
Analyzing the Impact of Operating System Activity
of different Linux Distributions
in a Distributed Environment

Roberto Giorgi1, Marco Procaccini1 and Farnam Khalili1,2

1Department of Information Engineering and Mathematics - University of Siena
2Department of Information Engineering - University of Florence

{giorgi,procaccini,khalili}@diism.unisi.it

Abstract—A rise in the number of threads in large-scale
applications running on multi-node architectures makes op-
erating system activity increasingly more relevant. Therefore,
evaluation methodologies need to account for these activities. We
decided to build our evaluation environment through the COTSon
simulator. Moreover, our environment permits flexible Design
Space Exploration (DSE) by making easy the management of
many experiments and the characterizations of Operating System
(OS) activity.

In this paper, we show the result analysis tool flow and the OS
impact of different Linux distributions running on a distributed
environment consisting of several nodes with a full OS. In order
to quantify our results, we use matrix multiplication bench-
mark executed through a DataFlow model, named DataFlow-
Threads(DF-Threads). We analyze key metrics like L2 cache
miss rate, execution cycles, data access latency, and kernel cycles
showing up to 60% performance variations among the different
OS distributions.

Index Terms—Performance evaluation, Computer architecture,
Computer simulation, Matrix Multiply, Distributed computing,
High performance computing, Operating systems

I. INTRODUCTION

Nowadays the size of high-performance computers (HPCs)

is growing to thousands of nodes and almost all top super-

computers deploy Linux on each node. In order to achieve

concurrency with asynchronous parallelization of jobs, an

operating system (OS) may be responsible to distribute the

application across the available hardware resources. In that

sense, the mechanisms like inter-process communication, data

synchronization, and thread/process management are all parts

of OS responsibility [1]. Hence, part of system performance

is consumed by OS to schedule and manage the hardware

resources. Meanwhile, system performance began to be de-

graded in large-scale applications using hundreds to thousands

of nodes due to the time gaps between speedy processes

and lagging ones [2]–[4]. This degradation arises from the

variability due to OS impact for each node system activity,

which is predominantly irrelevant from the parallel application.

In Design Space Exploration (DSE), understanding the

OS impact on system performance while running a certain

application is crucial. Constantly growing complexity of

multi-core multi-node architectures [5], and ever-increasing

powerful applications, make full system evaluation with

hardware prototyping or even at FPGA-based setups quite

challenging and time-consuming. As such, in order to

evaluate, explore, and improve time-to-market, simulators

are significant portions of modern performance evaluation

methodologies. In [6], [7] COTSon [8], a full system simulator,

has been leveraged in order to provide Distributed Scheduler

to support many-node architectures, and significantly

improve scalability and power estimation. However, in these

works the OS impact on performance still remained uncertain.

In this paper, we present a set of experiments that we

performed by the COTSon simulator [8] to analyze the OS

activity. In order to automatically perform the evaluation

through the simulator, we designed our DSE toolset, which

allows us to model those aspects of design that are not yet

available on the market and simulate multi-node architectures

as well. Thanks to our DSE toolset [9], we were able

to easily evaluate the OS impact whereas we launched a

novel execution model based on DataFlow paradigm called

DataFlow-Threads (DF-Threads) [10]–[12].

We leveraged our tools in the context of AXIOM project in

order to explore hot case studies like smart home and video

surveillance [13], [14]. While our previous research revolved

around the execution model [15], in this work we focus on

the operating system to understand how to extract the OS

impact on performance, and how much is the contribution of

kernel space and user space. To quantify the result, we run a

matrix multiplication benchmark on top of the DF-Threads

execution model. Then, we extract important standard metrics

like L2 cache miss Rate, memory activity, kernel activity

and execution time for several Linux distribution while the

number of nodes increases.

The remainder of this paper is structured as follows: in

Section II, we discuss and compare the important features of

different simulators, and why we chose COTSon simulator; in

Section III, we show our DSE toolset and methodology and

how to analyze the OS activity; in Section IV, we evaluate the

422

2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)

2377-5750/19/$31.00 ©2019 IEEE
DOI 10.1109/PDP.2019.00068

impact of several Linux distribution in a multi-node distributed

system based; in Section V, we highlight some related work

studying the OS impact on performance, and finally, we

conclude the paper in Section VI.

II. TOOLSET FEATURE COMPARISON

Analyzing the OS activity of a multi-node architecture, even

at the prototype stage, might not be straightforward. Even

preparing a complete setup and hardware prototyping might

impose several limitations. In this section, we briefly highlight

the reasons why we chose a simulator like COTSon [8], how

our DSE toolset facilitates extracting the intervention of OS

on performance.

Prototyping the architecture with physical hardware is

quite costly and inflexible towards any updates of Instruction

Set Architecture (ISA). In case of FPGA-based setups, the

hardware and software must be configured and well set

up, which demands remarkable effort and time. In case

of simulators, they might not show satisfying credibility,

but since they evolve, they also improve in terms of many

features like reliability. Simulators are useful to achieve a

certain level of accuracy, speed and scalability without any

considerable cost. There are other parameters such as easy

observability, and reproducibility which make simulators

preferable in comparison with a physical implementation.

