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Abstract—Current computing systems are mostly focused on
achieving performance, programmability, energy efftiency,
resiliency by essentially trying to replicate the ni-core execution
model n-times in parallel on a multi/many-core sygm. This
choice has heavily conditioned the way both softwar and
hardware are designed nowadays. However, as old asmputer
architecture is the concept of dataflow, that is ‘fitiating an
activity in presence of the data it needs to perfan its function”
[J. Dennis]. Dataflow had been historically initialy explored at
instruction level and has led to the major result bthe realization
of current superscalar processors, which implemena form of
“restricted dataflow” at instruction level.

In this paper, we illustrate the idea of using thedataflow
concept to define novel thread types that we call &a-Flow-
Threads or DF-Threads. The advantages we are aiminat regard
several aspects, not fully explored vyet: i) isolaig the
computations so that communication patterns can bemore
efficiently managed by a not-so-complex architectu; ii)
possibility to repeat the execution of a thread ircase of detected
faults affecting the thread resources; iii) providng a minimalistic
low-level API for allowing compilers and programmeis to map
their parallel codes and architects to implement mie efficient
and scalable systems. The semantics of DF-Threadsailso tightly
connected to their execution model, hereby illustrad.

Several other efforts have been done with similar yrposes
since the introduction of macro-dataflow through thke more
recent DF-Codelets and the OCR project. In our caseve aim at
a more complete model with the above advantages anith
particular including the way of managing the mutabk shared
state by relying on the transactional memory semaits.

Our initial experiments show how to map some simplé&ernel
and the scalability potential on a futuristic 1k-cae many-core.

Keywords—dataflow; many-core; multi-core; multi-po@ssor
programmability; execution model; scalability; engy efficiency

I. INTRODUCTION

The main challenges of future Exascale computirsgesys
have been identified in several public roadmapsafig large
research projects such as TERAFLUX [2], X-STACK,[3]
UHPC [4] — to name a few — as programmability, dioity of
architecture, resiliency, scalability. In order teach the
roadmap goals, systems should be able to managkdusnof
millions or more threads of a possibly fine graimesin a
dataflow fashion. Therefore,
appropriately is becoming relevant for designinghssystems.

Paolo Faraboschi
Intelligent Infrastructure Lab
Hewlett Packard
Barcelona, Spain

More recently, research outlines the importance of
interfaces to decouple the software stack fromuthaerlying
machine: some noticeable efforts had been presentede
TERAFLUX project [8], the Data-Flow Codelet mod8],[and
the Open Community Run-time (OCR) project [13].these
cases, a dataflow inspired interface to start cdatjmn on the
availability of data or events has been proposed.

In particular, the dataflow paradigm provides aageht
way to encapsulate computations to obtain sevdralrdages:

i) in order to avoid “spaghetti-like” accesses tatad
memory, DF-Threads obey a specific memory modeigchvh
provides isolation of accesses, and therefore atgrdocality
and the possibility to reduce the energy associ&bedata
transfers: the associated memory model is desciib8dc. IV;

ii) an important property of DF-Threads is theipahility
of being restarted in presence of detected fadlesting the
thread resources such as cores, therefore proviimguch
better resilience of the system, without the nefedsing full-
system classical checkpointing/restart techniqunés Pproperty
of DF-Thread has been thoroughly discussed in entqeaper
[14] and hence here we discuss the rest of DF-threa
properties. Experiments [14] had shown that theesysis
capable of continuing to execute a complex comjutaby
relying on the capability of restarting a single-DRread that
had encountered faults, e.g., on cores or inteisn

iii) a minimalistic APl (Sec. lll) and its architesal
support is also described here (Sec. V): the aito isrovide
simple yet powerful interface that can be targdétgdompilers
and programmers to map high level languages; puevio
experiments [2] had shown that is possible to en&@genMP
like programming models like StarSs/OmpSs [15], Oy
[16] or OpenStream [19] so that they can be mappe®F-
Threads architectural support such as the T* Indtn Set
Extension [8][26]. In addition to this, the DF-Thdk API and
its public availability on the COTSon [24] simulat@ms at a
simpler experimentation and adoption. Also, the Diread
API may allow for different implementations rangifrgm a
purely software one to a high specialized one gnFRPGAs.

