A Hybrid Approach to Trace Generation for Performance Evaluation of
Shared-Bus Multiprocessors

Roberto Giorgi
Cosimo Antonio Prete Gianpaolo Prina
Luigi Ricciardi
Dipartimento di Ingegneria dell'Informazione Scuola Superiore di Studi Universitari
Facolf di Ingegneria, Universatdi Pisa e di Perfezionamento Sant’/Anna
Via Diotisalvi, 2 - 56126 PISA (ltaly) Via Carducci, 40 - 56100 PISA (Italy)
{giorgi,prete,ricciarfi@iet.unipi.it gianpaolo@sssupl.sssup.it
Abstract A number of different strategies have been employed in

the literature concerning performance evaluation of multi-
This paper describes a hybrid methodology (based on processor systems: analytical/stochastic models [24], trace-
both actual and synthetic reference streams) to producedriven simulation, complete system simulation [12, 16, 23],
traces representing significant complete workloads. By just to mention the most common solutions. When the tar-
means of a software approach, we generate traces that in-get of the performance evaluation is the memory subsystem,
clude both user and kernel references, starting from sourcea good trade-off between cost and accuracy is represented
traces containing only user references. We consider the as-by trace-driven simulation [3]; this method has the advan-
pects of kernel that have a deeper impact on the multipro-tage of not being strictly linked to a specific kind of ar-
cessor performance by i) simulating the process schedul-chitecture and being, therefore, flexible in the performance
ing and the virtual-to-physical address translation, and ii) evaluation of different architectures [1].
Stochastically modeling the kernel reference stream. The Trace-driven methods are based on the generation of a
target system of our study is a shared-bus shared-memoryrace (sequence of memory addresses referenced by the run-
multiprocessor used as a general-purpose machine with aning program) and on the utilization of the trace in perfor-
multitasking operating system. mance evaluation of a specific architecture or set of archi-
tectures. Two critical issues concerning accuracy [6, 8, 20]
in tracing shared-memory multiprocessors are: i) traces
1. Introduction must include both user and operating system references,
and ii) a minimal amount of time distortion must be in-
A shared-bus shared-memory multiprocessor representsluced either by the tracing mechanism (during the record-
a low-cost solution for high performance general-purposeing phase) or by the simulator (in the utilization phase).
workstations, where the major concern is to speed-up the Tracing technigues include hardware and software solu-
execution of a set of commands, uniprocess applicationstions. Accuracy, absence of time distortion and of intru-
and/or multiprocess applications with coarse/medium grainsiveness are the main advantagesafdware monitoring
parallelism [7]. However, an intrinsic limitation of the The most critical drawback of this approach comes from
shared-bus architecture is the low number of processorghe fact that modern trends in technology for processors
which can be connected to the shared bus; when this num-encourage the adoption of on-chip caches, so that a great
ber exceeds a critical value (about a few dozen units is theamount of memory references are handled internally and
upper limit allowed by current technology), the system un- can no longer be captured by the hardware tracing mech-
dergoes a drastic drop in global performance, due to busanism [19]. Furthermore, traces obtained from an actual
saturation [7, 9]. The adoption of private caches reducesmultiprocessor machine by means of hardware techniques
the number of accesses to the shared bus but induces theannot be employed for an exhaustive performance analy-
coherence problem [5, 10, 11, 13, 15, 21] which is a major sis of the system, because it is not possible to produce traces
source of overhead. with a variable number of processors. Indeed, actual traces,

captured by traditional hardware-based techniques, proves obtained by means of synchronous channels, so that the
to be particularly useful in the validation phase of a new trace generated is forced to follow the temporal behavior

architecture. imposed by the memory subsystem simulator. For the sake
Software tracing methodologies inclugegram instru- of simplicity, the term “trace” will be used in the remainder
mentation[4, 6, 20], single-step executiof2] and mi- of the paper to indicate the sequence of references flowing

crocode modificationThe tracing technique based on mi- through such channels.
crocode modification (ATUM) uses processor microcode to

record addresses in a reserved part of main memory as ® The methodology
side effect of normal execution [17]. Compared with other
techniques, this one leads to fewer distortions and a very
fast recording (only 10x slowdown); all the system activ-
ity can be observed, with no additional hardware being re-
quired. The disadvantages include poor flexibility, since
microcode modification requires access to on-chip ROM.