There are different features to classify and characterize

a simulator (some with overlapping). We report some of

those features in Table I, to compare several simulators.

According to whether the OS action is included or not, there

are full-system simulators and user-space simulators. All

listed simulator here are examples of full-system simulators.

Considering if they can execute in parallel or not, we have

sequential simulators and parallel ones. While the first ones

are more accurate [25], the required time for simulation

takes considerably if the complexity of the platform under

simulation increases. On the other side, the parallel simulators,

like COTSon [8], are able to take advantage of multiple

processing cores of the host by launching virtual machines,

where each of them represents a node in a distributed

architecture.

SimFlex and Gems both rely on Intel’s Simics which is an

off-the-shelf sequential emulator to model functional as well

as their own models for memory hierarchy and interactions

of cores. GEMS has much lower performance than COTSon

due to the poor performance of their timing model part, which

relies on timing-first simulation approach. SimFlex relies on

statistical sampling approach to increase the simulation rate,

but it is not able to observe its entire characteristics.

Graphite has been developed at MIT and is based on

the PIN binary instrumentation package (i.e., a functional

trace-driven simulator). Among all the multi-core simulators

listed in table I, only for COTSon and Graphite there are

results regarding simulation of 1000 cores [24], [26]–[28].

Among listed simulators in Table I, only COTSon and

SimFlex support fast-forwarding technique, which is a feature

of functional mode in order to accelerate simulation. One

of the common technique to accelerate the simulation is

sampling, which selects some instructions simulating in cycle-

accurate mode (timing mode). Cycle-accurate simulations last

a long time, there are therefore lots of researches on how to

enhance the cycle-accurate simulation rate.

Moreover, through simulators like COTSon, we can

easily extend the ISA [29], [30], and implement any types

of complicated architectures suitable for any execution

models like DF-Threads [10]–[12] launched on a multi-

node architecture. For example, in order to measure the

performance of hundreds of multi-core, multiprocessor nodes

in an affordable amount of time, we should be able to have a

full-system simulator supporting full software stack, memory

hierarchy, application benchmarks and all devices.

Among well-known simulators, those which can support

a full system simulation (i.e., including OS) are beneficial

since they provide us to analyze and observe the OS activity

and contribution on performance. As [2], [3] discovered, the

performance of a large-scale application running OS, began

to drop down as number of nodes increases. However, in

order to check the OS intervention, specifically, in scaling up

the cluster, a complete simulation ranging from multi-core

nodes up to full clusters with complete network simulation

is unconditionally needed. COTSon is relatively mature,

and can support both scalability and running OS, permits

us to extract kernel activities while running a multi-node

application. Moreover, it is composed of a set of pluggable

component, in which most extensions can be featured to

allow us to benchmark execution models like DF-Threads,

meantime, stream parameters like kernel cycle.

III. METHODOLOGY

In this section, we describe the methodology and the soft-

ware toolset adopted to perform the analysis of the activity

of different Linux distributions in a multi-core/multi-node

environment.

We rely on a full system simulation framework based on

a customized version of the COTSon simulator and a set

of Design Space and Exploration (DSE) tool, which help us

collect and analyze the results.

A. COTSon Simulator

COTSon [8] is a simulator, which performs a full-system

simulation decoupling the functional execution from the

timing behavior (”functional approach”). The functional

model is executed inside the SimNow virtualizer, a tool

used by AMD to test their CPU and platform. Therefore,

we are able to run off-the-shelf Linux distribution, modeling

a realistic situation like interrupts, exceptions, virtual

memory management and etc. Moreover, new functionalities

can be modeled and designed defining timing models for

423

TABLE I: Comparison different presented features in simulators supporting OS and multi-core simulation of large-scale

applications

Simulator Name Parallel/Sequential
simulation Simulator Platform Fast-forwarding Sampling

support
COTSon [8] Parallel Software-based, Virtual Machine x x

GEMS [16] Sequential Virtual Machine

ProtoFlex [17] Parallel FPGA-based

RAMP [18] Parallel FPGA-based

SimFlex [19] Sequential Software-based, Virtual Machine x x

SimNow [20] Sequential Software-based

Simics [21] Sequential Virtual Machine

SimOS [22] Sequential Software-based

Trace Factory [23] Sequential Software-based

Graphite [24] Sequential Software-based

each possible component of the architecture (i.e., CPU,

caches, network switch). As depicted in Table II, we modeled

the key parameter of the cores of the SimNow virtual machine.

The simulator gives us the possibility to model a complete

network infrastructure with several topologies (i.e., star,

mesh, torus), allowing us to build a distributed system with

many-core/many-nodes (see Figure 1).