We propose that DF-Threads could be specialized int
several types (see Sec. Il). One of the main reasorhave
different thread types is that each of these tlwebds a

managing those threadgjtferent behavior in relation to their memory asses and

may need a different hardware support for theircatien.

Since the proposal of macro dataflow [5], many hadSimilar concepts are used in Staged Execution, lwhims at

proposed to use some clustering of instruction®rigier to
create threads, or units of computations largen thasingle
instruction in order to efficiently distribute theorkload across
multiple cores: ETS, Multithreaded Monsoon, TAM, PE
Tera, EARTH, SDF, DDM, DTA, just to name a few [g]

dividing a program into segments and executing sagment
at the core having the data and/or functionalitipeést run that
segment. Some works using these concepts include
Accelerated Critical Sections [10], Apple’s Granden@al
Dispatch [11], producer-consumer pipelines and Qgatpn



Spreading [12] and Cilk [13]. We extend this disias after
presenting more details on the proposed archite¢gec. V).

The main contributions of this paper are:

i)  Precise description of a possible API for a datflo
based execution model (DF-Threads);

i) Related discussion of a possible chip architecame
the architectural support;
iii) Presenting initial results on the scalability ofeth

proposed DF-Threads and their execution model.

The rest of the paper is organized as follows: meduce
the DF-Threads types (Sec. Il) with the aim to mefa Data-
Flow based Execution Model that in turn relies ba proper
definition of Data-Flow API (Sec. lll) and its sentizs; the
latter also includes the definition of Memory Mod8kc. 1V),
its related architectural support (Sec. V) and scdption of a
possible chip architecture (Sec. VI). Finally, wiscdss results
(Sec. VII), related work (Sec. VIII) and we conaoduithe paper.

Il. DF-THREADSTYPES
Since our proposal aims at a holistic bookkeepihghe
thread resource usage, in order to avoid unforesesefticts on
using resources like cores, memory, 1/O we fir§tedéntiate
what is a DF-Thread and what is not.

In particular, we assume that for providing systarvices
and /O there exist S-Threads (System Threads)racdse we
need to execute some legacy code that we do ndt tvae-
compile or we cannot re-compile into DF-Threads wié#
encapsulate such thread in a L-Thread (Legacy @hreatype
and S-type threads can respectively execute omyegmes or
on system-cores, i.e., on “bigger-cores” with mogsources
like caches, functional units, potential for spatioh to
accelerate single threads or to perform 1/O opematiand
implement the full set of OS services.

DF-Threads on the other side aim at isolating ttess to
data and code through different level of “grading”particular
we will consider DF1-Threads and DF2-Threads aneheso
specialization of them in the following.

A. DF1-Thread

The DF1 thread is defined for ideal reference: hé t
compilation is able to produce only DF1 threadsferesee a
greater potential for acceleration and saving po{eey., by
disabling branch prediction and branching units). D&1-
Thread is defined as follows:
e Communication among

Assignment Semantics.

threads preserves

0 A consumer thread can only be activated when all

its input data are ready (data flow principle).

Singl

e Thread granularity is compiler controlled, aimingtliae
coarser grain possible that results in efficiergaesion

« We allow the frame to define and use Thread Local

Storage (see Memory Model Section — sec. V).

e Each thread and data object could be tagged with a

combination of compiler and runtime support [15][16
B. DF1b-Thread

A DF1b thread is a DF1-Thread with the addition of

internal control flow (jumps, branches, loops). WhDF1
threads enable more efficient data flow, sometith@say be
more efficient or necessary to take advantage dé-docality.

It has to noted that in both cases (DF1, DF1b) Dfe
threads are not allowed to jump anywhere: this©iéshasis for
a side-effect free, repeatable execution [14][29has also to
be noted that it's not impossible to generate Difgads (we
provide public examples: http://cotson.sf.net ).

