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Abstract. Future computers may take advantage of a dataflow program execution model
(PXM) for both performance and energy advantages. One key element to provide a compi-
lation tool-chain for such machines is a framework for developing initial benchmarks. DRT
(Dataflow Run-Time) is a tool that enables the fast prototyping of those benchmarks for
the Dataflow Threads (DF-Threads) PXM. In this work, we show how to use DRT to
develop dataflow based examples to be targeted by a future compiler for the dataflow
PXM.
DRT has been written in portable C code (tested with the GNU C compiler), and it is
open-source, therefore, it can be used on real machines based on architectures like x86,
AArch, RISC-V ISA.
Here, we discuss some didactic examples, and we show how to study and debug the data
exchange, which is flowing through frames that are detached from the data stack. We
compare DRT against similar dataflow runtime libraries such as DARTS and OCR. Even
though our environment is not yet optimized, we found that DRT outperforms the above
runtime frameworks in terms of execution time. We also give an evaluation of the time and
complexity to develop DF-Threads examples in DRT compared to the approach of using
a full system simulator and FPGAs for more accurate modeling.

Keywords: Dataflow threads, Low-level API, Execution Model

1 Introduction and Motivation

Dataflow architectures and their program execution models (PXMs) have been studied since the
’70s [8,7,3,4,34,38]. One of the most well-known features of dataflow execution models is that
they can achieve a high level of parallelism, which leads to better power consumption and better
hardware efficiency [44,30]. Dataflow architectures can significantly exploit the implicit paral-
lelism of the applications and overcome synchronization and consistency overheads generated by
von Neumann machines [20,21]. Since then, some researchers have shown the possibility of sup-
porting a dataflow execution model for parallel threads on conventional machines [23,37,19,45].
In this work, we consider the DF-Threads execution model [19]. Other works have shown the
potential of dataflow models in terms of power efficiency [6,22] and also as accelerators for High-
Performance Computing and machine learning applications [28,29,9]. As can be seen in Fig. 1,
the DF-Threads execution model can exhibit an important speedup compared to OpenMPI when
running the Matrix Multiplication benchmark over a cluster. More details about the scalability
and efficiency of DF-Threads are described in [18].
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Fig. 1: Gain in execution time of DF-Threads compared to OpenMPI. The benchmark is Matrix Multi-
plication for different sizes of the matrices (216, 432, 864 - the block size is 8 elements) and 1, 2, 4 nodes.
Data is derived from [14].

Even though dataflow models have shown many great features, conventional programming
languages do not support them very well [43]. This limitation, together with the possible high
performance gains, motivated us to introduce a tool, which could reduce the gap between con-
ventional languages and dataflow execution models.

In this paper, we present the Dataflow Run-Time tool (DRT) to quickly develop and test the
execution of dataflow codes based on DF-Threads API. Our contributions in this paper are:

• Introducing a dataflow runtime (DRT), which is presented first in this paper.
• Illustrating how the DRT tool can be used for debugging and studying the movement of data

frames (a feature that is not available in standard debuggers).
• Comparing the execution time speedup of DRT against similar dataflow runtime.

The rest of this paper is structured as follows: in Section 2, we describe the background. Then
in Section 3, we introduce the DRT tool, illustrate how to carry out an experiment, write and
debug dataflow codes with DRT. Then in Section 4, we show the DRT runtime evaluation, and
in Section 5, we present related works. Finally, in Section 6, we conclude and briefly introduce
future works.

2 Background

2.1 DF-Threads

In order to demonstrate the dataflow execution model, we use DF-Threads as described in [12].
In Fig. 2, we show a simplified high-level overview of DF-Threads execution (right) and a clas-
sical (von Neumann style) execution (left). In the classical execution, the parallel threads can
read/write from/to any location of the memory. Therefore, a high synchronization and coherency
overhead may be generated. As mentioned in detail in [12], each of these DF-Threads has a dif-
ferent behavior according to the memory access pattern. Consequently, it may need different
execution and hardware support. It is worth recalling that using standard libraries like Pthreads
is not required. Here, we briefly recall the specification of the DF-Threads API:
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• DF-Threads follow the dataflow semantics: a thread is ready when its input is fully available;
it starts executing when the scheduler decides to assign it to a physical resource (e.g., a core).

