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Abstract—Starting from a Data-Flow execution model called
“DF-Threads”, we defined a minimalistic API to enable an
efficient implementation in the hardware of the distribution of
the threads across the cores of a single multi-core system and
across the remote cores of a cluster. We aim at proposing this API
as a simple programming model in C language that can poten-
tially permit an easy interface between DF-Threads and generic
programming models. Clusters are typically programmed with
MPI, therefore we evaluated our approach against OpenMPI. If
we consider the delivered GFLOPS per core, DF-Threads are
also competitive in respect to CUDA. In the basic examples,
that we used in this initial investigation, DF-Threads achieve
better performance-per-core compared to OpenMPI and CUDA.
In particular, OpenMPI has a large portion of OS-kernel activity,
which is slowing down its performance.

Index Terms—Performance evaluation, Computer architecture,
Computer simulation, Matrix Multiply, Distributed computing,
High performance computing, Data-Flow computing

I. INTRODUCTION

The original motivation for research in Data-Flow
computing was the possibility of exploiting of its massive
parallelism [1], [2]. The performance scaling of the processors
has basically followed the path of designing deeper pipelines,
increasing clock rates and number of cores in a chip. However,
when the single chip performance is not any more sufficient,
a distributed architecture becomes an interesting solution. In
such case, the full parallelism has not yet been completely
exploited due to both execution model and programming
model limitations [3], thus creating need for more research.

The Data-Flow execution model is capable of taking advan-
tage of the full parallelism offered by a multi-core and multi-
node systems [4]–[13] by introducing a new paradigm, which
internally represents applications as a direct graph named
program Data-Flow graph. Applications are represented as a
set of nodes, where each node may represent an instruction or
anything else (according to Data-Flow principles [2]). Directed
arcs between nodes represent the data dependencies between
the nodes. Whenever all inputs are available, the node is ready
for firing. This stands in contrast to the Von Neumann exe-
cution model, in which an instruction is only executed when
the program counter reaches it, without considering if it can
be executed earlier or not. The key advantage is that, in Data-
Flow, more than one instruction can be executed at once (in

fact superscalar processors exploit internally this Data-Flow
principle through the dynamic scheduling of instructions).
Thus, if several nodes become ready at the same time, they
can potentially be executed in parallel. This simple principle
provides an opportunity for massive parallel execution. Past
attempts to design an entire machine based on that principle
where not successful (e.g., Manchester Data-flow Machine,
Explicit Token Store architecture [14], [15]) mainly due to
the too fine grain of the approach, i.e., at instruction level.
In the context of the AXIOM project [16]–[22], we explored
the feasibility of a novel Data-Flow execution model (Data-
Flow Threads or DF-Threads [23]) in a heterogeneous and
distributed environment, prototyped on our own FPGA-based
boards [21]. DF-Threads allows us to offload portions of code
to a hardware engine in order to achieve a better scalability
than a software scheduler [24]–[27].

In a first instance, we explored the design space by using
the HPLabs COTSon simulator [28] to find the most efficient
implementation of the execution model. After that, we tested
the DF-Threads on a cluster of AXIOM-Boards (Figure 1)
[29]. The AXIOM-Board has several low power cores and
an FPGA. Moreover, we can build a complete distributed
system, in which AXIOM-Boards can be connected through
inexpensive high-speed custom USB-C cables, reaching up to
18 Gb/s per channel (and having four available channels).
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Fig. 1: Architecture of the distributed system based on the AX-
IOM boards. The Distributed System consists of N Nodes based
on an FPGA SoC, which includes a Processing System (PS) and
Programmable Logic (PL). The nodes of the system are connected
through USB-C cables without the need of an external switch.



This paper makes the following contributions:
‚ It gives an example of how to translate a recursive generic

program into Data-Flow programming style.
‚ It provides an initial quantitative comparison of DF-

Threads, OpenMPI and CUDA.
In the Section II, we briefly describe the lightweight Data-

Flow programming model; in Section III we illustrate the
methodology used for the experiments; in Section IV, we
evaluate our Data-Flow execution model, and finally, we
conclude the paper.

II. A LIGHTWEIGHT DATA-FLOW PROGRAMMING MODEL

The DF-Threads execution model relies on the program
Data-Flow graph, in which each node of the graph represents
a fine-grain thread named DF-Thread. The execution of the
DF-Threads follows the producer-consumer paradigm, in
which a DF-Thread (consumer) can execute only when all its
inputs have been produced by other DF-Threads (producers).
The lifetime of a DF-Thread is defined by 4 API calls
(potentially instructions) [30], which are briefly recalled in
Table I. With additional instructions, it is also possible to
subscribe portions of shared memory for collective operations.