C. DF2-Thread
DF2-threads support flexible data structures anee hen

efficient support for streaming [19]. A DF2-Threesda DF1
(or DF1b) thread that includes references to obj@atrays and
dynamically created structures) which obey purectional

semantics (i.e. they are single assignment). DF2atls can
also make limited “service calls”, for example tboeate

memory dynamically. Such “service calls” shouldéx@reme
lightweight i.e. in the order of a few cycles ondze supported
by the hardware co-processor that we call Disteébuthread

Scheduler (DTS hereby) (see V.B and the DF_TALLQ®C i

Sec. ll) through some special instruction extemss outlined
later in this paper (see Sec. V.A).

D. DF2tm Thread

This is a DF2 thread but with the addition thatc#n
contain references to objects in Transactional Mgm&/hen
accessing shared memory, the DF-threads can beethak
fully transactional or can be split in DF2tm threab that its
management can activate transactional bookkeepimgstich
as TCC [20] or Intel TSX [21].

E. L-Thread

An L-Thread is a legacy thread that will contairy @ode
that is not possible to fit in the previous catégm(DF1, DF2),
and in particular that may require side-effectswdrere the
control flow is particularly DF “unfriendly”. Thegan be used
for legacy code (e.g. to run code on cores witadgdeatures).

F. SThread

system calls and I/O. This type of thread is paadigtblocking

0 As DF1 threads only operate on values; the onlyherefore can compromise the predictability ofdtsation. It
memory consistency requirement is that when aontains certain system calls or doing I/O andetfuee will be
thread starts to execute, it must observe the dorrescheduled on cores that support specific I/O sesyiaot
value of variables written to its associated memoryavailable on other cores.

(DF-frame memory) by the producer threads.

The DTS will be informed of L- and S- thread (natlyo

* The execution of the DF1-Thread code is done in @F-thread) scheduling requests (and can possikéydaer the

control-flow manner.

» Each thread has a single entry and a single ekit.po
0 No jumps between DF1-Threads are allowed
0 Internal Jumps must also be avoided

scheduling to the physical cores) in order to prigpbook-
keep scheduling requests to the available cores.

It has to be noted that classical signaling likp-threads is
not required: either threads work locally, in proeizconsumer
fashion or use shared data through transactions|{ge

An S-Thread is a thread taking care of more complex



G. Discussion on the several DF-Thread Types

As detailed in the previous subsection, DF-threzishave
less or higher “dataflow purity”: the highest lexa#l dataflow
purity will be assigned to behavior that gets valas inputs in

lll. DF-THREADAPI

The following prototypes define the DF-Thread ARk C-
like syntax, where uint_8, uint64_t are fixed widiipes as
defined, e.g., in C++11, for exemplification henet lzan be

a memory that we caldF-frame and produces values as output overloaded with any base type of a, e.g., 64-bithine.

to one or more DF-frames (DF1-threads). DF2-threstils
communicate in a dataflow fashion once collision aonlata

voi d *DF_TSCHEDULE(bool cnd, void *ip, uint64_t sc);

happens and it is resolved through transactiond. &td DF2
threads may need to interact with a memory man@gehese
cases we aim at fast operations as outlined iniquewvork
[22]). Both types of DF threads can be abandoneédestarted
in the event of an error; if unwanted locally alited storage is
left this would produce wasted memory. In more node
languages this can be handled by automatic garxigetion,

This function allocates tl resources (a C-frame of size'sc

words and a corresponding entry in the Distributéntead
Scheduler — or DTS) for a new DF-thread and retitsnSrame
Pointer (fp); ‘ip’ specifies the Instruction Pointef the first
instruction of the code of this DF-thread; the abagtions are
actually performed based on the predicate ‘cndhdaon).
The allocated DF-thread is not executed untildts feaches 0.

but in languages which rely on programmer invoke
reclamation, this may introduce overheads.

voi d DF_DESTROY() ;

The DF-threads can be abstracted as having a set
(limited number) of inputs, a set of (limited numpef outputs

The thread that invokes DF_DESTROY finishes andDi-
fome is freed, (the corresponding entry in thetribisted
Thread Scheduler is also freed).

and may use local variables (Thread Local Storag&ls)

such as local arrays or more complex data strustufbe

ui nt64_t DF_TREAD(ui nt64_t of fset);

output of one DF-thread can be forwarded to thetimb other
DF-thread(s) through DF-frames. From a programnoéntpof
view the data also have different types of consistdased on

Loads the data indexed by 'offset’ from the selfr@nt thread
DF-frame. Assumption: the DF-thread has an impfdinter
to its DF-frame

the Memory Model that we adopt. DF1-threads forneple,

will use DF-frames allocated in a Frame Memory atadn the

void DF_TWR TE(uint64_t val, void *fp,uint64_t off);

Thread Local Storage. More details are given irtiSedV.

