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Abstract—Current computing systems are mostly focused on 
achieving performance, programmability, energy efficiency, 
resiliency by essentially trying to replicate the uni-core execution 
model n-times in parallel on a multi/many-core system. This 
choice has heavily conditioned the way both software and 
hardware are designed nowadays. However, as old as computer 
architecture is the concept of dataflow, that is “initiating an 
activity in presence of the data it needs to perform its function” 
[J. Dennis]. Dataflow had been historically initially explored at 
instruction level and has led to the major result of the realization 
of current superscalar processors, which implement a form of 
“restricted dataflow” at instruction level. 

In this paper, we illustrate the idea of using the dataflow 
concept to define novel thread types that we call Data-Flow-
Threads or DF-Threads. The advantages we are aiming at regard 
several aspects, not fully explored yet: i) isolating the 
computations so that communication patterns can be more 
efficiently managed by a not-so-complex architecture; ii) 
possibility to repeat the execution of a thread in case of detected 
faults affecting the thread resources; iii) providing a minimalistic 
low-level API for allowing compilers and programmers to map 
their parallel codes and architects to implement more efficient 
and scalable systems. The semantics of DF-Threads is also tightly 
connected to their execution model, hereby illustrated. 

Several other efforts have been done with similar purposes 
since the introduction of macro-dataflow through the more 
recent DF-Codelets and the OCR project. In our case, we aim at 
a more complete model with the above advantages and in 
particular including the way of managing the mutable shared 
state by relying on the transactional memory semantics. 

Our initial experiments show how to map some simple kernel 
and the scalability potential on a futuristic 1k-core many-core. 

Keywords—dataflow; many-core; multi-core; multi-processor 
programmability; execution model; scalability; energy efficiency 

I. INTRODUCTION 
The main challenges of future Exascale computing systems 

have been identified in several public roadmaps [1] and large 
research projects such as TERAFLUX [2], X-STACK [3], 
UHPC [4] – to name a few – as programmability, simplicity of 
architecture, resiliency, scalability. In order to reach the 
roadmap goals, systems should be able to manage hundreds of 
millions or more threads of a possibly fine grain size in a 
dataflow fashion. Therefore, managing those threads 
appropriately is becoming relevant for designing such systems. 

Since the proposal of macro dataflow [5], many had 
proposed to use some clustering of instructions in order to 
create threads, or units of computations larger than a single 
instruction in order to efficiently distribute the workload across 
multiple cores: ETS, Multithreaded Monsoon, TAM, HEP, 
Tera, EARTH, SDF, DDM, DTA, just to name a few [6][7]. 

More recently, research outlines the importance of 
interfaces to decouple the software stack from the underlying 
machine: some noticeable efforts had been presented in the 
TERAFLUX project [8], the Data-Flow Codelet model [9], and 
the Open Community Run-time (OCR) project [13]. In these 
cases, a dataflow inspired interface to start computation on the 
availability of data or events has been proposed. 

In particular, the dataflow paradigm provides an elegant 
way to encapsulate computations to obtain several advantages: 

i) in order to avoid “spaghetti-like” accesses to data-
memory, DF-Threads obey a specific memory model, which 
provides isolation of accesses, and therefore a greater locality 
and the possibility to reduce the energy associated to data 
transfers: the associated memory model is described in Sec. IV; 

ii) an important property of DF-Threads is their capability 
of being restarted in presence of detected faults affecting the 
thread resources such as cores, therefore providing a much 
better resilience of the system, without the need of using full-
system classical checkpointing/restart technique. This property 
of DF-Thread has been thoroughly discussed in a recent paper 
[14] and hence here we discuss the rest of DF-Thread 
properties. Experiments [14] had shown that the system is 
capable of continuing to execute a complex computation by 
relying on the capability of restarting a single DF-Thread that 
had encountered faults, e.g., on cores or interconnects. 