We use a set ofourcetraces including only user ref-
erences to produce complete multiprocedsoget traces.
Source traces can be obtained by a tool based on the same
microprocessor used in the target system. (For example,
)) . TangoLite [6] may be used to study a MIPS-based worksta-

In any case, when the goal is to compare different archi- i, y Target traces are generated by considering the source
tecture solutions, it becomes important to analyze the sySyaces the target machine configuration (e.g. the number of
tem behavior under a predefined and controlled workload. processors) and the following three kernel activitiesei)

Two key points of this approach are: i) traces must repre- yo| memory referenceke., the reference bursts due to each
sent actual workloads for the target machine, and ii) the de—System call and kernel management routine; pidcess
signer must have the possibility to produce proper traces toscheduling i.e., the dynamic assignment of a ready pro-
investigate the behavior of the system when exposed to parass to an available processor; and\iftual-to-physical
ticular (possibly critical) workload conditions. This kind of = ,44ress translationi.e., the mapping of virtual addresses,
flexibility can be guaranteed only by software techniques produced by a running process, to physical memory ad-

(like program instrumentation and single-step execution), 4rasses. The reference sequences can be simply stored
and this is the main reason that we directed our efforts in;

S TS s IR into target trace files or supplied to the simulator via syn-
this direction in the present work. However, the accuracy

] Seet chronous channels; in the latter case, the target trace gen-
of these techniques is limited by the lack of completenessgtion is performed on the basis of te demandolicy:

in the trace, since it is quite difficult to capture traces of 0p- 5 new reference is produced when requested by the simu-
erating system routines. A possible solution to this issue iSIator, so that the trace generated is conditioned by the tem-
presented, so that the traces generated appear to be suitable .- behavior imposed by the simulation of the memory
for a thorough investigation of a given target architecture. subsystem.

In the present work we introduce a methodology and
a set of tools to generate traces for performance evaluazl. Generation of kernel references
tion of a shared-memory multiprocessor system (e.g. mul-
tiprocessor workstation architectures). For this purpose a Kernel reference bursts affect performance because they
set of typical Unix-like workloads may be generated by: interrupt the locality of the memory reference stream of the
i) tracing a set of uniprocess applications (e.g. commonly running process causing additional cache misses. In our
used Unix commands and user programs) and/or multi-approach, the kernel reference stream is obtained by means
process applications, and then ii) adding the kernel activ- of a stochastic model aiddressesburst lengthandburst
ities which most influence global performance, such as pro-distance
cess scheduling, virtual-to-physical address translation, and Kernel bursts are obtained by inserting sequences of ker-
reference stream generated by the kernel routines. Bothmel references within the user reference stream. These se-
process scheduling and memory mapping were simulatedquences are generated by means of two statigtogithof
within the tool, whereas the kernel reference stream waseach burst andistancebetween the starting points of two
modeled by means of a statistic method already proposedsubsequent bursts. The burst insertion may also be driven
and validated by the authors in [14]. by information collected in the source traces if the tracing

To correctly reproduce the temporal sequence of all tool records the system call positions. This allows us to
events in the system, the production of the scheduled tracegenerate more accurate workloads (e.g., to consider the fact
is made according to then demandpolicy (a new refer- that the processes typically exhibit a different number of
ence is generated whenever a request comes from the simsystem calls).
ulator), and the scheduler makes use of the synchronization Each kernel reference is specified grea referenced
tags inserted into the trace files by the tracing mechanism.(code/data)address within the selected area arihd of
The interface between the proposed tool and the simulatoraccess(read/write). The probability of code/data access

and of data read/write access are input parameters for the 2. the maximum value af (Eq. 1) is set to the maximum

tool. distance Q) between two subsequent references; this
For the specific location within the selected area, the lo- leads to the equation:

cality of memory references has to be taken into account; 1—A4

the stochastic model is introduced and validated in [14]. A=S 1 6 3)

The reference generator operates as followsRlebe the

address of the latest reference in an af@adssumes a ran- Egs. 2 and 3 may be linked together to build a system

dom value). The addres?;,; may be evaluated through which can be easily solved with numerical techniques (e.g.
a sequence of steps: first, we evaluate the relative distancéettingS to an arbitrarily large value and substituting recur-
(inwords)y = |R;y, — R;| by transforming a uniformly- sively into the equations until the process reaches conver-
distributed random variable € (0, 1) by means of the (em- gence).

piric) function Finally, we measure the distribution of the kernel burst
length and of the distance between the beginning of two
_ {5 -(1- AI)J 1) successive bursts. These distributions are input data to syn-
Y= |5 47 _6 thetically generate the kernel reference stream.