Furthermore, we have the possibility to execute different

well-known programming models (i.e., Cilk++, OpenMPI,

DSM) and extend COTSon to support the DF-Threads

execution model [10] and the Distributed Thread Scheduler

[11], on which DF-Threads relies.

Core1

CoreN

I/O
hub NIC MC

MEM

…

Node 1

I/O
hub NIC MC

MEM

Node 2

I/O
hub NIC MC

MEM

Node N

…

Core1

CoreN

…
Core1

CoreN

…

Fig. 1: Distributed System architecture with many-cores/many-node
made into the COTSon simulator. Each one is modeled as System-on-
Chip (SoC). MC=Memory Controller. Network interface controller
(NIC) models the network behavior.

B. DSE Tools

To easily manage the simulation framework, run several

experiments, analyze the result and guarantee a proper

scientific methodology, we developed a set of tool for

the Design Space and Exploration (DSE). As described

in Figure 2, we can prepare the simulation environment

through the ”MYINSTALL” program, taking care of

packages dependencies, Linux distributions and which type

of simulator we need (i.e, COTSon). The MYINSTALL

allows us to enable multiple user on the host machine to

run configuration of their own simulation setup without the

TABLE II: Multi-core architectural parameters.

Parameter Description
SoC 1-core connected by a shared-bus, IO-hub, MC,

high-speed transceivers
Core 3GHz, in-order super-scalar
Branch Predictor two-level (history length=14bits, pattern-history

table=16kB, 8-cycle miss-prediction penalty)
L1 Cache Private I-cache 32 KB, private D-cache 32 KB, 2

ways, 3-cycle latency
L2 Cache Private 2,8,32,256KB, 4 ways, 5-cycle latency
L3 Cache Shared 4MB, 4 ways, 20-cycle latency
Coherence protocol MOESI
Main Memory 1 GB, 100 cycles latency
I-L1-TLB, D-L1-TLB 64 entries, full-associative, 1-cycle latency
L2-TLB 512 entries, direct access, 1-cycle latency
Write/Read queues 200 Bytes each, 1-cycle latency

need of system administrator intervention. Moreover, the

MYINSTALL tool automatically performs several regression

tests at the end of the installation phase, in order to verify

the correctness of the installed software. Thanks to this tool,

we are able to install the complete environment in less than

10 minutes, saving hours of work.

MODELS
(e.g. DF-

Thtreads)

MYINSTALL

MISSING
SYSTEM

PACKAGES
Hard-Drives
(e.g Karmic,

Xenial..)
EXTERNAL
PACKAGES

(e.g SIMNOW)

AUTOMATED
REGRESSION

TESTS

OK/FAIL
REPORT

Host Machines

Fig. 2: TOOLFLOW for the MYINSTALL tool. MYINSTALL
prepares the whole environment for simulation-based Design Space
Exploration with a single command among several host machines.
At the end of each installation, an automated regression test is
performed.

To provide an operating system (OS) for the SimNow

virtual machine, we provide the GEN-IMAGE tool, through

424

which is possible the easily generation of several types

of customized OS versions. As we can see in Figure 3,

the creation of a new hard-drive image (system image)

based on a Linux Official public distribution relies on

the Debootstrap tool. Furthermore, the GENIMAGE tool

generates the hardware description file (BSD file) and the

necessary BIOS/ROM for the virtual machine (i.e., AMD

BIOS/ROM for SimNow). At the end of the image generation

process, the tool performs an automated validation test, using

the Tesseract image recognition package, to check the screen

output .

GEN-
IMAGE

AUTOMATED
IMAGE/BSDS

/ROM
VALIDATION

OK/FAIL
REPORT

PUBLIC
INTERNET

LINUX
OFFICIAL
PUBLIC

REPOSITORIES

SYSTEM
IMAGE

ROM

BSDSBSDS
BSDSBSDS

BSD-
BUILDER

SIMNOW
VIRTUAL

MACHINE

BIOS/ROM
PROVIDER
(e.g. AMD)

LINUX
DEBOOTSTRAP

LINUX
VM-BUILDER

Fig. 3: TOOLFLOW for the GENIMAGE tool. The tool generates
the hard drive image (system image) and the BSD (hardware descrip-
tion) based on the user requirements. A validation test is made at the
end of the workflow, through the Tesserac image recognition package
of the screen.

The ”MYDSE” tool is responsible to manage the

experiment loop, configure the simulator with the specified

simulation point and collect several generated files of the

simulator in an ordered way (see Figure 4). The usefulness

of this tool relies on the usage of a simple text file

with a ”xkeyy=xlist valuesy” syntax, named INFOFILE,

through which is possible to easily define several simulation

configurations.

For example, we are able to specify different GLIBC library

versions into the INFOFILE, having the possibility to test

multiple operating systems, with a different version of GLIBC

library, in a complete automatic way.

During each simulation loop, the tool handles possible failures

or errors, providing a timeout mechanism in order to retry

killed simulations. The timeout is adaptive and depends on a

simulation estimation model (i.e, proportional to the number

of cores, number of nodes).