• The management of a DF-Thread lifetime happens through the following functions, which
are described in Table 1: df schedule , df ldframe , df write , df destroy .

• DF-Threads are isolated in terms of memory accesses, and their execution can be repeated
in the case of faults since their inputs are retained [40].

DF-Threads execution model
inputs

DFTH1 DFTH2

DFTH3

DFTH5

outputs

Classical execution model

Set of parallel threads

APP.BIN

APP.C

DFT-APP.BIN

APP.C

DFTH6

DFTH4

Fig. 2: Simplified representation of the DF-Threads execution model. On the left, we represent the
irregular read and write of generic threads. On the right, the exchange of data among threads happens
in a more regular fashion [22].

Table 1: DF-Threads function definitions [16]

DF-Threads API function Description

uint64 t df schedule(void∗ ip, uint64 t sc) Create the DF-Thread and its associated frame; sc is the
synchronization count, which represents the number of
inputs that the DF-Thread will receive.

uint64 t df ldframe() Retrieve the frame pointer associated with the current
DF-Thread.

uint64 t df write(void∗ fp, uint64 t val) The value val will be stored in a location pointed by fp,
and for each write, the sc (which is specified by scheduler
before) will be decremented.

uint64 t df destroy() Terminate the current DF-Thread and deallocate its input
frame.
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2.2 Writing dataflow codes with the DF-Threads API

This Section shows the workflow to map the desired application into a dataflow code (here DF-
Threads). While this translation could be done by a compiler, we do not have such a compiler
at the moment (the compiler could be future work).

We use fine-grain algorithms to show the potentiality of our tool in mapping several DF-
Threads on real architectures. We choose the Recursive Fibonacci (RFIB) as a “simple yet
complex enough” example to illustrate the development methodology for DF-Threads programs.
The RFIB algorithm is a well-known example used to create many threads and stress the runtime
and the scheduling management.

In Fig. 3, we describe the original C code and its mapping into DF-Threads, together with
the dynamic behavior of the dataflow code. In this case, two DF-Threads are created: RFIB and
“adder”.

The key operation is the df schedule, which creates a DF-Thread, whose code is specified
by the parameter ip (the instruction pointer or the name of the corresponding function). With
the same operation, a portion of memory (frame) is allocated and associated with the same
DF-Thread. The size of the frame is determined by the number of inputs of the DF-Thread that
is specified by the sc value of the df schedule. The df schedule returns the address (frame
pointer) to the allocated memory space (the frame). The next step is to write the DF-Thread
input and the output locations. This can be done by using the df write. Once the frame pointer
(fp) has been retrieved by the df ldframe, the df write will store the data (here n-1, n-2) in
the location of fp[1] and fp[2], respectively. Please note that fp[0] has been reserved as the output
location, into which the DF-Thread will write the result. For each write into the frame, the sc
value will be decremented by 1 (this is implied by df write and it is part of the implementation
of the df write itself). In the end, df destroy will terminate the current DF-Thread [17].

3 Introducing DRT

Developing a novel architecture may require considerable time when using an architectural simu-
lator [2,14]. To reduce this development-cycle time, in the case of the dataflow execution model,
we designed a tool that we call “Dataflow Run-Time” (DRT). The aim of the DRT is to make it
easier for the software community to use a dataflow program execution model (here DF-Threads):
by studying the simple examples that we propose, or building new examples, the compiler ex-
perts could derive an appropriate compilation path, which could target the DF-Threads PXM.
This tool is compatible with real machines like x86, AArch, RISC-V. DRT only requires the
installation of the GCC compiler for compiling and running DF-Threads programs.

DRT enables the fast development and debugging of the DF-Threads’ API and its data
exchange mechanism, which is based on frames (see Fig. 3).