)) We gathered the kernel statistics from a series of eight-
whereA andS express the locality of references in the area prgcessor traces distributed by Carnegie Mellon University

involved. _ and obtained by means of an Encore Multimax (shared-bus
Once we have evaluatedin such a way, we transform mytiprocessor) machine.
it into 7 by changing its sign with probability, that rep- Table 1 includes the kernel access percentages (code,

resents the probability of backward references. Finally, if gata, write), the kernel burst statistics and the resulting val-
the access being considered involves the code area and thges of 4, S andp,. The statistics concerning the distribu-
value ofy is positive, this value is incremented by one, in tjon of distance and burst length are summarized by means
order to prevent zero distance between two subsequent acof average value) and standard deviationr),.

cesses in code area. The resulting valug i added to

R; and the outcome is assumed to be the required address

Kernel Kernel burst

Ri-‘rl' - references distance [Tength
. . . Application (%) 3 c [n o
The stochastic model of kernel references is described — oo o o
by a set of parameters that can be gathered from an actual hanistone | a3 | 23877 g8 S8S 1o
trace including kernel references. The probabilities con- mp3d | 359 | 250 Lup see 2%
cerning the kind of area referenced and the access mode pde 563] 24046 707§ 967 1000
(read/write) can be evaluated by counting the relative oc- eSS I .]
currences of events. Appication | (%) [A [5 [pp | @ | | a4 | 5 |py
Locallty |nf0rmat|0n (that ISA; S andpb) haS to be ex- E:?tsstone ggg 1igg$g§ ggzg gggg égz 2:; 118;2;3 ;?ggg gégg
locusroute 4.10 1.198834(0.827| 0.363 3.29 1.37 | 1.197679| 20.459| 0.729
tracted from the traces, so that the reference stream gen-|msi | 2o |bisesd ozislosre) 1o | o | disrer s o7z
erated by Eq. 1 is an accurate representation of the actuallee 347 | 1109707 0763] 0309| 216 | 080 | 1199707| 21.837] 0.738
stream. The following data have to be separately evaluated
for code and data areas: i) the maximum distankgke- Table 1. Kernel references statistics (CMU

tween two subsequent references; i) the maximum ampli- ;.04 set, 1,250,000 references per CPU,
tude (P) of the distribution of distances between two subse- g cpy multiprocessor)

guent references; iii) the percentage of backward references

(py) over the total number of non-sequential accesses. The

A and P values measured on the actual traces are used to

evaluate the proper values for parametérandS. In or- 2.2. Process management
der to determine a numerical value for these parameters, we
derive the following conditions: One of the main goals of the multiprocessor scheduler

is to provide an acceptable degree of load balance in order
1. the maximum value for the distribution (Eqg. 1) is to allow the programmer to develop his applications with-
set to the maximum amplitudé’} of the distribution out caring about the workload distribution on the proces-
of distances between two subsequent references; thisors. Nevertheless, load balance induces process migration
leads to the equation: that causes further coherence overhead. Actually, a memory
block belonging to a private area of a process can be repli-
- 1 og S+6) cated in more than one cache as a consequence of the mi-
log A S+5"7 gration of the process which owns this block. These copies

have to be treated as shared with respect to the coherenceR,, initially empty (Figure 1). On every context switch, the
related operations, resulting in a heavy and useless burdepreempted process is inserted ifitg (phase one). As soon

for the shared bugpéssive sharingl], process-migration as the queu®&; becomes empty, all the processes are taken
sharing[9]). Furthermore, on every context switch, a burst from R, and inserted intd?; (phase two). This technique

of cache misses occurs, due to the loading of the workingavoids the problem described above, that is, it ensures that a
set of the new process. A scheduling policy based on cacherocess does not have to wait an indefinite time for its turn:
affinity [18] can reduce the amount of cache misses due toindeed, with this strategy, a process cannot be exeeutid

this fact. times before each other process is executed exadihges.