To be able to analyze the huge amount of data produced by

the experiments without losing the accuracy, we designed the

GTCOLLECT and the GTRAPH tools. The GTCOLLECT

tool is responsible to gather all the information regarding

a specific experiment and organizes the results in a tabular

layout. Furthermore, the tool permits the analysis of multiple

experiment repetitions (at least 5 times to have the classical

”statistically stable” number of measurements), computes

the average and other statistics, like Standard Deviation, on

the dataset. Finally, the GTGRAPH tool is able to derive a

graphical view of the results to easily analyze them.

MYDSE
EXPERIMENT

INFOFILE

SIMULATION.1
OUT

SIMULATION.NSIM
OUT

run/check/retry
simulation points

RAW_OUTPUT_FILES

create
simulation
points

ORDERED
OUTPUT FILES

Organize several
output files of the
experiment

SIMULATOR

Fig. 4: TOOLFLOW of the MYDSE tool. The tool creates/run-
s/checks and retries several simulation points defined into the ex-
periment INFOFILE. At the end of the experiment loop, MYDSE
tool organizes the raw output file produced by simulator in a better
way, in order to be easily analyzed by other tools.

C. Kernel cycles extraction

As we described in section III-A, COTSon uses a functional

approach for the simulation, giving us the possibility to model

the system features through the specification of the timing

models. In order to extract the kernel activity, we defined a

timing model for a CPU, x86 64 instruction set based, where

we identify the kernel instructions analyzing the memory ad-

dress accessed by each instruction. As depicted in Figure 5, we

analyze the most significant bit of memory address accessed

by the current instruction and if the bit is equal to 1, it means

that the instruction is trying to read or write in the Kernel

space memory section. Consequently, we mark the instruction

as a kernel type. Finally, we integrated this proceeding in the

CPU timing model of COTSon.

IV. EXPERIMENTS

In this section, we present the tests performed into a

distributed simulation environment in order to study the

influence of several Linux distribution on the performance.

For the comparison, we selected the DF-Threads execution

model and the Matrix Multiplication Benchmark. We analyzed

how the execution time differs varying the Operating System.

Moreover, we studied key aspects (i.e., L2 Miss Rate, Kernel

Cycles) to evaluate the impact of each distribution on the

execution time.

We configured the distributed simulation environment with

a node range from 1 to 4 and a core range from 1 to 32. The

input sizes used for the Matrix Multiplication benchmark vary

from 64 to 1024.

425

00011110000011100…..1/0

64-bit memory address

KERNEL
SPACE

USER
SPACE

Memory

YES

NO

MSB

MSB == 1?

Fig. 5: Kernel instruction extracting technique in COTSon simulator.
The Most Significant Bit (MSB) of the memory address accessed by
the current instruction is analyzed and if the MSB is equal to 1, it
means that the instruction is trying to access the kernel space and it
is a Kernel Instruction.

A. Operating system distributions

The operating system are based on the Linux distribution

Ubuntu like and we chose four different kernel versions to

perform our tests:

‚ Karmic: it is the Ubuntu 9.10 LTS version. The distri-

bution focuses on improvements in cloud computing as

well as further improvements in boot speed.

‚ Tfx: it represents the Maverick version of the Ubuntu

kernel (version 10.10)

‚ Trusty (Ubuntu 14.04 LTS): the main improvements were

based on increasing the performance and the maintain-

ability.

‚ Xenial: It is the Ubuntu 16.04 LTS version

B. Cache sensitivity

The first comparison between the Linux distribution regards

the execution time and the scalability. We vary the L2 cache

size with small sizes (from 2 to 32 KiB), keeping fixed the

input size (matrix size=512) and the cores number. As we can

see in Figure 6, the Trusty distribution obtains better results,

both in execution time and scalability, than the other releases,

outperforming the Xenial version by a factor of 60% in the

one node execution. This variation rises from the different

configurations and daemons included in the distro. Moreover,

the Karmic distribution showed a quite similar result as the

Trusty when we increase the number of nodes, confirming the

improvements in cloud computing and performances made

by the Linux development communities. In all cases, a larger

cache size improves the performance as expected. Once we

increase the number of nodes, one interesting effects is also

that the total capacity of caches will increase. Moreover, we

observe a reasonable scaling of performance with the number

of nodes.

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

1

2

4

cycles

NO
DE

S

tfxv4,32
tfxv4,8
tfxv4,2
trusty-axmv3,32
trusty-axmv3,8
trusty-axmv3,2
karmic64,32
karmic64,8
karmic64,2
xenv0,32
xenv0,8
xenv0,2

~60% faster

Best Case

Worst Case

L2 Cache Size

Fig. 6: Study of the performance variation (cycles) as we vary the L2
cache size (from 2 to 32KiB) and the operating system distribution. In
the case of one node, this variation is up to 60% due to the different
types of daemons and configurations included in distros.