Please note that this model guarantees the comsyste
the data by construction since it does not allow tivreads that
may change or read the same address to run sireaiialy.

The data ‘val’ is stored into the I-frame pointed to by ‘fp’ @
the specified offset ‘off. Note: we assume thatiteg are
snooped by the architecture (in particular by tHeSPso that
for every 64-bit word that is written the ‘sc’ ohda DF-
Thread - to which the fp belongs — is decremented.

When we use the Transactional Memory through th@tmF

threads, we may relax this condition, allowing DR2hreads

voi d *DF_TALLOC(ui nt64_t size, uint_8 type);

that share same data elements in their write skétexecuted
in parallel, assuming that the TM mechanism witlolge the
conflicts if they occur. In the Memory Model Sectitsec. IV),

Allocates a block of memory of ‘size’ words andureis the
pointer (or null); ‘type’ specifies the special pase memory
type (see section IV). The DTS tracks the allocatednory.

we detail also this and other type of memory cdestsy.

The entire management of the system needs to keidan

voi d DF_TFREE(voi d *p);

hierarchical manner and with a combination of neW/BW
interfaces. At the top level, the system (not thegmmmer)

Frees memory pointed to by ‘p’. The DTS tracks
deallocated memory.

needs to decide where each DF/L/S-thread will beceted
and how the “output variables” (write list of a [Dread)
know the address of the input variable of the Diedld which
uses it. Early Dataflow models supported data &iring via
mechanisms which proved to be inefficient [23] tuat intend
to build on later work [2][22]]27][8], which has stvn how
these mechanisms can be introduced to provide iaffic
support for a full range of language features. Thajor
departure from the “classical DF” architecture iket
introduction of Transactional Memory and its inggyn with

the dynamic frame management and hardware threag,

scheduling. Transactional Memory allows DF-Threads
manipulate shared global state but, because ofistiiation
property of transactions, allows the thread to eeodc
unhindered (except for possible transaction restartonflict)
and without explicit synchronization with otherdhds.

Regarding the support in the Operating System,otiilg
need is for a driver for passing the higher levehesluling
policies to the lower level DTS, the hierarchicastdbuted
scheduler.

This API is thought as a target for compiler or
programmers that are building run-time libraries.can be
mapped on any instruction set: in previous workamalyzed
the possibility of implementing this APl as an hstion Set
Extension called T-Star (T*) for x86_64 [2][8]: this case this
API provides more flexibility for implementationsThe
programmer gets access to memory regions with peeific
semantics by allocating explicitly the needed memiype.
DF_TREAD/DF-TWRITE operations can be easily mapped
the underlying load/store operations and their tienawill
ange when accessing a DF-Frame of a certain(g/ge no
‘sc’ decrement for Thread Local Storage or TLSactivating
speculative store buffering for Transactional Meyhor

The DTS keeps track — locally and in a distribuashion--
of entries that we call ‘continuations’ which statee self-
frame pointer (fp) the instruction pointer (ip), eth
synchronization count (sc) and other informatidatesl to the
associated core where the thread runs (as ouilinEijure 1).
Other memory type pointers can be stored in thefrBire
associated to the DF-Thread.
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Figure 1. High level Memory Model Implementation.

IV. DF-THREADMEMORY MODEL

V. ARCHITECTURAL SUPPORTIO DF-THREADS

The proposed DF-thread APl (Sec. lll) is also gasil
supported by the architecture either by a spetifstruction
Set Extension (as outlined in Section V.A) or bypmiag the
functions to existing ISA instructions, thereforeoyiding
purely software-based implementation. The lattseoaill not
be discussed in this paper as it involves a detallscussion
regarding the mechanisms to assure an atomic umpdatee
synchronization count associated with each DF-Thréathe
following we investigate a hardware based suppomugh
specialized instructions (the T* instructions), thestributed
Thread Scheduler which can be thought as a co-psoce¢hat
is driven by the T* instructions and a possiblen#éecture.