According to an initial test done in DRT, we can reduce the development-cycle time from
minutes/hours to seconds (see Section 3). As shown in Fig. 4, we currently need to map manually
(’manual coding into DFT syntax’) high level programs (’.c code’) to the DF-Threads API. Then,
the DRT enables a standard compiler (GCC in our case) to generate a binary that can run on
standard architectures. The availability of DRT provides a basis for direct writing dataflow codes
but also enables compiler experts to further build on this workflow and integrate it in a compiler
(lower part of Fig. 4, which is not in the scope of this paper).
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void RFIB(void) {

uint64_t* fp =(uint64_t*) df_ldframe();

int n = fp[1]; 

if (n <= 1) { 

df_write(fp[0],n); 

}else {

uint64_t* tfib1 = df_schedule(&RFIB,2);  

uint64_t* tfib2 = df_schedule(&RFIB,2); 

df_write(&tfib1[1], n-1); 

df_write(&tfib2[1], n-2); 

uint64_t* tadd = df_schedule(&adder,3); 

df_write(&tadd[0], fp[0]); 

df_write(&tfib1[0], tadd+1)); 

df_write(&tfib2[0], tadd+2); 

}

df_destroy();

}

void adder(void) {

uint64_t* fp =(uint64_t*)df_ldframe();

uint64_t f1 = fp[1]; 

uint64_t f2 = fp[2]; 

df_write(fp[0],f1+f2);

df_destroy();

}

n

RESULT
LOCATION

uint64_t* fp =(uint64_t*) df_ldframe();

int n = fp[1]; 

...

n

if
(n <= 1)

RESULT
LOCATION

...
if (n <= 1){

df_write(fp[0],n);
} 

n

(else)

n-1 n-2

(else)

RESULT
LOCATION

RESULT
LOCATION

n

RESULT
LOCATION

...

df_write(&tfib1[1], n-1); 

df_write(&tfib2[1], n-2); 

...

df_write(&tadd[0], fp[0]); 

df_write(&tfib1[0], tadd+1)); 

df_write(&tfib2[0], tadd+2); 

f1
f2

adder

RESULT 
LOCATION

=f1+f2

else {

uint64_t* tfib1 = df_schedule(&RFIB,2);  

uint64_t* tfib2 = df_schedule(&RFIB,2); 

...

uint64_t* tadd = df_schedule(&adder,3);

... 

RESULT
LOCATION =n

Original C code
(Recursive Fibonacci)

DF-Thread coding Dynamic behavior

int RFIB(int n){

if ( n<=1) return n; else

return RFIB(n-1) + RFIB(n-2);

}

Fig. 3: Illustrating the operations of the basic DRT API functions with a simple Recursive Fibonacci
(RFIB) example. On the left, there is the representation of the RFIB function and its coding in DF-
Thread style. On the right, we detail the specific dynamic behavior. Example rearranged from [27].
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Similar efforts exist like the Delaware Adaptive Runtime System (DARTS) [25] and the Open
Community Runtime (OCR) [27], so we compare them with DRT in Section 3. DRT is available
as open-source at http://drt.sf.net 3.

.c 
Code

Manual 
Coding 

into DFT 
Syntax

.c code 
+ DFT 

Primitives

GCC 
Compiler

DF Binary
with DRT

x86_64

AArch64

.c 
Code

GCC + DRT 
Backend* 

DRT is presented in this paper

DF Binary
without 

DRT

DF Binary
with DRT

rv64

x86_64**

AArch64**

rv64**

x86_64

AArch64

rv64

Extended Architecture
(native + DFT support)
FPGA, Simulator,
ASIC in future)

Existing 
Architecture 
(with this tool)

* This back-end is not the scope of this work

** Hardware DFT support           
(e.g., AXIOM board)

Dataflow 
Runtime 

(DRT)

Fig. 4: The role of DRT in developing applications based on the DataFlow Threads (DFT) execution
model. In the top part, we show the current setup of DRT. In the bottom part, we show the production
framework that we envision. The idea is that DRT could help develop a future DRT backend of a standard
compiler.

3.1 Debugging with DRT

In order to check the correctness of the dataflow execution, it is crucial to monitor the movement
of the data and the status of the DF-Threads. In fact, whenever new DF-Threads are created, the
DRT is responsible for providing a memory block called frame to store data, meta-information
settings, and keeping track of the DF-Thread status. When a producer DF-Thread wants to write
its outputs into the consumer DF-Thread, the DRT performs the write operations and decreases
the synchronization count (sc) of the consumer DF-Thread. When the sc reaches zero, the DF-
Thread becomes ready to be executed, and it is moved into a ready queue by the DRT. Once
a DF-Thread terminates its execution, the DRT deallocates the associated frame from memory,
dequeues the next DF-Thread from the ready queue, and assigns it to an available core. Finally,
DRT will report if the program’s output is successfully calculated, e.g., making a checksum with
the reference program’s result. In the following, we illustrate a debugging session in detail for
the RFIB benchmark (Fig. 5, Fig. 6).