C. Matrix size sensitivity

In the following experiment, we keep fixed the L2 cache

size (256 KiB) and we vary the number of nodes and the

matrix size from 64 to 1024. As depicted in Figure 7 and

Figure 8, there is a strong correlation between the data access

latency seen by the processor (Figure 7). Moreover, the miss

rate of the L2 cache (Figure 8), shows that the L2 cache

size has a strong impact on the performance and therefore it

may plays a crucial role in any operating system distribution

observed.

10.5 11.5 12.5 13.5 14.5 15.5

1

2

4

Data Access Latency (cycles)

N
O

D
ES

tfxv4,1024
tfxv4,256
tfxv4,64
trusty-axmv3,1024
trusty-axmv3,256
trusty-axmv3,64
karmic64,1024
karmic64,256
karmic64,64
xenv0,1024
xenv0,256
xenv0,64

MATRIX SIZE

Fig. 7: Data access latency seen by the processor varying the input
size (from 64 to 1024), the operating system distribution and the
number of nodes.

Again, we keep fixed the L2 cache (256 KiB), analyzing

the effect of different matrix size (from 64 to 1024) and

therefore a different number of generated threads. As can be

seen from Figure 9, we observe a certain variation in the

426

performance with the OS distribution and the Trusty release

seems the best among the tested ones in most cases. Also in

this case, we obtain a quite good scalability factor increasing

the input size and the number of nodes.

0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48

'1 '2 '4

L2
 C

ac
he

 M
is

s
Ra

te

NODES

xenv0,64 xenv0,256
xenv0,1024 karmic64,64
karmic64,256 karmic64,1024
trusty-axmv3,64 trusty-axmv3,256
trusty-axmv3,1024 tfxv4,64
tfxv4,256 tfxv4,1024

MATRIX SIZE

Fig. 8: Analysis of the L2 Cache Miss Rate as varying the number
of nodes, the operating system distribution and the input size (from
64 to 1024).

D. Kernel activity

Regards to study the influence of the kernel execution time

on the total cycles of the application, we configured the

experiment keeping fixed the L2 cache (256 KiB), varying

the matrix input size (from 64 to 1024), the number of nodes

(from 1 to 4) and the OS distributions. As we can observe

in Figure 10, the Karmic distribution shows better results,

keeping the percentage of the kernel cycles lower than the

others releases in any configuration. Generally, the kernel

impact on the total cycles is proportional to the number

of nodes, implying that the influence of the kernel is more

important for multi-node configurations.

10000000 100000000 1E+09 1E+10 1E+11 1E+12

1

2

4

cycles

N
O

D
ES

1024,tfxv4
1024,trusty-axmv3
1024,karmic64
1024,xenv0
512,tfxv4
512,trusty-axmv3
512,karmic64
512,xenv0
256,tfxv4
256,trusty-axmv3
256,karmic64
256,xenv0
128,tfxv4
128,trusty-axmv3
128,karmic64
128,xenv0

MATRIX SIZE

Fig. 9: Variation in number of execution cycles in different operating
system distribution as we vary the input size (matrix size = 128, 256,
512, and 1024). The trusty-axmv3 seems to have the best performance
compared to the other distribution.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

1

2

4

Percent of Kernel Cycles

N
O

D
ES

tfxv4,1024
tfxv4,256
tfxv4,64
trusty-axmv3,1024
trusty-axmv3,256
trusty-axmv3,64
karmic64,1024
karmic64,256
karmic64,64
xenv0,1024
xenv0,256
xenv0,64

MATRIX SIZE

Fig. 10: The percentage of kernel cycles on the input size from 64
to 1024. The kernel time may occupy from few percent (1 Node
execution) to more than 13% of the total time (4 Nodes execution).

V. RELATED WORK

Investigating on the kernel activity and system impact in

parallel computing has a long story. Our contribution includes

for the first time the exploring and quantifying the influence

of OS kernel in a novel execution model (DF-Threads [10])

on a large-scale multi-node system.

Many researchers have explored several impact on per-

formance variations in large-scale parallel computers. For

instance, Petrini et al. [2] propose a performance-analysis

methodology including those artifacts that degrade application

performance, and determines which sources of noise have

the most impact on performance, and therefore those to

eliminate. In [31], Betti et al. propose an extension to the

Linux Kernel in a large-scale supercomputer to detect most

time-consuming system activities, through which the OS noise

can be reduced on a single node leading better scalability.

Moreover, the design co-ordinates cluster level operations such

as data checkpoint or debugging.