Our tool models the process management aspects by
simulating a simple scheduler. The input parameters for the
scheduler are: the number of proces$és.{.), the number
of processors of the target machim€.f,,), the time slice in
terms of number of referenceE,;..) and the process acti-
vation algorithm {wo-phaseor non-blocking. The number
of distinct processes to be scheduled is constant for a spe-
cific target trace. The tool simulates the scheduler in the fol-
lowing way: i) it starts from a set of source traces, one trace
for each uniprocess application and as many traces as the
number of processes belonging to the multiprocess applica- empty
tion, and ii) produces as many target traces as the number
of processors of the target machine. The whole scheduling /
activity can be directly driven by the simulator; in this case, \n
the scheduler operates in connection with the simulator via
synchronous channels, and the scheduling activity is condi-
tioned by the speed of each simulated processor.

The scheduler operates as follows: if a progessrun-
ning on processaP for a D time interval (again specified
in terms of number of references) themeferences of thp
source trace become references for proceBsAt the start
of the simulation, all the processes are ready and they are in-
serted in a proper queue, nam@ly. Initially, the scheduler
randomly select#V.,,, processes, and each running process
has a different time slice (namely, the process running on
processoi is assigned a time slicE = %) After the
first context switch on each processor the next schedule
process is regularly assignég;... This strategy, typically
adopted in operating systems for multiprocessors, avoids

scheduling

out-of-order
synchronization point

context
switch

BLOCKED

in-order
synchronization point

READY

Figure 1. State transition diagram in the case
of two-phase activation strategy.

Finally, the scheduler can consider the synchronization
sequence produced by a multiprocess application execution.
In this case, the process scheduling is driven by the time
slice for processes belonging to uniprocess applications and
y both the time slice and the synchronization sequence for
ultiprocess applications. Source traces have to include
synchronization tags for a correct playback of them; those
. . . ags are sequential numbers representin the actual synchro-
context switch being §|multaneously needed on egch PrO-hization sequence of the parallel application execution [22].
cessor everfl;.., which would produce an undesirable When a process reaches an out-of-order synchronization

overlap of miss peaks on all caches and a consequent buﬁvent (corresponding to a tag in the trace), it is inserted into

;aturatlon due to the bus transactions needed to fetch missy waiting queue to wait for the synchronization event. Then,
ing blocks from memory.

.] it enters either thé?; or the R, queue as described above.
On a context switch, a process is extracted fl@mand

assigned to the available processor. The choice of sucrb
process can be made either according to the cache affinity
strategy mentioned above, or just randomly. The preempted | virtual memory models based on paging, the locali-
process may be managed in two different ways. In the ties of virtual and physical references produced by a run-
non-blockingactivation strategy, the preempted process is ning process may be different. The mapping of sequen-
immediately inserted into th&, queue. This strategy suf- tia| virtual pages of the program into non-sequential physi-
fers from the starvation problem: this implies that refer- cal pages causes this difference and influences the number
ences of a process may be not present within a target trace intrinsic interferenceor capacity misseslue to interfer-
when its length is short ang=e= > 1. Asecond activation ences among kernel code and data, user data and code ac-
strategy two-phasg makes use of another queue, namely cesses within the same cache set.

3. Virtual-to-physical address translation

The virtual-to-physical address translation is modeledas The two parallel programs used in the case studies,
follows. We suppose that each process has a private admp3d andCholesky , come from the SPLASH suite; in
dress space and a shared address space common to all theth applications, one of the input parameters is the num-
processes belonging to the same multiprocess applicationber of processes on which the computation is parallelized.
whereas, kernel instances share a unique address space. Thi@emp3d program simulates rarefied hypersonic flow; the
virtualization is implemented using a paging schemele- trace generated is relative to the case of 10,000 molecules
mandandwithout prepaging The page size and the physi- and 20 time stepsCholesky performs the factorization
cal memory size are input parameters for the address transef a sparse positive definite matrix using the homonymous
lation mechanism. method; the trace was generated using, as input, a 1806-by-
1806 matrix with 30,284 non-zeros elements coming from
the Boing/Harwell sparse matrix tedbdsttkl4). The
source traces are produced by means of the TangolLite tool;
the parallel application is traced on a virtual MIPS-based