iii) a minimalistic API (Sec. III) and its architectural 
support is also described here (Sec. V): the aim is to provide 
simple yet powerful interface that can be targeted by compilers 
and programmers to map high level languages; previous 
experiments [2] had shown that is possible to enable OpenMP 
like programming models like StarSs/OmpSs [15], OpenAcc 
[16] or OpenStream [19] so that they can be mapped on DF-
Threads architectural support such as the T* Instruction Set 
Extension [8][26]. In addition to this, the DF-Thread API and 
its public availability on the COTSon [24] simulator aims at a 
simpler experimentation and adoption. Also, the DF-Thread 
API may allow for different implementations ranging from a 
purely software one to a high specialized one on e.g. FPGAs. 

We propose that DF-Threads could be specialized into 
several types (see Sec. II). One of the main reasons to have 
different thread types is that each of these threads has a 
different behavior in relation to their memory accesses and 
may need a different hardware support for their execution. 
Similar concepts are used in Staged Execution, which aims at 
dividing a program into segments and executing each segment 
at the core having the data and/or functionality to best run that 
segment. Some works using these concepts include 
Accelerated Critical Sections [10], Apple’s Grand Central 
Dispatch [11], producer-consumer pipelines and Computation 



Spreading [12] and Cilk [13]. We extend this discussion after 
presenting more details on the proposed architecture (Sec. V). 

The main contributions of this paper are: 
i) Precise description of a possible API for a dataflow 

based execution model (DF-Threads); 
ii)  Related discussion of a possible chip architecture and 

the architectural support; 
iii)  Presenting initial results on the scalability of the 

proposed DF-Threads and their execution model. 

The rest of the paper is organized as follows: we introduce 
the DF-Threads types (Sec. II) with the aim to define a Data-
Flow based Execution Model that in turn relies on the proper 
definition of Data-Flow API (Sec. III) and its semantics; the 
latter also includes the definition of Memory Model (Sec. IV), 
its related architectural support (Sec. V) and a description of a 
possible chip architecture (Sec. VI). Finally, we discuss results 
(Sec. VII), related work (Sec. VIII) and we conclude the paper. 

II. DF-THREADS TYPES 
Since our proposal aims at a holistic bookkeeping of the 

thread resource usage, in order to avoid unforeseen conflicts on 
using resources like cores, memory, I/O we first differentiate 
what is a DF-Thread and what is not. 

In particular, we assume that for providing system services 
and I/O there exist S-Threads (System Threads) and in case we 
need to execute some legacy code that we do not want to re-
compile or we cannot re-compile into DF-Threads we will 
encapsulate such thread in a L-Thread (Legacy Thread). L-type 
and S-type threads can respectively execute on legacy-cores or 
on system-cores, i.e., on “bigger-cores” with more resources 
like caches, functional units, potential for speculation to 
accelerate single threads or to perform I/O operations and 
implement the full set of OS services. 

DF-Threads on the other side aim at isolating the access to 
data and code through different level of “grading”: in particular 
we will consider DF1-Threads and DF2-Threads and some 
specialization of them in the following. 

A. DF1-Thread 
The DF1 thread is defined for ideal reference: if the 

compilation is able to produce only DF1 threads we foresee a 
greater potential for acceleration and saving power (e.g., by 
disabling branch prediction and branching units). A DF1-
Thread is defined as follows:  

• Communication among threads preserves Single 
Assignment Semantics. 
o A consumer thread can only be activated when all 

its input data are ready (data flow principle). 
o As DF1 threads only operate on values; the only 

memory consistency requirement is that when a 
thread starts to execute, it must observe the correct 
value of variables written to its associated memory 
(DF-frame memory) by the producer threads. 

• The execution of the DF1-Thread code is done in a 
control-flow manner. 

• Each thread has a single entry and a single exit point.  
o No jumps between DF1-Threads are allowed 
o Internal Jumps must also be avoided  

• Thread granularity is compiler controlled, aiming at the 
coarser grain possible that results in efficient execution 

• We allow the frame to define and use Thread Local 
Storage (see Memory Model Section – sec. IV). 

