eu.

5. REFERENCES
[1] J. Dennis, "The Data Flow Concept Past, Present and

Future", DFM-2011: Data-Flow Execution Models for
Extreme Scale Computing, Oct. 2011

[2] R. Giorgi, "TERAFLUX: Ideas for the Future Many-Cores",
ODES: Workshop on Optimizations for DSP and Embedded
Systems, Apr. 2011, pp. 38-38.

[3] A. Portero Z. Yu, R. Giorgi, "T-Star (T*): An x86-64 ISA
Extension to support thread execution on many cores",
HiPEAC ACACES-2011, ISBN:978 90 382 17987, Fiuggi,
Italy, July 2011, pp. 277-280.

[4] Z. Yu, A. Righi, R. Giorgi, "A Case Study on the Design
Trade-off of a Thread Level Data Flow based Many-core
Architecture", Future Computing, ISBN:978-1-61208-154-0,
Rome, Italy, Sept. 2011, pp. 100-106, Best paper award.

[5] S. Weis, A.Garbade, J. Wolf, B. Fechner, A. Mendelson R.
Giorgi, T. Ungerer, "A Fault Detection and Recovery
Architecture for a Teradevice Dataflow System", DFM-2011:
Data-Flow Execution Models for Extreme Scale Computing,
Oct. 2011, pp. 39-45.

[6] A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L.
Carro, A. Garbade, S. Weis, T. Ungerer, R. Giorgi,
"Simulating the Future kilo-x86-64 core Processors and their
Infrastructure", 45th Annual Simulation Symp. (ANSS12),
Orlando, FL, Mar 2012.

Synopsis TSCHEDULE RS1, RS2, RD TSCHEDULE(<IP>, <SC>, &<frame_pointer>)

Description This instruction allocates the resources (a DF-frame of size RS2 words and a corresponding entry in the Distributed Thread
Scheduler – or DTS) for a new DF-thread and returns its Frame Pointer (FP) in RD. RS1 specifies the Instruction Pointer (IP) of the
first instruction of the code of this DF-thread and RS2 specifies the Synchronization Count (SC).

Notes The allocated DF-thread is not executed until its SC reaches 0. The TSCHEDULE can be conditional or non-conditional based on
the value stored in the zero flag. If the zero flag is set to 1 then the TSCHEDULE will take effect, otherwise it is ignored.

Synopsis TDESTROY TDESTROY

Description The thread that invokes TDESTROY finishes and its DF-frame is freed, (the corresponding entry in the Distributed Thread
Scheduler is also freed).

Synopsis TWRITE RS, RD, offset *(<frame_pointer> + <offset>) = (<source_register>)

Description The data in RS is stored into the DF-frame pointed to by RD at the specified offset.

Notes Side Effect: The Distributed Thread Scheduler decrements the SC of the corresponding DF-thread entry (located through the FP):
SCFP = SCFP-1

Synopsis TREAD offset, RD (<destination_register>) = *(<self_frame_pointer> + <offset>)

Description Loads the data indexed by ‘offset’ from the self (current thread) DF-frame into RD.

Notes Assumption: the DTS has to load into the register implicitly used by TREAD the value <self_frame_pointer>. In a x86-64
implementation, we can reserve RAX for this purpose.

Synopsis TALLOC RS1, RS2, RD <pointer> = TALLOC (<size>, <type>)

Description Allocates a block of memory of RS1 words. The pointer to it is stored in RD. RS2 specifies the special purpose memory type.
Notes The Distributed Thread Scheduler tracks the memory allocated. An implementation can code <type> in the 2 LSBs of <size>

Synopsis TFREE RS TFREE(<pointer>)

Description Frees memory pointed to by RS.
Notes The Distributed Thread Scheduler tracks the memory deallocated.