DRT offers the possibility to customize the development environment through the command-
line for exploring up to four levels of debugging. The debug level one displays the used frame
pointers only, while the second and third level print the executed dataflow instructions and the
content of the frames, respectively. The fourth level gives us the statistical information about

3 Checkout the DRT repository by this command:
svn co https://svn.code.sf.net/p/drt/code/

http://drt.sourceforge.net
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the DF-Threads, the memory, and the queues. The user can specify the level of debugging by
the environment variable DRT DEBUG.

In Fig. 5, as an illustrative example for analyzing the benchmark behavior, we show the
output of DRT when the debug level is set to three for the RFIB benchmark and its input is
n=4. We also illustrate the corresponding dataflow graph in Fig. 6. The first line describes the
command line for executing a dataflow code with DRT. In the third line, the DRT initializes
the environment and allocates the memory space for storing the frames based on the application
requirements. Lines 4 and 5 show the creation of the scheduled function (the RFIB function, see
Table 2) and the report function to collect the results. In lines 6 and 7, the df write writes the
value (val) in the output frame and decrements the associated synchronization count (sc). Lines
10 to 19 describes the recursive calls of the RFIB functions. Finally, the current DF-Thread will
be terminated, and its input frame will be deallocated (line 20).

1 ~/drt-code $ DRT_DEBUG=3 ./RFIB 4

2 computing Recursive Fibonacci(4)

3 -DRT: FRAME-MEM allocation+initialization done.

4 TS: fi=0 ip=0x403a46 fp=0x609f60 sc=1/1

5 TS: fi=1 ip=0x401795 fp=0x609fc0 sc=2/2

6 TW: fi=1 ip=0x401795 fp=0x609fc0 val=0x609f6000 sc=1/2

7 TW: fi=1 ip=0x401795 fp=0x609fc0 val=0x4 sc=0/2

8 ++main

9 -DRT: Starting Dataflow launcher.

10 TE: fi=1 ipnew=0x401795 fpnew=0x609fc0

11 TS: fi=2 ip=0x401795 fp=0x60a020 sc=2/2

12 TS: fi=3 ip=0x401795 fp=0x60a080 sc=2/2

13 TW: fi=2 ip=0x401795 fp=0x60a020 val=0x3 sc=1/2

14 TW: fi=3 ip=0x401795 fp=0x60a080 val=0x2 sc=1/2

15 TS: fi=4 ip=0x400d81 fp=0x60a0e0 sc=3/3

16 TW: fi=4 ip=0x400d81 fp=0x60a0e0 val=0x609f6000 sc=2/3

17 TW: fi=2 ip=0x401795 fp=0x60a020 val=0x60a0e001 sc=0/2

18 TW: fi=3 ip=0x401795 fp=0x60a080 val=0x60a0e002 sc=0/2

19 TD: fi=1 ip=0x401795 fp=0x609fc0 sc=2

20 TE: fi=2 ipnew=0x401795 fpnew=0x60a020

21 ++report

22 DF-Thread RFIB = 3

23 *** SUCCESS ***

Fig. 5: DRT sample output. DRT DEBUG is an environment variable for specifying the debug level. The
DF-Threads functions are mapped to internal operations where TS stands for thread scheduling, TE
stands for thread-end, TD stands for thread drop, TW stands for thread write, ip stands for instruction
pointer, and fp stands for frame pointer. Other debugging information is fi for frame index, sc stands
for synchronization count, ipnew/fpnew are the ip/fp just freed.

The list of ip and fp addresses that are shown in Fig. 5 correspond to the same addresses
that can be retrieved through standard disassembler tools (e.g., objdump). However, the usage of
such tools gives us only a static view, while DRT enables a dynamic analysis showing the entire
sequence of executed instructions with additional information about the DF-Threads, memory,
and queue status. For example, the ip=0x401795 corresponds to the address of the code of the
RFIB function (see Table 2). All the corresponding functions and their fp addresses generated
in the function RFIB are shown in Table 2.
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Table 2: The function name and its corresponding frame pointer address that are shown in Fig. 5 (same
as in objdump tool).