• Each thread and data object could be tagged with a 
combination of compiler and runtime support [15][16]. 

B. DF1b-Thread 
A DF1b thread is a DF1-Thread with the addition of 

internal control flow (jumps, branches, loops). While DF1 
threads enable more efficient data flow, sometimes it may be 
more efficient or necessary to take advantage of code-locality. 

It has to noted that in both cases (DF1, DF1b) the DF-
threads are not allowed to jump anywhere: this is the basis for 
a side-effect free, repeatable execution [14][29]. It has also to 
be noted that it’s not impossible to generate DF1 threads (we 
provide public examples: http://cotson.sf.net ). 

C. DF2-Thread 
DF2-threads support flexible data structures and have an 

efficient support for streaming [19]. A DF2-Thread is a DF1 
(or DF1b) thread that includes references to objects (arrays and 
dynamically created structures) which obey pure functional 
semantics (i.e. they are single assignment). DF2 threads can 
also make limited “service calls”, for example to allocate 
memory dynamically. Such “service calls” should be extreme 
lightweight i.e. in the order of a few cycles or can be supported 
by the hardware co-processor that we call Distributed Thread 
Scheduler (DTS hereby) (see V.B and the DF_TALLOC in 
Sec. III) through some special instruction extension as outlined 
later in this paper (see Sec. V.A). 

D. DF2tm Thread 
This is a DF2 thread but with the addition that it can 

contain references to objects in Transactional Memory. When 
accessing shared memory, the DF-threads can be marked as 
fully transactional or can be split in DF2tm threads so that its 
management can activate transactional bookkeeping too such 
as TCC [20] or Intel TSX [21].  

E. L-Thread 
An L-Thread is a legacy thread that will contain any code 

that is not possible to fit in the previous categories (DF1, DF2), 
and in particular that may require side-effects or where the 
control flow is particularly DF “unfriendly”. They can be used 
for legacy code (e.g. to run code on cores with legacy features). 

F. S-Thread 
An S-Thread is a thread taking care of more complex 

system calls and I/O. This type of thread is potentially blocking 
therefore can compromise the predictability of its duration. It 
contains certain system calls or doing I/O and therefore will be 
scheduled on cores that support specific I/O services, not 
available on other cores. 

The DTS will be informed of L- and S- thread (not only 
DF-thread) scheduling requests (and can possibly take over the 
scheduling to the physical cores) in order to properly book-
keep scheduling requests to the available cores. 

It has to be noted that classical signaling like in p-threads is 
not required: either threads work locally, in producer-consumer 
fashion or use shared data through transactions (sec. IV). 



G. Discussion on the several DF-Thread Types 

As detailed in the previous subsection, DF-threads can have 
less or higher “dataflow purity”: the highest level of dataflow 
purity will be assigned to behavior that gets values as inputs in 
a memory that we call DF-frame and produces values as output 
to one or more DF-frames (DF1-threads). DF2-threads still 
communicate in a dataflow fashion once collision on a data 
happens and it is resolved through transactions. DF1 and DF2 
threads may need to interact with a memory manager (in these 
cases we aim at fast operations as outlined in previous work 
[22]). Both types of DF threads can be abandoned and restarted 
in the event of an error; if unwanted locally allocated storage is 
left this would produce wasted memory. In more modern 
languages this can be handled by automatic garbage collection, 
but in languages which rely on programmer invoked 
reclamation, this may introduce overheads.  

The DF-threads can be abstracted as having a set of 
(limited number) of inputs, a set of (limited number) of outputs 
and may use local variables (Thread Local Storage or TLS) 
such as local arrays or more complex data structures. The 
output of one DF-thread can be forwarded to the input of other 
DF-thread(s) through DF-frames. From a programmer point of 
view the data also have different types of consistency based on 
the Memory Model that we adopt. DF1-threads for example, 
will use DF-frames allocated in a Frame Memory or data in the 
Thread Local Storage. More details are given in Section IV. 