A. THE T* INSTRUCTION SET EXTENSON

The six functions DF_TSCHEDULE, DF _TDESTROY,
DF_TREAD, DF_TWRITE, DF_TALLOC and DF_TFREE
introduced above can be easily mapped on the riagpek”
instructions TSCHEDULE, TDESTROY, TREAD, TWRITE,

The DF-Thread Memory Model (DFTMM for short) relies TALLOC, TFREE as defined in [8]. In our initial eepment

on the fact that in shared-memory systems (evethannon-

we found possible to map the DF-Thread APl on such

coherent case) the memory is used to implement thi@structions by using the GCC in-line assembly anaperly

communication among threads. Therefore, we cartifgighe
following thread communication patterns:

a) “N-to-1": we have N threads producing data that wil

be consumed later on by a single thread; this aasical
producer-consumer pattern; in order to implemer, thve
associate a “frame” of memory taken from a logregfion that
we call “Frame Memory” or FM;

b) “l1-to-1": we use this to indicate
communication’, i.e., the same thread is consunantarge
portion of dynamically allocated private memory; el the
memory from this region “Private Memory” or PM @his also
known in the literature as Thread-Local Storagé@lds);

‘self-

mapping the language data types into the fixed gesters.
This provides a path to map the T* instructionihigher

(level languages such as C in order to build the-ThFead

library”. Since the mapping is straightforward frahe already
provided T* specification [8], we do not detail fiirther.

However, we now provide a prototype implementationthe
http://cotson.sf.net website (see for example t8&)4 branch)
and a preliminary evaluation in section VII.

B. THEDISTRIBUTED THREAD SCHEDULER (DTS

In order to efficiently provide architectural suppdor
threads scheduling to the OS, we can adopt deditetelware
that can act as a co-processor (similarly, e.ca, imathematical

“ .co-processor) that implements the behavior of the T
c) “N-to-N":in the case when a mutable shared state igsrctions. We call this co-processor Distribut@tiread
necessary for the computation, we rely on the CEMPi gchequler or DTS. The actual on-chip implementatibthe

capability to identify such code and use as basichanism  pr1s s realized in a distributed and hierarchieahion: each
the atomic transactions provided by the Transaatisfemory  5re in a node is equipped with a dedicated ualted Local

[17][20][21] or TM. Also note that this kind of s&abased Thread Scheduling Unit or LTSU, which is resporsifdr the

computation could be theoretically treated by FMt BM is
currently more widely available [21].

main scheduling activities, while a node-level unihe
Distributed Thread Scheduling Unit or DTSU, cooades L-

d) “l-to-N”: communication is managed through FrameTSUs while keeping a global view of the node and

Memory; a common case is the in-place-update wheingle
writer wishes to make available, e.g., an arraymelg to
several consumers shortly: we suggest to managectse
through the distribution of a pointer to the eleménmhich
resides in a certain frame that could be garbadiected later
on (cf. Figure 1); as of a similar definition inthaced by prof.
lan Watson, we call this Owner Writable Memory (OWM

We believe that there is a very good potentialugip®rting
transactions through the basic mechanisms provieaur
DTS, however such contribution is outside the scopéhis
paper, hence will not discussed further here.

One important implication of this memory modelhatt we
are not necessarily implying hardware coherency, the
system is assumed to be consistent under a cgregtam
(protection mechanisms may be activated througlsidal
page-protection bits [18]).

communicates with D-TSUs of the other nodes (dufe 2).

It should be noted that the distributed design TEU per
core and 1 DTSU per node) avoids the creation tifdmecks.

