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Abstract

This paper describes a hybrid methodology (based on
both actual and synthetic reference streams) to produce
traces representing significant complete workloads. By
means of a software approach, we generate traces that in-
clude both user and kernel references, starting from source
traces containing only user references. We consider the as-
pects of kernel that have a deeper impact on the multipro-
cessor performance by i) simulating the process schedul-
ing and the virtual-to-physical address translation, and ii)
stochastically modeling the kernel reference stream. The
target system of our study is a shared-bus shared-memory
multiprocessor used as a general-purpose machine with a
multitasking operating system.

1. Introduction

A shared-bus shared-memory multiprocessor represents
a low-cost solution for high performance general-purpose
workstations, where the major concern is to speed-up the
execution of a set of commands, uniprocess applications
and/or multiprocess applications with coarse/medium grain
parallelism [7]. However, an intrinsic limitation of the
shared-bus architecture is the low number of processors
which can be connected to the shared bus; when this num-
ber exceeds a critical value (about a few dozen units is the
upper limit allowed by current technology), the system un-
dergoes a drastic drop in global performance, due to bus
saturation [7, 9]. The adoption of private caches reduces
the number of accesses to the shared bus but induces the
coherence problem [5, 10, 11, 13, 15, 21] which is a major
source of overhead.

A number of different strategies have been employed in
the literature concerning performance evaluation of multi-
processor systems: analytical/stochastic models [24], trace-
driven simulation, complete system simulation [12, 16, 23],
just to mention the most common solutions. When the tar-
get of the performance evaluation is the memory subsystem,
a good trade-off between cost and accuracy is represented
by trace-driven simulation [3]; this method has the advan-
tage of not being strictly linked to a specific kind of ar-
chitecture and being, therefore, flexible in the performance
evaluation of different architectures [1].

Trace-driven methods are based on the generation of a
trace (sequence of memory addresses referenced by the run-
ning program) and on the utilization of the trace in perfor-
mance evaluation of a specific architecture or set of archi-
tectures. Two critical issues concerning accuracy [6, 8, 20]
in tracing shared-memory multiprocessors are: i) traces
must include both user and operating system references,
and ii) a minimal amount of time distortion must be in-
duced either by the tracing mechanism (during the record-
ing phase) or by the simulator (in the utilization phase).

Tracing techniques include hardware and software solu-
tions. Accuracy, absence of time distortion and of intru-
siveness are the main advantages ofhardware monitoring.
The most critical drawback of this approach comes from
the fact that modern trends in technology for processors
encourage the adoption of on-chip caches, so that a great
amount of memory references are handled internally and
can no longer be captured by the hardware tracing mech-
anism [19]. Furthermore, traces obtained from an actual
multiprocessor machine by means of hardware techniques
cannot be employed for an exhaustive performance analy-
sis of the system, because it is not possible to produce traces
with a variable number of processors. Indeed, actual traces,



captured by traditional hardware-based techniques, prove
to be particularly useful in the validation phase of a new
architecture.

Software tracing methodologies includeprogram instru-
mentation [4, 6, 20], single-step execution[2] and mi-
crocode modification. The tracing technique based on mi-
crocode modification (ATUM) uses processor microcode to
record addresses in a reserved part of main memory as a
side effect of normal execution [17]. Compared with other
techniques, this one leads to fewer distortions and a very
fast recording (only 10x slowdown); all the system activ-
ity can be observed, with no additional hardware being re-
quired. The disadvantages include poor flexibility, since
microcode modification requires access to on-chip ROM.

In any case, when the goal is to compare different archi-
tecture solutions, it becomes important to analyze the sys-
tem behavior under a predefined and controlled workload.
Two key points of this approach are: i) traces must repre-
sent actual workloads for the target machine, and ii) the de-
signer must have the possibility to produce proper traces to
investigate the behavior of the system when exposed to par-
ticular (possibly critical) workload conditions. This kind of
flexibility can be guaranteed only by software techniques
(like program instrumentation and single-step execution),
and this is the main reason that we directed our efforts in
this direction in the present work. However, the accuracy
of these techniques is limited by the lack of completeness
in the trace, since it is quite difficult to capture traces of op-
erating system routines. A possible solution to this issue is
presented, so that the traces generated appear to be suitable
for a thorough investigation of a given target architecture.

In the present work we introduce a methodology and
a set of tools to generate traces for performance evalua-
tion of a shared-memory multiprocessor system (e.g. mul-
tiprocessor workstation architectures). For this purpose a
set of typical Unix-like workloads may be generated by:
i) tracing a set of uniprocess applications (e.g. commonly
used Unix commands and user programs) and/or multi-
process applications, and then ii) adding the kernel activ-
ities which most influence global performance, such as pro-
cess scheduling, virtual-to-physical address translation, and
reference stream generated by the kernel routines. Both
process scheduling and memory mapping were simulated
within the tool, whereas the kernel reference stream was
modeled by means of a statistic method already proposed
and validated by the authors in [14].

To correctly reproduce the temporal sequence of all
events in the system, the production of the scheduled traces
is made according to theon demandpolicy (a new refer-
ence is generated whenever a request comes from the sim-
ulator), and the scheduler makes use of the synchronization
tags inserted into the trace files by the tracing mechanism.
The interface between the proposed tool and the simulator

is obtained by means of synchronous channels, so that the
trace generated is forced to follow the temporal behavior
imposed by the memory subsystem simulator. For the sake
of simplicity, the term “trace” will be used in the remainder
of the paper to indicate the sequence of references flowing
through such channels.