A possible, quite interesting use of the the proposed Mmultiprocessor having as many processors as the number
methodology is to perform the analysis of a shared-busof application processes. Virtual processors are then em-
shared-memory multiprocessor employed as a high perfor_u|ated on a single-processor MIPS workstation executing
mance general-purpose machine (e.g. as a Unix workstasequentially the resulting multiprogrammed load. Table 3
tion). summarizes the statistics concerning multiprocess applica-

A typical workload for the target machine considered tion traces; it also specifies the number of shared blocks
in this example is a mixed set of uniprocess applications, @nd some statistics concerning the access pattern to shared

Unix commands and multiprocess applications. Since theblocks.
performance of a multiprocessor also depends on the grain

3. An example of target trace generation

size of parallel applications, we considered two typical sub- Distinet | Code Dy | Shared
. - - . - | Application CPUs blocks | (%) read write blocks |
cases: coarse- and medium-grain parallel applications. We o3 - T e
selected a number of typical Unix commandsvk, cp, o | g) TRAB g M2zl TS| 2
du, lex ,rm andls) with different command line options, | T | TeTE | BB T | e
some utility programsdjpeg , djpeg andgzip), a net- 1 | 1arsz | 7as2 | 1308 | 7se | a2
work application (elngt)and a user applicatiomr(sim, Cholesky 2 | fmee fo7e0s | mor] Bl 1
the multiprocessor S|mulator useq in this work).. In some § | w4 | T 13| eni | 11
cases, traces are taken Q}Jr|ng d|fferenF execution sections 00| o0 | foar | 1369 610 | o2
of the application: the initiallieg and middle id) sec- 14 | 39424 | 8044 | 1369 | 586 | 17937
tions. Table 2 describes the features of these source traces | apicaion | crus e —wrr T ~rw
; iati : P I T
in terms of number of distinct (unlque_) blocks used by the — 2 —
program, code, data read and data write access percentages, 4 ST | 312 | 597 | 429 | 154 | 129
and number of system calls. 10 | 1060 | 304 | a7 | 291 | 1o | 122
12 10.81 371 471 291 151 137
14 10.89 3.75 4.61 2.86 1.51 1.42
Cholesky 2 0.16 0.00 2.00 0.00 2.00 0.00
5 4 7.10 0.96 2.78 1.62 1.06 0.65
| noptcaion | ecie | Gn e Lo eate” | 6 | sa | 13 | 28| st | ¢ | 059
awk (beg) 4963 76.76 14.76 8.47 29 10 10.64 151 277 1.43 1.04 0.63
awk (mid) 3832 76.59 14.48 8.93 47 12 10.78 1.50 2.85 151 1.04 0.51
cjpeg 1803 81.35 13.01 5.64 18 14 10.89 1.48 291 1.58 1.04 0.55
cp (beg) 2615 7753 | 13.87 8.60 26526
cp (mid) 2039 78.60 14.17 7.23 56388
msim 960 84.51 10.48 5.01 345
dd 139 77.47 16.28 6.25 47821 .. .
dpeptieg | 013 | soo | 1275 | 2 | 15 Table 3. Statistics of multiprocess source
eg (mi R
aw ne0 | 758 | 1637 | 777 | cara traces (32-byte block size, 1,250,000 refer-
lex 2126 78.67 15.49 5.84 40
gzip 3518 8284 | 1488 | 228 13 enceS)
Is-aR 2911 80.62 13.84 5.54 1196
Is -ItR (beg) 2798 78.77 14.58 6.64 1321
Is -ItR (mid) 2436 78.42 14.07 7.51 1778
rm (beg) 1314 86.39 11.51 2.10 10259
rm (mid) 1013 86.29 11.65 2.06 15716 . .
telnet(beg) | 781 | 8252 | 1317 | 431 | 2401 Access patterns to shared data influence the multipro-
telnet (mid) 205 82.78 12.93 4.28 2827 .
cessor performance and may be characterized by means of
two metrics:write-run length(WRL) andexternal re-reads
Table 2. Statistics of uniprocess applications (XRR) [1]. The former is the number of write operations to
and Unix command traces (32-byte block a memory block performed by a given processor before an-
size, 1,250,000 references) other processor would access the same block: the sequence

of write (eventually interleaved by read) references, just de-

MP3D, 10 processors, 32-byte block size Cholesky, 10 processors, 32-byte block size