Please note that this model guarantees the consistency of 
the data by construction since it does not allow two threads that 
may change or read the same address to run simultaneously. 
When we use the Transactional Memory through the DF2tm-
threads, we may relax this condition, allowing DF2tm-threads 
that share same data elements in their write set to be executed 
in parallel, assuming that the TM mechanism will resolve the 
conflicts if they occur. In the Memory Model Section (sec. IV), 
we detail also this and other type of memory consistency. 

The entire management of the system needs to be done in a 
hierarchical manner and with a combination of new HW/SW 
interfaces. At the top level, the system (not the programmer) 
needs to decide where each DF/L/S-thread will be executed 
and how the “output variables” (write list of a DF-thread) 
know the address of the input variable of the DF-thread which 
uses it. Early Dataflow models supported data structuring via 
mechanisms which proved to be inefficient [23] but we intend 
to build on later work [2][22]]27][8], which has shown how 
these mechanisms can be introduced to provide efficient 
support for a full range of language features. The major 
departure from the “classical DF” architecture is the 
introduction of Transactional Memory and its integration with 
the dynamic frame management and hardware thread 
scheduling. Transactional Memory allows DF-Threads to 
manipulate shared global state but, because of the isolation 
property of transactions, allows the thread to proceed 
unhindered (except for possible transaction restart on conflict) 
and without explicit synchronization with other threads. 

Regarding the support in the Operating System, the only 
need is for a driver for passing the higher level scheduling 
policies to the lower level DTS, the hierarchical distributed 
scheduler. 

III.  DF-THREAD API 

The following prototypes define the DF-Thread API in a C-
like syntax, where uint_8, uint64_t are fixed width types as 
defined, e.g., in C++11, for exemplification here but can be 
overloaded with any base type of a, e.g., 64-bit machine. 

void *DF_TSCHEDULE(bool cnd, void *ip, uint64_t sc); 

This function allocates the resources (a DF-frame of size ‘sc’  
words and a corresponding entry in the Distributed Thread 
Scheduler – or DTS) for a new DF-thread and returns its Frame 
Pointer (fp); ‘ip’ specifies the Instruction Pointer of the first 
instruction of the code of this DF-thread; the above actions are 
actually performed based on the predicate ‘cnd’ (condition). 
The allocated DF-thread is not executed until its ‘sc’ reaches 0.  

 

void DF_DESTROY(); 

The thread that invokes DF_DESTROY finishes and its DF-
frame is freed, (the corresponding entry in the Distributed 
Thread Scheduler is also freed). 

 

uint64_t DF_TREAD(uint64_t offset); 

Loads the data indexed by 'offset' from the self (current thread) 
DF-frame. Assumption: the DF-thread has an implicit pointer 
to its DF-frame 

 

void DF_TWRITE(uint64_t val, void *fp,uint64_t off); 

The data ‘val’ is stored into the DF-frame pointed to by ‘fp’ at 
the specified offset ‘off’. Note: we assume that writes are 
snooped by the architecture (in particular by the DTS) so that 
for every 64-bit word that is written the ‘sc’ of the DF-
Thread - to which the fp belongs – is decremented. 

 

void *DF_TALLOC(uint64_t size, uint_8 type); 

Allocates a block of memory of ‘size’ words and returns the 
pointer (or null); ‘type’ specifies the special purpose memory 
type (see section IV). The DTS tracks the allocated memory.  

 

void DF_TFREE(void *p); 

Frees memory pointed to by ‘p’. The DTS tracks the 
deallocated memory. 