In [32], Ferreira et al. demonstrate the importance of how

noise is generated, regarding frequency and duration, and how

this impact changes with application scale using a kernel-based

noise injection in a large-scale application. They also show

how aspects of application, like computation/communication

ratios, collective communication sizes, amplify or absorb OS

noise. On the contrary, Wallas [33] shows the bigger and less

frequent efficient task for small-benchmarks by simulating

OS noise for a 3500+ node Cray XT3 machine. For more

information regarding micro-benchmarks, Sottile et al. in [34]

identify features within the noise due to frequent activities that

are not part of user code and discuss different types of micro-

benchmarks like Fixed Work Quantum (FWQ) and Fixed Time

Quantum (FTQ). Cui et al. in [35], propose a benchmark to

address the parallel scalability of OS on large-scale multi-core

platforms. They evaluate that all micro-benchmarks in their

design scale bad, except dupbench. Their analysis of kernel

427

activity indicates that kernel synchronization primitives are the

main reason of the poor scalability.

Tsafrir et al. [36] show the complexity of implementation

of global tick synchronization in a large-scale application and

how this can degrade the performance. Moreover, they present

how the OS impact is linearly proportional to the size of the

cluster under certain condition and considering probabilistic

arguments. They identify one of the major impact which

indirectly imposes an extra overhead to OS Clock Interrupts,

so-called ticks. To cope with this problem, they propose a

smart–tick to merge events to reduce the number of the timer

interrupt.

In [37], Mraz addresses issues regarding message passing

variance when executing real-time parallel applications. The

author proposes a method to reduce performance variation

through kernel extensions, controlling interrupt level and pro-

cess priorities as well as synchronization at runtime.

Similarly to our work, Wentzlaff discusses some of the

problems regarding scalability in monolithic operating systems

[38]. They propose a factored operating system targeting

1000+ core with space-sharing to improve scalability. In [39],

Song performs experiments with four applications on multi-

core architectures on which a proposed framework runs mul-

tiple commodity, providing the illusion of running on a single

OS. The results show that their design has better scalability in

comparison with Linux.

In [40], authors propose a full stack simulation system

targeting heterogeneous kilo-core architectures, which is able

to extend and add new instruction sets to support DataFlow-

Threads (DF-Threads) execution model [10]. In the context of

the AXIOM project [41]–[49], recent papers discuss a full

system framework for a many-board embedded computing.

We evaluated the AXIOM embedded system through real

life applications such as Smart Video Surveillance(SVS) and

Smart Home Living (SHL) [13], [14]. The work presented in

this paper help us in the deeply analysis on how to improve

the performance of such case-studies. In the context of the

TERAFLUX project [6], [50], [51], we started to develop DSE

tools in order to evaluate a complex architecture with e.g.,

1000 general purpose cores and running a full OS like Linux.

However, in recent papers, we did not analyze the impact of

different OS distributions on performance. In this paper, we

explore the important metrics while running several distribu-

tions of Linux and evaluate their impact on performance using

our DSE toolset. We have shown in experiments, that we can

vary architecture parameters like cache size and observe OS

impact which is not possible in a fixed architecture.

VI. CONCLUSIONS

As related research has discovered, operating system (OS)

increasingly affects the performance when the number of

nodes increases. In order to study this impact, a simulator

which can support both OS and multi-node simulation is valu-

able. We found that the OS impact could vary among different

types of Linux distributions. In this paper, we compare several

Linux Ubuntu distributions to understand the performance

sensitivity when accounting for all the software components

like run-time and OS.

Then, we explained our motivation for selecting COTSon

simulator as one of our tool. We present our Design Space

Exploration (DSE) toolset through which we easily manage

and establish a distributed system environment of many-

nodes. Our DSE toolset facilitates steps to setup simulated

architecture on severals machines, spending less than ten

minutes for each of them and with reduced human interaction.

Thanks to our DSE toolset, we were able to extract a huge

amount of data results, and their graphical representation,

evaluate several Linux distributions on the simulated platform

in a fast and easy way, saving hours of work.

As one benchmark of high interest nowadays is matrix

multiplication (a fundamental operation, e.g., the Deep Neural

Networks) and we chose it as a simple driver for our ex-

periments in order to study the OS impact on performance,

while varying key metrics of the architecture (e.g, L2 Cache

size) and increasing the number of nodes of the distributed

environment. We extract and analyze the key metrics like L2

Cache Miss Rate, execution cycles, data access latency, and

kernel cycles for different Linux distribution. We showed the

behavior of OS varying the L2 Cache size, reaching up to

60% in performance variations due to the different types of

configurations and daemons installed. Moreover, with the same

Linux distributions, the OS is responsible for a portion of the

execution time which may exceed 13% in case of four nodes.

VII. ACKNOWLEDGMENT

The authors would like to thank the AXIOM H2020 project

(id. 645496), the TERAFLUX (id. 249013), and the HiPEAC

(id. 779656), and finally, the anonymous reviewers for their

helpful comments.

REFERENCES

[1] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts
essentials. John Wiley & Sons, Inc., 2014.

[2] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of asci q,” in Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, SC ’03, (New York, NY, USA), pp. 55–,
ACM, 2003.

[3] P. Terry, A. Shan, and P. Huttunen, “Improving application performance
on hpc systems with process synchronization,” Linux J., vol. 2004, pp. 3–
, Nov. 2004.