0.4 : 0.4 s
035 1 mu=4.74, si=2.81 | 035 1 mu=2.77, si=1.43 |
99.82% of total] 100.00% of total
0.3 4 r 0.3 4 r
0.25 A r 0.25 +— r
’3_:‘ 0.2 ’3_:‘ 0.2
z I 2] I
0.15 A r 0.15 A r
0.1 A r 0.1 A r
0.05 1 r 0.05 1 r
0 T T T T 0 T T T T
5 10 15 20 5 10 15 20
Length L Length L
Figure 2. Global write-run-length (WRL) Figure 3. Global write-run-length (WRL)
distribution for the mp3d workload. distribution for the Choleskyworkload.

In a typical situation, a number of users run some UNIX
commands and different ordinary applications in different
imes. For this reason, the proposed workloads include two
r three copies of the same program taken in different ex-
ecution sectionsbeg and mid). In particular, workloads
Mix1 and Mix2 consist of 30 uniprocess applications and

fined, is called avrite-run. The second one indicates how

many read operations will use a block after a write-run has
been terminated and before another one has been initiate
The tool can extract these statistics, which are shown in
Table 3. A quite natural use of the write-run is to select

the better coherence strategy betweette-invalidateand an additional load due to a parallel applications which gen-

wnte-upt;iatg‘or agiven workload. Long write-runs suggest erates a number of processes equal to half the total number
that a write-invalidate coherence protocol should be chosen;

. I . . s " of processors available on the machine.
indeed, the cost of the initial miss (due to invalidation) is P
balanced by the fact that a large amount of bus traffic can

be saved since all the subsequent write operations can be | wortons | crus | et T Code T bata 0y T Shared |
executed locally during the write-run. A large number of Wit 5 7e8 | 7905 | W4 | 600 | 7772
external rereads gives an indication on how much a copy is o | tooosr | tea0 | 1aes | 50 | s
needed by different processors and, therefore, if it would be 24 | oomo | 1802 | 1ads | 7ov | aiese
convenient to adopt a write-update strategy. The write-run M | 100057 | 7905 | 1428 | 632 | 1etos
length is also a measure of the application grain-size; in fact % | 1414 | 1908 | 141e | €35 | Sorse
these statistics show that:i)p3dis a coarse-grained appli- e e ———
cation since the average value of write-run length varies in Workosd | CPUs [AcsesesE T Wi WRIL T XRE
the range (4.6% 6.96); ii) Cholesky exhibits a medium- — — [[=
grained behavior having an average value write-run length 2 FAp N Il I Bl Bl B
in the range (2.0& 2.91). Figures 2 and 3 stress the differ- 200 e | 28| 33 50| 280 3
ences between the shared data access pattenms3afand Mix2 3 A AR A
Cholesky . 20 | 1768 | sas | asa | oo | 247 | 437
24 18.08 5.55 4.80 6.63 2.38 4.31

Traces are generated choosing the following details con-
cerning the underlying architecture of the simulated multi- Table 4. Statistics of target traces (32-byte
processor: first of all, processors are MIPS-R3000-like and block size, 1,250,000 references per CPU)
their number IV.,,,) has been varied from 2 to 24; the pag-
ing has been carried out using a page size of 4 KBytes; the
time slice [s;;ce) is 200,000 references; the executiontime Table 4 describes the features of target traces. The sim-
analyzed corresponds to 1,250,000 references per procesaslation which produced these traces was performed with a
sor. A random selection from the ready queue with a two- 256-Kbyte, 2-way set-associative cache with 32-byte block
phase activation algorithm was adopted for the choice of asize and the Dragon protocol. The difference between the
process on context switches. Mix1 andMix2 workloads is in the grain size of the paral-