This API is thought as a target for compiler or 
programmers that are building run-time libraries. It can be 
mapped on any instruction set: in previous work we analyzed 
the possibility of implementing this API as an Instruction Set 
Extension called T-Star (T*) for x86_64 [2][8]: in this case this 
API provides more flexibility for implementations. The 
programmer gets access to memory regions with the specific 
semantics by allocating explicitly the needed memory type. 
DF_TREAD/DF-TWRITE operations can be easily mapped on 
the underlying load/store operations and their behavior will 
change when accessing a DF-Frame of a certain type (e.g., no 
‘sc’ decrement for Thread Local Storage or TLS, or activating 
speculative store buffering for Transactional Memory). 

The DTS keeps track – locally and in a distributed fashion-- 
of entries that we call ‘continuations’ which store the self-
frame pointer (fp) the instruction pointer (ip), the 
synchronization count (sc) and other information related to the 
associated core where the thread runs (as outlined in Figure 1). 
Other memory type pointers can be stored in the DF-frame 
associated to the DF-Thread. 
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Figure 1. High level Memory Model Implementation. 

IV. DF-THREAD MEMORY MODEL 
The DF-Thread Memory Model (DFTMM for short) relies 

on the fact that in shared-memory systems (even in the non-
coherent case) the memory is used to implement the 
communication among threads. Therefore, we can identify the 
following thread communication patterns: 

a) “N-to-1” : we have N threads producing data that will 
be consumed later on by a single thread; this is a classical 
producer-consumer pattern; in order to implement this, we 
associate a “frame” of memory taken from a logical region that 
we call “Frame Memory” or FM; 

b) “1-to-1” : we use this to indicate ‘self-
communication’, i.e., the same thread is consuming a large 
portion of dynamically allocated private memory; we call the 
memory from this region “Private Memory” or PM (this is also 
known in the literature as Thread-Local Storage or TLS); 

c) “N-to-N” : in the case when a mutable shared state is 
necessary for the computation, we rely on the compiler 
capability to identify such code and use as basic mechanism 
the atomic transactions provided by the Transactional Memory 
[17][20][21] or TM. Also note that this kind of state based 
computation could be theoretically treated by FM, but TM is 
currently more widely available [21]. 

d) “1-to-N” : communication is managed through Frame 
Memory; a common case is the in-place-update when a single 
writer wishes to make available, e.g., an array element to 
several consumers shortly: we suggest to manage this case 
through the distribution of a pointer to the element (which 
resides in a certain frame that could be garbage collected later 
on (cf. Figure 1); as of a similar definition introduced by prof. 
Ian Watson, we call this Owner Writable Memory (OWM). 

We believe that there is a very good potential of supporting 
transactions through the basic mechanisms provided by our 
DTS, however such contribution is outside the scope of this 
paper, hence will not discussed further here. 

One important implication of this memory model is that we 
are not necessarily implying hardware coherency, but the 
system is assumed to be consistent under a correct program 
(protection mechanisms may be activated through classical 
page-protection bits [18]). 

V. ARCHITECTURAL SUPPORT TO DF-THREADS 

The proposed DF-thread API (Sec. III) is also easily 
supported by the architecture either by a specific Instruction 
Set Extension (as outlined in Section V.A) or by mapping the 
functions to existing ISA instructions, therefore providing  
purely software-based implementation. The latter case will not 
be discussed in this paper as it involves a detailed discussion 
regarding the mechanisms to assure an atomic update of the 
synchronization count associated with each DF-Thread. In the 
following we investigate a hardware based support through 
specialized instructions (the T* instructions), the Distributed 
Thread Scheduler which can be thought as a co-processor that 
is driven by the T* instructions and a possible architecture. 

A. THE T* INSTRUCTION SET EXTENSION 
The six functions DF_TSCHEDULE, DF_TDESTROY, 

DF_TREAD, DF_TWRITE, DF_TALLOC and DF_TFREE 
introduced above can be easily mapped on the respective T* 
instructions TSCHEDULE, TDESTROY, TREAD, TWRITE, 
TALLOC, TFREE as defined in [8]. In our initial experiment 
we found possible to map the DF-Thread API on such 
instructions by using the GCC in-line assembly and properly 
mapping the language data types into the fixed size registers. 
This provides a path to map the T* instructions into higher 
level languages such as C in order to build the “DF-Thread 
library”. Since the mapping is straightforward from the already 
provided T* specification [8], we do not detail it further. 
However, we now provide a prototype implementation on the 
http://cotson.sf.net website (see for example the TSU4 branch) 
and a preliminary evaluation in section VII. 