Frame pointer address Corresponding function

0x401795 RFIB
0x400d81 adder
0x403a46 report

RFIB(2) RFIB(3)

RFIB(2)

RFIB(4)mainReport

RFIB(1)

adder

adder

METADATA

fp=0x609f60

sc=1

ip=0x403a46

FRAME MEMORY

METADATA

fp=0x609fc0

sc=2

ip=0x401795

METADATA

fp=0x60a0e0

sc=3

ip=0x400d81

M
ETA

D
A

TA
 

D
A

TA
 

fp[0]

value

&result

Md[2]=&fp
Frame0

M
ETA

D
A

TA
 

D
A

TA
 

fp[0]

Md[2]=&fp
Frame1

M
ETA

D
A

TA
 

D
A

TA
 

fp[0]

n-2

n-1

Md[2]=&fp

Frame2

n

… … …

… …

…
Fig. 6: An example of the RFIB(4) function of the Recursive Fibonacci (RFIB) example for illustrating
the organization of data frames and their metadata. The metadata includes fp (frame pointer), ip (in-
struction pointer) and sc (synchronization count). The data illustrated here is extracted from the output
of the DRT tool.

void df_write(uint64_t *fp, uint64_t val)

{

*fp=val; //write the value

uint64_t *md=METADATA(fp); //retrieve metadata

md[MDSC]--; //decrement synchronization count

if (md[MDSC] == 0) //move the frame to READY QUEUE

TSETREADY(md[MDQSTATUS]);

}

Fig. 7: An example of a modeled function in the DRT implementation, where METADATA extracts the
metadata pointer from the frame, MDSC is the offset of the synchronization count, and MDQSTATUS
is the offset of the status bits that indicate whether the frame is in ready or waiting status.
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In order to show the effectiveness of the internal modeling of the DRT function, we consider
the implementation of the df write function (see Fig. 7). The df write needs two arguments, the
pointer to the output frame (fp) and the value to write in such frame. Internally, the df write
extracts the metadata pointer from the given frame and, based on the sc information, df write
decides whether the DF-Thread is in ready or waiting status. Other useful debugging information,
not shown in this simple example for the sake of simplicity, are the status of queues, the total
number of allocated frames, the total number of writes, total number of frames that are in ready
or waiting status.

4 Evaluation

In this Section, we compare the performance of DRT against other similar environments, namely
OCR [27] and DARTS [25]. OCR and DARTS use a dataflow model to manage threads, similarly
to DRT: the common main idea is to decouple the higher layers of the software stack from the
underlying hardware by using a possibly universal interface. For details about OCR, DARTS,
and other related environments, see Section 5. As explained in Section 3, we wrote some initial
benchmarks manually due to the lack of a compiler. Therefore, at this stage, we cannot afford
to make more extensive tests with large benchmarks.

To demonstrate the capabilities of the DRT, we selected two simple benchmarks:

• Recursive Fibonacci (RFIB) in order to generate a high number of threads easily.
• Blocked Matrix Multiplication (BMM) as it is a very commonly used kernel in many appli-

cations (especially in Artificial Intelligence, Deep Neural Networks, etc.), and it moves much
data around.

The two benchmarks are using the same exact algorithm for all three frameworks. The out-
put of the benchmarks is validated against the output produced with other independent tools
executing the same benchmarks.

For the sake of simplicity, we analyze the sensitivity with the input set by using n=10, 15,
20, 25 for RFIB and s=128, 256, 512, 1024 for BMM, where n is the index of the corresponding
Fibonacci number and s is the size of the square matrices that are multiplied. For the block size
of the matrices, we used b=8, where b is the number of the elements inside a block. The purpose
of DRT is to explore the correctness of the dataflow execution, not to scale the performance
across cores. Nevertheless, to make a fair comparison against other environments, we restricted
our evaluation to a single core execution.