For the purpose of easier mapping generic program code,
we elevated this API to a lightweight programming model,
in which DF-Threads are simple C functions without the
need of using the stack for passing parameters and with
the addition of Data-Flow semantics. A DF-Threads can
therefore be implemented as illustrated in Figure 2, with
explicit management of the input frame (where input data
is stored) in coordination with the linker. In Table I, we
give the semantics of the df ldframe and df destroy typically
placed respectively at the beginning and end of the DF-Thread:

vo id a d f t h r e a d ( vo id ) {
d f l d f r a m e ( )
<d f t h r e a d b o d y>
d f d e s t r o y ( )

}

Fig. 2: A DF-Thread in C language.

As an example, we show here how we can translate the
Recursive Fibonacci code into a DF-Thread (Figure 3). In this
case, we map the original code (left) into two DF-Threads
named fibo and adder (right). The df schedule defines how
many inputs the next instances will receive. The df write fills
up the input frames of next instances. As soon as all inputs
of the target thread have been written, the target thread is
executable. At the end, the DF-Thread notifies that its metadata
can be removed (df destroy). This approach allows us to use
a standard compiler (i.e., GCC) for producing the binary for
the target architecture (e.g., x86 64, aarch64).

III. METHODOLOGY

In this section, we describe the experimental work flow and
the software tools that we used during the design and test of
the DF-Threads execution model.

void fibo(void) { // DF-Thread Fibonacci

uint64_t* myfp =(uint64_t*) df_ldframe();

int n = myfp[1]; 

if (n <= 1) { 

df_write(myfp[0],n); 

}else {

uint64_t* tfib1 = df_schedule(&fibo,2);  

uint64_t* tfib2 = df_schedule(&fibo,2); 

df_write(tfib1[1], n-1); 

df_write(tfib2[1], n-2);

uint64_t* tadd = df_schedule(&adder,3); 

df_write(tadd[0],  &myfp[0]); 

df_write(tfib1[0], tadd+1)); 

df_write(tfib2[0], tadd+2); 

}

df_destroy();

}

void adder(void) {

uint64_t* myfp =(uint64_t*)df_ldframe();

uint64_t f1 = myfp[1]; 

uint64_t f2 = myfp[2]; 

df_write(myfp[0],f1+f2);

df_destroy();

}

int fibo (int n)

{

if (n <= 1) return n;

return fibo(n-1)+fibo(n-2);

}

Fig. 3: Example of translation of the Recursive Fibonacci program
from C code into DF-Threads API. The two main operations (fibo
and adder) are translated into the DF-Threads API.

TABLE I: DF-Threads API

void* df ldframe();
Loads the data from the (self) input frame
void* df schedule(void* ip, uint64 t sc);
This function allocates the resources: a data frame of size ‘sc’
words and returns its Frame Pointer (fp); ‘ip’ specifies the In-
struction Pointer to the first instruction of the code. The allocated
DF-Thread is not executed until its ‘sc’ reaches 0.
void df write(void* fp, uint64 t val);
The data ‘val’ is stored into the frame pointed by ‘fp’. Note: we
assume that writes are snooped by the architecture (in particular by
the hardware scheduler) so that, for every word that is written, the
‘sc’ of the DF-Thread - to which the fp belongs – is decremented.
void df destroy();
The thread that invokes df destroy finishes and its frame is freed.

In a preliminary phase, we defined the DF-Threads ex-
ecution model into a customized version of the HP Labs
COTSon Simulator [31]–[34], which permits us to decouple
the functional execution from the timing behavior for an
easier modeling. Thanks to COTSon simulator, we can model
a complete distributed system with many-cores and multi-
nodes, in which it is possible to run an off-the-shelf Linux
Distribution for a full system simulation [35]. We compared
our implementation with: i) OpenMPI, a typically used pro-
gramming model for clusters and ii) CUDA as it is another
widely used solution for performance scaling.

We also needed to design supporting tools to reduce the
experimentation time from days/weeks to hours/minutes [36].

In order to have a realistic base for the timing, we also
validated our simulations against the timing obtained on the
AXIOM-boards, where we gradually migrated the designed
Intellectual Property (IP) blocks (Figure 1). The AXIOM
platform includes four 64-bit ARM Cortex-A53 cores (at
1.5 GHz); 32 KiB L1 Cache and 1MiB of L2 Cache, pro-
grammable logic and fast transceivers .

The Processing Systems (PS) of the AXIOM-board, runs
a full Linux Ubuntu 16.04 and it starts the program, while
the accelerated portions are offloaded, via the programming



model illustrated in Section II, to the Programmable Logic
(PL). The PL also includes a Network Interface (NI) that
allows the fast communication among the AXIOM-boards.
At the hardware level, the soft-IPs are also responsible to
distribute the workload among the nodes of the Distributed
System and manage the metadata of the DF-Threads. For the
CUDA experiments, we used the Tesla-C1060 board, with 240
CUDA core, 610 MHz GPU clock and 4 GiB of RAM.