B. THE DISTRIBUTED THREAD SCHEDULER (DTS) 
In order to efficiently provide architectural support for 

threads scheduling to the OS, we can adopt dedicated hardware 
that can act as a co-processor (similarly, e.g., to a mathematical 
co-processor) that implements the behavior of the T* 
instructions. We call this co-processor Distributed Thread 
Scheduler or DTS. The actual on-chip implementation of the 
DTS is realized in a distributed and hierarchical fashion: each 
core in a node is equipped with a dedicated unit, called Local 
Thread Scheduling Unit or LTSU, which is responsible for the 
main scheduling activities, while a node-level unit, the 
Distributed Thread Scheduling Unit or DTSU, coordinates L-
TSUs while keeping a global view of the node and 
communicates with D-TSUs of the other nodes (cf. Figure 2). 

It should be noted that the distributed design (1 LTSU per 
core and 1 DTSU per node) avoids the creation of bottlenecks. 

Every LTSU maintains the list of all threads that are locally 
ready for execution: this is done by assigning to threads a 
continuation, as defined in Section III. A continuation is a tuple 
of information needed to handle the thread execution during its 
lifetime. The LTSU may issue a request to the node’s DTSU, 
which holds information about whether or not a new thread can 
be scheduled locally to the node. In this case, the request is 
forwarded to the LTSU of a node-local; otherwise the request 
is forwarded to remote DTSUs for scheduling on a core 
residing in another node. When an LTSU receives a request for 
the new thread scheduling from the DTSU, it allocates the 
resources needed by such thread for execution and notifies the 
requesting LTSU. 



VI.  CHIP ARCHITECTURE 
In order to make implementations more attractive, a 

possible architecture can be based on well-known blocks 
(except the DTS and the Fault Detection Units DFDU, LDFU 
[14]). As shown, at chip level we have a hierarchical structure 
where a Network on Chip (NoC) connects the Nodes and the 
I/O hub, while memory and devices are external to the chip. 
Each Node consists of given number of Cores (eventually 
asymmetric, i.e., a mix of bigger cores and smaller cores), 
memory controllers, and the last level(s) of the cache 
hierarchy. Each core in turn consists of the main processing 
unit, the upper level(s) of the cache hierarchy (e.g., L1 and L2 
caches) and other core level standard hardware (cf. Figure 2). 
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Figure 2. Chip Architecture encompassing the DTSU and LTSU 
in the two (red) circles. The set of DTSUs and LTSUs form the 

Distributed Thread Scheduler (DTS). 

VII.  INITIAL  EXPERIMENTAL RESULTS 
Our initial experiments were carried out by mapping the 

DF-Threads onto the described architecture as provided by an 
extension of the COTSon simulator [24]. In particular the tool 
allowed us to implement the T* extension and the DTS. 
Moreover, the simulator provides the capabilities of simulating 
cores up to 32-cores and several nodes (up to 32 in our tests) 
therefore achieving the modeling of a 1024-core chip. 
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Figure 3. Speedup in case of two simple benchmarks: recursive 

Fibonacci with input 40 and Matrix Multiply  

The initial benchmarks that we used are a recursive 
implementation of the Fibonacci formula, which is useful to 
easily generate a large number of threads (millions in our case 
when the input number is 40, with a cut-off threshold for 
recursion set to 10) and a hierarchical blocked matrix multiply 
to generate a larger number of data memory references 
(compared to the recursive Fibonacci); in this case we 
investigated input sizes of 128x128, 256x256, 512x512 for the 
two matrices to be multiplied (block size is 32). 