Mix1, 20 processors, 32-byte block size Mix2, 20 processors, 32-byte block size

0.4 . 0.4 .
035 1 mu=4.29, si=3.43 | 035 1 mu=3.46, si=3.50 |
96.54% of total |] 95.18% of total
0.3 1 F 0.3 1
0.25 1 F 0.25 1
’3_:‘ 0.2 ’3_:‘ 0.2
2 < 2
0.15 1 F 0.15 1
0.1 4 t 0.1 A
0.05 1 F 0.05 1
0 T T T T 0 T T T T
5 10 15 20 5 10 15 20
Length L Length L
Figure 4. Global write-run-length (WRL) Figure 5. Global write-run-length (WRL)
distribution for the Mix1 workload. distribution for the Mix2 workload.

lel application. In the first caséviix1), this application is guarantee the coherency of shared copies; the remapping
mp3d, whilst in the second cas&/{x2) it is Cholesky . of addresses influences the numbeintinsic interference
Observing the statistics of data read and write, it emergesmissesiue to code and data accesses of a given process in-
that these values are quite constant even if the analogougolving the same cache set.

source applications values variate in a more extended range Finally, we have shown, as an example, how the method-
(see Table 2 and 3); indeed, there is a kind of averaging ef-ology can be employed to individuate critical workloads for
fect in putting together a number of applications in order to a multiprocessor.

generate a multiprocessor workload. Comparing the write-

run statistics of Tables 3.8..I’.]d 4, we can also notiqe h_ow5_ Acknowledgments

the presence of kernel activities and uniprocess applications

(in particular process migration) modifies the write-run of . - .
source traces. This aspect has been highlighted by Figures 4 :rh's work was supported by the Ministero della Univer-

and 5, which show the WRL distributions for the two work- sita e della Ricerca Scientifica e Tecnologica.(MU.RST),
loads; therefore, it strongly motivates the introduction of ltaly. Thanks to Steve Herrod at Stanford University for

kernel modeling in the evaluation of such multiprocessors. prowdmg a’?d helping with Ta}ngothe. Thg mu_Iuprocessor
traces, distributed by Carnegie Mellon University, were col-

_ lected by Bart Vashaw with the assistance and supervision
4. Conclusions of Drew Wilson of Encore Computer Corporation and Dan
Siewiorek of Carnegie Mellon University. Bart Vashaw was
We have shown a methodology which permits us to supported in part by a fellowship from ONR and in part by

produce traces including kernel and user references start@ fellowship from Encore Computer Corporation. Finally,
ing from traces containing only user references. Specifi-We thank Veljko Milutinovt for his valuable comments and

cally, the kernel reference sequences, which appear in acSU99€stions.

tual traces as bursts which break the program locality, have

been produced by means of a stochastic model. This modelReferences

in turn, has been calibrated on data extracted from actual

traces. In the examples, the methodology used to gather [1] s J. EggersSimulation analysis of data sharing in
those data has been shown for an actual trace set furnished ~ shared memory multiprocesso@h.D. dissertation,
by Carnegie Mellon University. Furthermore, the proposed Univ. of California, Berkeley, April 1989.

tool models the scheduling and the translation from virtual

to physical addresses. Both activities have a notable impact [2] S. Eggersand R.H. Katz. A characterization of sharing
on the behavior of a system including caches: process mi- in parallel programs and its application to coherency
gration, normally produced by a scheduler, cayssssive protocol evaluatiorProc. 15th Int. Symp. Comput. Ar-
sharingand a consequent large amount of bus overhead to chitecture 1988, pp. 373-382.

[3] S. Eggers and R.H. Katz. Evaluating the performance [15] C.A. Prete, G. Prina and L. Ricciardi. A selective in-

(4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

of four snooping cache coherency protocdbsoc.
16th Int. Symp. Comput. Architecty989, pp. 2-15.

S. Eggers, D. Keppel, E. Koldinger and H. Levy.

Techniques for efficient inline tracing on a shared- [16]

memory multiprocessoProc. ACM SIGMetrics Int.
Conf. Measurement and Modeling of Computer Sys-
tems 1990, pp. 37-47.