For each of the three runtime frameworks (DRT, DARTS, and OCR), we measure the time
spent in the Region Of Interest (ROI) of each benchmark, and we repeat at least ten times the
experiments to obtain statistically valid measurements. We report the execution time speedup
by using DARTS as the baseline. As we can observe from Fig. 8 and Fig. 9, DRT can outperform
by one order of magnitude DARTS for smaller inputs. DRT outperforms OCR by a factor of
about 13x for n=25. While the OCR and DARTS are well optimized, DRT can still be improved.
However, as stated before the main goal of DRT is just to provide a tool for developing DF-Thread
benchmarks and a future compiler; more performance could be achieved by using DF-Thread
native support as shown in Fig. 4.

4.1 DRT versus other architectural exploration tools

DRT is also serving to explore new architectures based on dataflow concepts. While designing
such a non-yet existing architecture, different approaches can be used:
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Fig. 8: RFIB execution time speedup comparison between DRT, DARTS and OCR runtime. Here OCR is
the baseline. DRT reaches better performance due to a simplified management of the dataflow execution.
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• An architectural simulator (e.g., the COTSon [2]).
• A hardware prototype. In our work, we use the AXIOM board (provided by SECO [35]),

which includes four 64-bit ARM cores, an FPGA, and a GPU [13,10].
• A runtime tool like DRT; in the following, we discuss how this tool can be used to understand

the data exchange among the dataflow threads.

While it is possible to develop DF-Threads codes on a simulator or on an FPGA prototype,
we found that it is more productive to use a tool such as the DRT, a minimalistic API written
in around 300 lines of C code, through which it is possible to test and debug the implementation
of a specific feature in seconds, while doing that on an FPGA may require days [15] (see Table
3). In Fig. 10, we show the simulation time of the COTSon simulator compared to the DRT. As
we can see, we can obtain up to four orders of magnitude speedup while executing a benchmark
RFIB. The speedup in simulation time of a simulator is lower compared to an FPGA, but the
development-cycle time can be much higher; this is discussed below.

0.1

1

10

100

1000

10000

100000

10 15 20 25

Si
m

u
la

ti
o

n
 t

im
e 

sp
ee

d
u

p

Fibonacci index (n)

COTSon Simulator

DRT

Fig. 10: Simulation time speedup comparison between DRT and the COTSon simulator by using the
RFIB example. DRT significantly decreases the development-cycle time to develop a dataflow program.

Table 3: Comparing lightweight DRT with other different tools for developing dataflow codes and the
related architectures. As we can see DRT, is using only 300 lines of C code.

DRT Simulator[24] FPGA[33]

SLOC of the framework ∼ 300 ∼ 112,000 ∼ 1,000,000
Openness the development framework High (open-source) Medium (partly open-source) Limited (proprietary tools)
Complexity of the development-cycle Low (seconds) High (minutes) Very high (hours)

In terms of evaluating the DRT in relation to other approaches for developing the initial codes
that use the dataflow execution model, we compare other tools for modeling new architectures
like the simulator and the FPGA prototype in Table 3. The usage of these tools is necessary
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when exploring hardware support for the dataflow execution [14,15]. We considered the following
metrics:

• SLOC4: these are the source lines of code of the corresponding framework; these numbers
are all publicly available; for the simulator, we referred to the COTSon simulator [24], and
for the FPGA, we referred to the software stack of the AXIOM board [33].

• Openness of the development framework: while DRT can be downloaded and installed in
seconds, COTSon requires at least some hours to complete the setup and some days to
become familiar with the modeling of the components; moreover, some parts of the code
(AMD SimNow) are not open-source; regarding the FPGA-board, the software stack is open-
source, but the tools are typically proprietary and may require licensing and complex setup
procedures.

• The complexity of the development-cycle: while it is rather simple to make modifications,
test, and debug a program through the DRT tool, it may require minutes to complete a full
simulation in the COTSon simulator, and it may require hours to modify and re-generate a
full design in the FPGA framework [14,15].

5 Related Work

In recent years, there have been some works regarding dataflow architectures and their execution
models that we summarized below. In the following, we highlight some works that are related to
ours, and we point out the differences.

BMDFM [32] is a hybrid dataflow runtime environment that provides a dataflow execution
model with its extended instruction set. BMDFM has been implemented on conventional multi-
core platforms to show a complete parallelization environment.