Every LTSU maintains the list of all threads tha Bcally
ready for execution: this is done by assigning hedds a
continuation, as defined in Section Ill. A contitioa is a tuple
of information needed to handle the thread exepudiaring its
lifetime. The LTSU may issue a request to the nedTSU,
which holds information about whether or not a rteread can
be scheduled locally to the node. In this case,rélogiest is
forwarded to the LTSU of a node-local; otherwise tequest
is forwarded to remote DTSUs for scheduling on aeco
residing in another node. When an LTSU receivesjagst for
the new thread scheduling from the DTSU, it allesathe
resources needed by such thread for execution aiiftes the
requesting LTSU.



VI. CHIPARCHITECTURE

In order to make implementations more attractive,
possible architecture can be based on well-knowotkisl
(except the DTS and the Fault Detection Units DFRDFU
[14]). As shown, at chip level we have a hierarahgtructure
where a Network on Chip (NoC) connects the Nodestha
I/O hub, while memory and devices are externalhi c¢hip.
Each Node consists of given number of Cores (ewadlstu
asymmetric, i.e., a mix of bigger cores and smatieres),
memory controllers, and the last level(s) of thechea
hierarchy. Each core in turn consists of the maicgssing
unit, the upper level(s) of the cache hierarchg.(d.1 and L2
caches) and other core level standard hardwar€ieire 2).

n = # of nodes

m = # of cores per node

u= # of DRAM controllers insisting on the
Unified Physical Address Space

z=#0f1/0 Hubs
Nk = k-th Node (k=1..n)

NI = Network Interface NoC = Network on Chip

Cj = j-th core (j=1..m)

MC = Memory Controller

DTSU = Distributed
Thread-Scheduler Unit

DFDU = Distributed
Fault-Detection Unit

LLSH = Last Level Cache
Hierarchy

EXTERNAL

[ NODE LEVEL [NODE OPTIONAL|
LFDU = Local Fault-

CORE LEVEL
Detection Unit

Figure 2. Chip Architecture encompassing the DTSUrad LTSU
in the two (red) circles. The set of DTSUs and LTS&form the
Distributed Thread Scheduler (DTS).

VII. INITIAL EXPERIMENTAL RESULTS

Our initial experiments were carried out by mappthg
DF-Threads onto the described architecture as gedvby an
extension of the COTSon simulator [24]. In partécuhe tool
allowed us to implement the T* extension and theSDT
Moreover, the simulator provides the capabilitiésimulating
cores up to 32-cores and several nodes (up to 8Rririests)
therefore achieving the modeling of a 1024-cor@.chi

FIBONACCI (40) MATRIX MULTIPLY (128)

CLSH = Core Level Cache
Hierarchy

PU = Processing Unit

LTSU = Local Thread-
Scheduler Unit
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Figure 3. Speedup in case of two simple benchmarksecursive
Fibonacci with input 40 and Matrix Multiply

The initial benchmarks that we used are a recursive
dmplementation of the Fibonacci formula, which iseful to
easily generate a large number of threads (milliorsur case
when the input number is 40, with a cut-off thrddhior
recursion set to 10) and a hierarchical blockedimatultiply
to generate a larger number of data memory refesenc
(compared to the recursive Fibonacci); in this case
investigated input sizes of 128x128, 256x256, 512xwr the
two matrices to be multiplied (block size is 32).

As we can see (Figure 3), first of all the inpuieshas to be
chosen large enough to generate enough paralleliserwise
the system may seem under saturation while it is(wih
smaller input number for Fibonacci, e.g., 30 wencarreach
scalability up to 1024 cores for example). Thigarsimportant
indication to further investigate the scalabilitiytbe system at
the 1k-core level. It has to be noted that we aceeiasing the
input size to better investigate the architectuether than
being limited by the parallelism of the architeetuin this way
we can fairly estimate if the DF-Threads and theiecution
model is providing an efficient execution. Moregvean
interesting result is the possibility to scale naty within the
boundary of the single core (32 cores), but alsosscnodes,
without changing programming model or execution etpd
thanks to DF-Threads and their architectural suppor

In particular, we also wanted to analyze how mar D
Threads we were able to generate, how many of tasm
waiting to receive inputs, how many of them aredyeéor
execution. This is show in Figure 4 and Figure 5.