IV. EXPERIMENTAL RESULTS

For the sake of this initial exploration, we consider two
simple benchmarks for the evaluation of the DF-Threads:
Recursive Fibonacci and Matrix Multiplication.

‚ Recursive Fibonacci (RFIB) benchmark has been chosen
to stress the thread management and quickly evaluate the
performance, while there is a need of scheduling many
threads. This benchmark takes as input the n of Fibonacci
and a threshold which stops the generation of the parallel
recursive calls.

‚ Matrix Multiplication (MM) benchmark involves more
memory operations than RFIB and also is a widely
used kernel in machine learning. We used a blocked
Matrix Multiplication implementation, where a matrix is
partitioned in multiple sub-matrices, or blocks, according
to the block size that is set. We use square matrices
with 448 as size (to avoid a multiple of a power of
two, which may cause multiple cache conflicts on a
few cache lines) and with 8 as block size. We focus
our measurements only on the computational Region of
Interest (ROI) of the benchmark as it is the usual practice
in comparisons. The Matrix Multiply algorithm used to
evaluate OpenMPI and CUDA is the standard available
version for such programming models. Results of the
benchmarks are checked for correctness at the end of the
run. Multiple runs (at least 5) have been also repeated to
reduce possible statistical oscillations.

A. Recursive Fibonacci

We evaluate the Recursive Fibonacci benchmark with an
input size of 35 and 13 as threshold, by varying the number
of nodes of the distributed system up to 16. As can be seen in
the Figure 4, DF-Threads show a good degree of scalability.
The results confirm that the scheduler of the DF-Threads can
handle and distribute properly many fine-grain threads among
multiple nodes. CUDA and OpenMPI has been not evaluated
with the Fibonacci benchmark due to their poor effectiveness
with recursive execution on such platforms.

B. Block Matrix Multiply

We use the GFLOPS/core metric to compare the perfor-
mance of the DF-Threads with OpenMPI and CUDA, due to
the currently lower number of cores of our Distributed System
in respect of CUDA. The matrix size is 448 with 8 as block
size. As we can see in the Figure 5, the GFLOPS/core of the
DF-Threads outperforms both CUDA and OpenMPI.
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Fig. 4: Speedup of the Recursive Fibonacci benchmark with input
size 35 and threshold 13, by using the DF-Threads and by varying
the number of nodes (N) and cores (C) of the distributed system.

OpenMPI is outperformed by a large factor of about 5.5x
in the case of 1 node (1N) or about 140x in the case of
16 nodes (16N). This is due to several factors: first of all
the OpenMPI runtime library represents a wide middleware
layer; secondly, there is the need of invoking system calls
that in turn may need a time consuming operating system
activity to move content buffer and manage the send and
receive operations on the physical media. In the DF-Threads
such overheads are reduced, thanks to the simpler interface
and the hardware management of the data frames and thread
metadata. As depicted in Figure 6, the kernel activity of
the DF-Threads is quite limited in comparison with OpenMPI.

CUDA is outperformed by almost a factor of 1.7x among all
configurations of the distributed system, due to the efficiency
of our scheduling mechanisms. The CUDA platform that we
used is one of the first Tesla boards available on the market,
but our implementation of DF-Threads is also at the first
version and it is not yet optimized. Therefore, the DF-Threads
is capable to exploit better the resources of the distributed
system, also thanks to the parallelism exposed by the Data-
Flow mechanism and the DF-Thread API.
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Fig. 5: GFLOPS/core comparison between DF-Threads, OpenMPI
and CUDA by using the block Matrix Multiply benchmark with
448x448 as matrix size and 8 as block size. The number of nodes
(N) varies from 1 to 16.

Moreover, we think that there is still much space for further
optimization of the DF-Threads. For example, the data locality
could be improved and we are investigating a pre-fetching
policy, which could load the data into the cache before starting
the execution of the DF-Threads.
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Fig. 6: DF-Threads and OpenMPI kernel cycles (left) for the block
Matrix Multiplication benchmark with matrix size 448x448 and block
size 8. The number of nodes (N) varies from 1 to 16.

V. CONCLUSIONS

The Data-Flow execution model is a viable paradigm to
be explored today to achieve high degree of parallelism in
the modern many-cores multi-nodes architectures. This paper
presented how the DF-Threads execution model can bridge
the Data-Flow execution to a simple C-based programming
model through the DF-Threads API. Our experiments show the
capability of the DF-Thread execution model to distribute and
manage many fine-grain threads among multiple nodes. We
compared the DF-Thread with OpenMPI and CUDA by using
the block Matrix Multiplication benchmark and we found that
DF-Thread outperform both OpenMPI and CUDA in terms of
GFLOPS/core. Future work will expand the capability of auto-
matic translation and demonstrate a larger set of benchmarks.
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