[4] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Black-
more, P. Caffrey, B. Maskell, P. Tomlinson, and M. Roberts, “Improving
the scalability of parallel jobs by adding parallel awareness to the
operating system,” in Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, SC ’03, (New York, NY, USA), pp. 10–, ACM,
2003.

[5] S. Borkar and A. A. Chien, “The future of microprocessors,” Commu-
nications of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[6] R. Giorgi, R. Badia, et al., “TERAFLUX: Harnessing dataflow in next
generation teradevices,” Microprocessors and Microsystems, vol. 38,
no. 8, Part B, pp. 976–990, 2014.

[7] A. Portero, Z. Yu, and R. Giorgi, “Teraflux: Exploiting tera-device
computing challenges,” ELSEVIER Procedia Computer Science, vol. 7,
pp. 146–147, 2011. Proc. 2nd European Future Technologies Conf. and
Exhibition 2011 (FET 11).

428

[8] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: infrastructure for full system simulation,” SIGOPS Oper. Syst.
Rev., vol. 43, no. 1, pp. 52–61, 2009.

[9] R. Giorgi, M. Procaccini, and F. Khalili, “A design space exploration tool
set for future tera-scale high-performance computers,” in 11th Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO), January 2019.

[10] R. Giorgi and P. Faraboschi, “An introduction to DF-Threads and their
execution model,” in IEEE MPP, (Paris, France), pp. 60–65, Oct. 2014.

[11] R. Giorgi and A. Scionti, “A scalable thread scheduling co-processor
based on data-flow principles,” Future Generation Computer Systems,
vol. 53, pp. 100–108, Dec. 2015.

[12] L. Verdoscia and R. Giorgi, “A data-flow soft-core processor for ac-
celerating scientific calculation on FPGAs,” Mathematical Problems in
Engineering, vol. 2016, pp. 1–21, Apr. 2016. article ID 3190234.

[13] R. Giorgi, N. Bettin, P. Gai, X. Martorell, and A. Rizzo, AXIOM: A
Flexible Platform for the Smart Home, ch. 3, pp. 57–74. Cham: Springer
Int.l Pub., 2016.

[14] C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-Gonzalez,
X. Martorell, et al., “The AXIOM software layers,” in IEEE Proc. 18th
EUROMICRO-DSD, pp. 117–124, Aug. 2015.

[15] R. Giorgi, “Scalable embedded computing through reconfigurable hard-
ware: comparing df-threads, cilk, OpenMPI and jump,” ELSEVIER
Microprocessors and Microsystems, vol. 63, pp. 66–74, Aug. 2018.

[16] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (gems) toolset,” ACM
SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99, 2005.

[17] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai,
and B. Falsafi, “Protoflex: Towards scalable, full-system multiprocessor
simulations using fpgas,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 2, pp. 15:1–15:32, June 2009.

[18] G. Gibeling, A. Schultz, and K. Asanovic, “The ramp architecture &
description language,” in 2nd Workshop on Architecture Research using
FPGA Platforms, 2006.

[19] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “Simflex: statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[20] O. A. Place, “Amd simnow™ simulator,” 2004.

[21] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[22] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete
computer system simulation: The simos approach,” IEEE Parallel &
Distributed Technology: Systems & Applications, vol. 3, no. 4, pp. 34–
43, 1995.

[23] R. Giorgi, C. Prete, G. Prina, and L. Ricciardi, “A workload generation
environment for trace-driven simulation of shared-bus multiprocessor,”
in IEEE Proc. 30th Hawaii Int.l Conf. on System Sciences (HICSS-30),
vol. 1, (Maui, Hawaii), pp. 266–275, Jan. 1997.

[24] J. E. Miller, H. Kasture, et al., “Graphite: A distributed parallel simulator
for multicores,” in High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, pp. 1–12, IEEE, 2010.

[25] N. L. Binkert et al., “The m5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, 2006.

[26] D. Vantrease et al., “Corona: System implications of emerging nanopho-
tonic technology,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, (Washington, DC,
USA), pp. 153–164, IEEE Computer Society, 2008.

[27] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P. Faraboschi,
“How to simulate 1000 cores,” ACM SIGARCH Computer Architecture
News, vol. 37, no. 2, pp. 10–19, 2009.

[28] R. Giorgi, “Exploring future many-core architectures: The TERAFLUX
evaluation framework,” in Advances in Computers, Advances in Com-
puters, pp. 33–72, Elsevier, 2017.

[29] A. Portero, Z. Yu, and R. Giorgi, “T-star (t*): An x86-64 isa extension
to support thread execution on many cores,” in HiPEAC ACACES-2011,
(Fiuggi, Italy), pp. 277–280, July 2011. poster.

[30] N. Ho, A. Portero, M. Solinas, A. Scionti, A. Mondelli, P. Faraboschi,
and R. Giorgi, “Simulating a multi-core x86-64 architecture with hard-
ware isa extension supporting a data-flow execution model,” in IEEE
Proc. AIMS-2014, (Madrid, Spain), pp. 264–269, Nov. 2014.