1600

1600 1 F* [8 |
_ A4, cores cores
1400 ‘A‘u‘*‘ “AMA‘ 3 1400 £
§1200 AA‘ ‘Ax E 1200 & A“
31000 * s 2 1000 £ £
= A yye s
5 800 X o -n‘f e A g 80 ¢ 4
8 600 Ao Sk S 600 4 &éfm%A LY
£ 400 K4 a4, M £ 400 4 Lowe
% A5 AL A 5 o P
< 200 ng 5 2 200 “g

0 0

0o 2 6 8 10 12 14 16 18 0 2 6 8 10 12 14 16 18
Clock cycles (millions) Clock cycle (millions)
1600
1600 " 16 cores _ 32 cores + TH_WAITING

7 1400 £ X 7 1400 = & TH_READY
g 2
1200 £ i s 1200 +TH_RUNNING
31000 + £ 31000 4 *
3 FHE 2 P —+-TOTAL
= 800 < 800 i
g o0 AN % oo o
S 600 1 £ T 600 | AEY
£ 400 % = 400
e 2 G 7
2 200 é A 2 200 %E

0 4 0

10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Clock cycle (millions)

0 2 4 6 8
Clock cycle (millions)

Figure 4. Fibonacci(35). From top to bottom: TotalWaiting and
Ready DF-Threads (the Running ones are squashed tre
horizontal axis, since the vertical scale arrivesot1.6 million

threads). Core configurations are 4, 8, 16 and 32.

In particular, in Figure 4, we report the total rhenof DF-
Threads for four architectural configuration (418, 32 cores).
As can be seen, while the total number of threttds ighest
curve with violet markers) does not change acrdss
configuration, the availability of more cores ditgdranslates
in shorter execution time (about 17, 8.5, 4.255Vkcycles)
with an almost perfect scalability, as already dateFigure 3.
The number of executing threads in this case isptetely
squashed on the horizontal axis, since at most awe (82
threads running while their availability is muclghér. For the
Matrix-Multiply kernel we have slightly more totdhreads
than the number of cores: still we are able toyfltlad the
machine as can be seen in Figure 5.
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Figure 5. Matrix Multiply (256x256). From top to bottom: Total,

Running, Waiting and Ready DF-Threads. The steadyirie at the

center represents the DF-Threads effectively usinipe available
cores. Core configurations are 4, 8, 16 and 32.

VIIl. RELATED WORK

Several past efforts propose to group more instnstin a
single threads, such as Macro Dataflow [5], ETS
Multithreaded Monsoon, TAM, HEP, Tera, EARTH, SDF,
DDM, DTA, just to name a few (for a comprehensival a
detailed discussion of them we suggest some supepgrs
[6][7]). DF-Threads represent a minimalistic APl sapport
Data-Flow execution that also encompasses sharewbrge
computations through Transactional Memory.

The DF-Thread APIs had been proposed in
TERAFLUX project [8] for the first time and a li¢tllater in the
Data-Flow Codelet model [9], and the Open CommuRitym-
time (OCR) project [13]. In these cases, a lowHlesatware
interface to start computation on the availability data or
events has been proposed. DF-Threads provide also
definition of a general memory model while stileperving a
minimalistic API consisting of only six functions.

Hierarchically Tiled Arrays (HTAs) [25] are a hidgvel
abstraction for writing programs to execute oniraetsystems
based on DF-Threads or Codelets. Similarly one gse
StarSs/OmpSs [15], OpenAcc [16] or OpenStream R6¢ent
proposals like OpenSPL [28] represent further &ffar
generate Data-Flow based execution models.

30

2 40
Clock cycle (millions)

10 60 10

IX. CONCLUSIONS

In this paper we introduce the DF-Threads. Diffésen
from other previous works we encompass the pogyilof
managing both classical Data-Flow patterns and eshar
memory through Transactional Memory by a unifyingl Ahat
permits Data-Flow execution on hierarchical mangeco
architecture. The DF-Thread API and its memory rhede
defined. Architectural support that enables an cieffit
execution without redesigning completely the hamdwés
illustrated. DF-Threads enable to exploit Threadvdle
Parallelism across cores and across nodes. Thal irgsults
are quite encouraging in terms of scalability asraslarge
number of cores such as 1k cores.
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