FREDDO [26] uses the distribution of Data-Driven Threads (DDT) over conventional multi-
core processors. FREDDO is written in C++ and focuses mainly on Object-Oriented programs.

Sucuri [36] is a Python dataflow library to execute Dataflow Graphs (DFGs) over a multi-core
distributed system. Sucuri is based on a centralized and local scheduler in each node that can
execute the ready tasks in their local queues. The compiler partitions the DFG, then, during the
runtime, each related DFG part will be distributed among the associated node.

Swift/T [42] is a new implementation of swift language [41] that provides high-level pro-
grammability for implicit dataflow programming. It addresses some optimization for the Swift
parallel scripting language, along with Turbine compiler, which C/C++/Fortran programmers
can develop their software based on this platform.

Trebuchet [1] presents the implementation of dynamic dataflow architecture. Trebuchet presents
the execution of code blocks based on a multi-thread dataflow model.

In XKaapi [11], the authors show a dataflow task acceleration on multi-core CPUs, and GPUs.
XKaapi has been written in C++ language, and a work-stealing method has been presented for
scheduling ready tasks via a runtime system.

These six works - BMDFM, Freddo, Sucuri, Swift/T, Trebuchet, and Xkaapi - use dataflow
approaches to improve the execution time. In contrast, DRT ambition is to provide a tool for
testing and debugging dataflow benchmarks, while the performance is obtained by deploying one
DF-Thread implementation [12,17,39]. In particular, DRT represents a key element to develop
a toolchain to support a dataflow execution model, which could be targeted by a compiler.
While there are many similarities between DRT and the above works, we choose a more detailed
comparison with the Codelet program execution model [46,5] and Open Community Runtime
(OCR) [27,31].

4 Source lines of code
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In the Codelet execution model concept [46], Codelet is a fine grain event-driven unit of
computation, smaller than a thread, aims to exploit the parallelism of Exascale platforms. The
runtime environment DARTS[25] has been presented in such a way that a high-level program will
turn into Codelet Graph with the API interface, and the runtime executes the Codelets based
programs to exploit the maximum parallelism and power efficiency of the underlying hardware.
DARTS uses a double level hierarchy to structure programs: threaded procedures (TP) and
Codelets; TP includes several Codelets. In contrast, DF-Threads leaves more freedom to the
programmer by using a flat hierarchy of threads.

The Open Community Runtime [27] is based on event driven tasks. OCR is a runtime that
is influenced by the Codelet execution model and is inspired by the Asynchronous Many Task
(AMT) models. A high level program written in OCR runtime is organized with Directed Acyclic
Graph, which is structured with relocatable data-blocks, events, or tasks. These elements are
called nodes connected to each other by edges, which represent the dependencies between nodes.
DARTS and OCR trigger threads by using both data and events. In DF-Threads, we do not need
this distinction: events can be treated as data.

DF-Threads [12] introduces a low-level API, which enables a high-level code into a hybrid
dataflow model that can benefit from the high parallelism while parallel computations are the
potential to distribute over nodes and cores.

6 Conclusion and future work

In this paper, we present Dataflow Run-Time (DRT), a tool for fast prototyping of benchmarks
written for a dataflow program execution model (PXM). While running such benchmarks on
an architecture that provides dataflow support could provide a large speedup (e.g., up to 28x)
compared to OpenMPI counterparts, the compiler technology is not yet developed enough. There-
fore, the contribution of this paper helps bridge the gap between future compilers and a dataflow
PXM. In fact, DRT is a step-forward to have a general compiler for executing in a dataflow style.
Through DRT, we can develop dataflow codes/benchmarks, test and debug them with a better
development-cycle time than other modeling tools like architectural simulators or FPGAs. We
also describe how to perform the debugging of the data flow among DF-Threads’ frames, and we
compare the efficiency of DRT against other similar environments such as DARTS and OCR.

We illustrate and evaluate more in detail two simple benchmarks (RFIB, BMM); however,
we have provided other programs in our repository (http://drt.sf.net).

DF-threads is a general approach to execute parallel programs in a more efficient way than
with the von Neumann paradigm. We hope that in the future, with the help of the fully fledged
compiler, we could extend our work to more general applications.
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