[31] E. Betti, M. Cesati, R. Gioiosa, and F. Piermaria, “A global operating
system for hpc clusters,” in Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on, pp. 1–10, IEEE, 2009.

[32] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
p. 19, IEEE Press, 2008.

[33] D. Wallace, “Compute node linux: Overview, progress to date, and
roadmap,” in Proceedings of the 2007 Cray User Group Annual Tech-
nical Conference, 2007.

[34] M. Sottile and R. Minnich, “Analysis of microbenchmarks for perfor-
mance tuning of clusters,” in Cluster Computing, 2004 IEEE Interna-
tional Conference on, pp. 371–377, IEEE, 2004.

[35] Y. Cui, Y. Chen, and Y. Shi, “Osmark: A benchmark suite for understand-
ing parallel scalability of operating systems on large scale multi-cores,”
in Computer Science and Information Technology, 2009. ICCSIT 2009.
2nd IEEE International Conference on, pp. 313–317, IEEE, 2009.

[36] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System noise,
os clock ticks, and fine-grained parallel applications,” in Proceedings of
the 19th Annual International Conference on Supercomputing, ICS ’05,
(New York, NY, USA), pp. 303–312, ACM, 2005.

[37] R. Mraz, “Reducing the variance of point to point transfers in the ibm
9076 parallel computer,” in Supercomputing’94., Proceedings, pp. 620–
629, IEEE, 1994.

[38] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): The
case for a scalable operating system for multicores,” SIGOPS Oper. Syst.
Rev., vol. 43, pp. 76–85, Apr. 2009.

[39] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang, “A case for scaling
applications to many-core with os clustering,” in Proceedings of the
Sixth Conference on Computer Systems, EuroSys ’11, (New York, NY,
USA), pp. 61–76, ACM, 2011.

[40] A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Carro,
A. Garbade, S. Weis, T. Ungerer, and R. Giorgi, “Simulating the future
kilo-x86-64 core processors and their infrastructure,” in 45th Annual
Simulation Symp. (ANSS12), (Orlando, FL), pp. 62–67, Mar 2012.

[41] R. Giorgi, M. Procaccini, and F. Khalili, “AXIOM: A scalable, efficient
and reconfigurable embedded platform,” in Design, Automation and Test
in Europe, the european event for electronic system design and test
(DATE), March 2019.

[42] R. Giorgi, F. Khalili, and M. Procaccini, “Energy efficiency exploration
on the zynq ultrascale+,” in The 30th International Conference on
Microelectronics (ICM), December 2018.

[43] D. Theodoropoulos et al., “The AXIOM project (agile, extensible, fast
i/o module),” in IEEE Proc. 15th Int.l Conf. on Embedded Computer
Systems: Architecture, MOdeling and Simulation, pp. 262–269, July
2015.

[44] R. Giorgi, S. Mazumdar, S. Viola, P. Gai, S. Garzarella, et al., “Modeling
multi-board communication in the axiom cyber-physical system,” Ada
User Journal, vol. 37, pp. 228–235, December 2016.

[45] P. Burgio, C. Alvarez, E. Ayguade, A. Filgueras, D. Jimenez-Gonzalez,
X. Martorell, N. Navarro, and R. Giorgi, “Simulating next-generation
cyber-physical computing platforms,” Ada User Journal, vol. 37, pp. 59–
63, Mar. 2016.

[46] R. Giorgi, “AXIOM: A 64-bit reconfigurable hardware/software platform
for scalable embedded computing,” in 6th Mediterranean Conf. on
Embedded Computing (MECO), pp. 113–116, June 2017.

[47] R. Giorgi, “Scalable embedded systems: Towards the convergence of
high-performance and embedded computing,” in Proc. 13th IEEE/IFIP
Int.l Conf. on Embedded and Ubiquitous Computing (2015), pp. 148–
153, Oct. 2015.

[48] D. Theodoropoulos, S. Mazumdar, E. Ayguade, N. Bettin, J. Bueno,
et al., “The axiom platform for next-generation cyber physical systems,”
ELSEVIER Microprocessors and Microsystems, pp. 540–555, 2017.

[49] C. Alvarez, E. Ayguade, et al., “The AXIOM software layers,” ELSE-
VIER Microprocessors and Microsystems, vol. 47, Part B, pp. 262–277,
2016.

[50] M. Solinas, R. Badia, et al., “The teraflux project: Exploiting the
dataflow paradigm in next generation teradevices,” in IEEE Proc. 16th
EUROMICRO-DSD, (Santander, Spain), pp. 272–279, 2013.

[51] A. Mondelli, N. Ho, A. Scionti, M. Solinas, A. Portero, and R. Giorgi,
“Dataflow support in x86-64 multicore architectures through small
hardware extensions,” in IEEE Proc. DSD, pp. 526–529, August 2015.

429