As we can see (Figure 3), first of all the input size has to be 
chosen large enough to generate enough parallelism otherwise 
the system may seem under saturation while it is not (with 
smaller input number for Fibonacci, e.g., 30 we cannot reach 
scalability up to 1024 cores for example). This is an important 
indication to further investigate the scalability of the system at 
the 1k-core level. It has to be noted that we are increasing the 
input size to better investigate the architecture, rather than 
being limited by the parallelism of the architecture: in this way 
we can fairly estimate if the DF-Threads and their execution 
model is providing an efficient execution. Moreover, an 
interesting result is the possibility to scale not only within the 
boundary of the single core (32 cores), but also across nodes, 
without changing programming model or execution model, 
thanks to DF-Threads and their architectural support. 

In particular, we also wanted to analyze how many DF-
Threads we were able to generate, how many of them are 
waiting to receive inputs, how many of them are ready for 
execution. This is show in Figure 4 and Figure 5. 
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Figure 4. Fibonacci(35). From top to bottom: Total, Waiting and 

Ready DF-Threads (the Running ones are squashed on the 
horizontal axis, since the vertical scale arrives to 1.6 million 

threads). Core configurations are 4, 8, 16 and 32. 
In particular, in Figure 4, we report the total number of DF-

Threads for four architectural configuration (4, 8, 16, 32 cores). 
As can be seen, while the total number of threads (the highest 
curve with violet markers) does not change across the 
configuration, the availability of more cores directly translates 
in shorter execution time (about 17, 8.5, 4.25, 2.15 M-cycles) 
with an almost perfect scalability, as already noted in Figure 3. 
The number of executing threads in this case is completely 
squashed on the horizontal axis, since at most we have 32 
threads running while their availability is much higher. For the 
Matrix-Multiply kernel we have slightly more total threads 
than the number of cores: still we are able to fully load the 
machine as can be seen in Figure 5. 
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Figure 5. Matrix Multiply (256x256). From top to bottom: Total, 
Running, Waiting and Ready DF-Threads. The steady line at the 
center represents the DF-Threads effectively using the available 

cores. Core configurations are 4, 8, 16 and 32. 

VIII.  RELATED WORK 

Several past efforts propose to group more instructions in a 
single threads, such as Macro Dataflow [5], ETS, 
Multithreaded Monsoon, TAM, HEP, Tera, EARTH, SDF, 
DDM, DTA, just to name a few (for a comprehensive and 
detailed discussion of them we suggest some survey papers 
[6][7]). DF-Threads represent a minimalistic API to support 
Data-Flow execution that also encompasses shared-memory 
computations through Transactional Memory. 

The DF-Thread APIs had been proposed in the 
TERAFLUX project [8] for the first time and a little later in the 
Data-Flow Codelet model [9], and the Open Community Run-
time (OCR) project [13]. In these cases, a low-level software 
interface to start computation on the availability of data or 
events has been proposed. DF-Threads provide also a 
definition of a general memory model while still preserving a 
minimalistic API consisting of only six functions. 

Hierarchically Tiled Arrays (HTAs) [25] are a high-level 
abstraction for writing programs to execute on runtime systems 
based on DF-Threads or Codelets. Similarly one can use 
StarSs/OmpSs [15], OpenAcc [16] or OpenStream [19]. Recent 
proposals like OpenSPL [28] represent further effort to 
generate Data-Flow based execution models. 

IX. CONCLUSIONS 

In this paper we introduce the DF-Threads. Differently 
from other previous works we encompass the possibility of 
managing both classical Data-Flow patterns and shared 
memory through Transactional Memory by a unifying API that 
permits Data-Flow execution on hierarchical many-core 
architecture. The DF-Thread API and its memory model are 
defined. Architectural support that enables an efficient 
execution without redesigning completely the hardware is 
illustrated. DF-Threads enable to exploit Thread Level 
Parallelism across cores and across nodes. The initial results 
are quite encouraging in terms of scalability across a large 
number of cores such as 1k cores. 
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