J.D. Gee and A.J. Smith. Evaluation of cache consis- [17]

tency algorithm performanceroc. Int. Workshop on
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MascoSan Jose,
CA, February 1996, pp. 236-249.

S.R. Goldschmidt.Simulation of Multiprocessors,
Speed and Accuracyoctoral dissertation, Stanford
University, Stanford, Calif., June 1993.

J. Hennessy and D. A. Patters@@omputer Architec-
ture — a Quantitative Approact2nd edition, Morgan
Kaufmann, 1996.

M.A. Holliday and C.S. Ellis. Accuracy of mem-
ory reference traces of parallel computations in trace-
driven simulation.IEEE Trans. Parallel Distributed
Syst, vol. 3, no. 1, January 1992, pp. 97-109.

K. Hwang. Advanced Computer Architecture: Par-
allelism, Scalability, ProgrammabilittMcGraw-Hill,
1993.

A. Karlin, M. Manasse, L. Rudolph and D. Sleator.
Competitive Snoopy CachinBroceedings of the 27th
Annual Symposium on Foundations of Computer Sci-
ence 1986, pp. 244-254.

R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins and
R.G. Sheldon. Implementing a cache consistency pro-
tocol. Proc. 12th Int. Symp. Comput. Architecture
June 1985, pp. 276-283.

P. Magnusson and B. Werner. Efficient memory simu-
lationin SMICS. Technical Report, Swedish Institute
of Computer Science, 1995.

E. M. McCreight.The Dragon computer system: an
early overview NATO Advanced Study Institute on
Microarchitecture of VLSI Computer, Urbino, Italy,
July 1984.

C.A. Prete, G. Prina and L. Ricciardi. A trace-driven
simulator for performance evaluation of cache-based
multiprocessor systemdEEE Trans. Parallel and
Distributed Syst. vol. 6, no. 9, September 1995,
pp. 915-29.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

validation strategy for cache coherend&8CE Trans.
on Information and Systemeol. E78-D, no. 10, Oc-
tober 1995, pp. 1316-20.

M. Rosenblum, S.A. Herrod, E. Witchel and A. Gupta.
Complete computer simulation: the SimOS approach.
IEEE Parallel and Distributed Technologwol. 3,

no. 4, Winter 1995, pp. 34-43.

R.L. Sites and A. Agarwal. Multiprocessor cache
analysis using ATUMProc. 15th Int. Symp. Comput.
Architecture 1988, p. 186-195.

M.S. Squillante and D.E. Lazowska. Using processor-
cache affinity information in shared-memory mul-
tiprocessor schedulingEEE Trans. Parallel Dis-
tributed Syst.vol. 4, no. 2, pp. 131-143, Feb. 1993.

C.B. Stunkel, B. Janssens and W.K. Fuchs. Ad-
dress tracing for parallel machindEEE Computer
vol. 24, no. 1, Jan. 1991, pp. 31-38.

C.B. Stunkel, B. Janssens and W.K. Fuchs. Address
tracing of parallel systems via TRAPED®icro-
processors and Microsystemgol. 16, no. 5, 1992,
pp. 249-261.

M. Tomasevi and V. Milutinovi¢, eds.The cache co-
herence problem in shared-memory multiprocessors —
Hardware solutions|EEE Computer Society Press,
Los Alamitos, CA, April 1993.

B. VashawAddress trace collection and trace-driven
simulation of bus based, shared memory multiproces-
sors Research Report, Dept. of Elec. and Comp. Eng.,
Carnegie Mellon Univ., Pittsburgh, PA, March 1993.

J.E. Veenstra and R.J. Fowler. MINT: a front end for
efficient simulation of shared-memory multiproces-
sors.Proc. 2nd Int. Workshop on Modeling, Analy-
sis and Simulation of Computer and Telecommunica-
tions Systems (Mascotf)urham, NC, January 1994,
pp. 201-207.

M.K. Vernon, E.D. Lazowska and J. Zahorian. An ac-
curate and efficient performance analysis technique
for multiprocessor snooping cache-consistency proto-
cols.Proc. 15th Int. Symp. Comput. Architectpikéay
1988, pp. 308-315.