2. The methodology

We use a set ofsourcetraces including only user ref-
erences to produce complete multiprocessortarget traces.
Source traces can be obtained by a tool based on the same
microprocessor used in the target system. (For example,
TangoLite [6] may be used to study a MIPS-based worksta-
tion.) Target traces are generated by considering the source
traces, the target machine configuration (e.g. the number of
processors) and the following three kernel activities: i)ker-
nel memory references, i.e., the reference bursts due to each
system call and kernel management routine; ii)process
scheduling, i.e., the dynamic assignment of a ready pro-
cess to an available processor; and iii)virtual-to-physical
address translation, i.e., the mapping of virtual addresses,
produced by a running process, to physical memory ad-
dresses. The reference sequences can be simply stored
into target trace files or supplied to the simulator via syn-
chronous channels; in the latter case, the target trace gen-
eration is performed on the basis of theon demandpolicy:
a new reference is produced when requested by the simu-
lator, so that the trace generated is conditioned by the tem-
poral behavior imposed by the simulation of the memory
subsystem.

2.1. Generation of kernel references

Kernel reference bursts affect performance because they
interrupt the locality of the memory reference stream of the
running process causing additional cache misses. In our
approach, the kernel reference stream is obtained by means
of a stochastic model ofaddresses, burst lengthandburst
distance.

Kernel bursts are obtained by inserting sequences of ker-
nel references within the user reference stream. These se-
quences are generated by means of two statistics:lengthof
each burst anddistancebetween the starting points of two
subsequent bursts. The burst insertion may also be driven
by information collected in the source traces if the tracing
tool records the system call positions. This allows us to
generate more accurate workloads (e.g., to consider the fact
that the processes typically exhibit a different number of
system calls).

Each kernel reference is specified by:area referenced
(code/data),address within the selected area andkind of
access(read/write). The probability of code/data access



and of data read/write access are input parameters for the
tool.

For the specific location within the selected area, the lo-
cality of memory references has to be taken into account;
the stochastic model is introduced and validated in [14].
The reference generator operates as follows: letRi be the
address of the latest reference in an area (R0 assumes a ran-
dom value). The addressRi+1 may be evaluated through
a sequence of steps: first, we evaluate the relative distance
(in words)y = jRi+1 � Rij by transforming a uniformly-
distributed random variablex 2 (0; 1) by means of the (em-
piric) function

y =

�
S � (1�Ax)

5 �Ax � 6

�
(1)

whereA andS express the locality of references in the area
involved.

Once we have evaluatedy in such a way, we transform
it into ~y by changing its sign with probabilitypb that rep-
resents the probability of backward references. Finally, if
the access being considered involves the code area and the
value of~y is positive, this value is incremented by one, in
order to prevent zero distance between two subsequent ac-
cesses in code area. The resulting value of~y is added to
Ri and the outcome is assumed to be the required address
Ri+1.

The stochastic model of kernel references is described
by a set of parameters that can be gathered from an actual
trace including kernel references. The probabilities con-
cerning the kind of area referenced and the access mode
(read/write) can be evaluated by counting the relative oc-
currences of events.

Locality information (that is,A;S andpb) has to be ex-
tracted from the traces, so that the reference stream gen-
erated by Eq. 1 is an accurate representation of the actual
stream. The following data have to be separately evaluated
for code and data areas: i) the maximum distance (�) be-
tween two subsequent references; ii) the maximum ampli-
tude (P ) of the distribution of distances between two subse-
quent references; iii) the percentage of backward references
(pb) over the total number of non-sequential accesses. The
� andP values measured on the actual traces are used to
evaluate the proper values for parametersA andS. In or-
der to determine a numerical value for these parameters, we
derive the following conditions:

1. the maximum value for they distribution (Eq. 1) is
set to the maximum amplitude (P ) of the distribution
of distances between two subsequent references; this
leads to the equation:

P =
1

logA
log

S + 6

S + 5
; (2)

2. the maximum value ofy (Eq. 1) is set to the maximum
distance (�) between two subsequent references; this
leads to the equation:

� = S
1�A

5A� 6
: (3)

Eqs. 2 and 3 may be linked together to build a system
which can be easily solved with numerical techniques (e.g.
settingS to an arbitrarily large value and substituting recur-
sively into the equations until the process reaches conver-
gence).

Finally, we measure the distribution of the kernel burst
length and of the distance between the beginning of two
successive bursts. These distributions are input data to syn-
thetically generate the kernel reference stream.

We gathered the kernel statistics from a series of eight-
processor traces distributed by Carnegie Mellon University
and obtained by means of an Encore Multimax (shared-bus
multiprocessor) machine.

Table 1 includes the kernel access percentages (code,
data, write), the kernel burst statistics and the resulting val-
ues ofA, S andpb. The statistics concerning the distribu-
tion of distance and burst length are summarized by means
of average value (�) and standard deviation (�).

Kernel Kernel burst
references distance length

Application (%) � � � �

ecas 3.45 28098 583 974 440
hartstone 13.13 13877 8718 583 1198
locusroute 7.39 23474 5234 1213 1486
mp3d 3.39 28316 1100 966 290
ms tracer 9.42 22382 5502 1007 2406
pde 5.63 24046 7078 967 1000

Kernel code Kernel data
References References Writes

Application (%) A S pb (%) (%) A S pb

ecas 2.08 1.198834 0.772 0.357 1.37 0.47 1.197679 19.900 0.727
hartstone 8.09 1.199707 0.810 0.356 5.04 1.46 1.198834 21.086 0.698
locusroute 4.10 1.198834 0.827 0.363 3.29 1.37 1.197679 20.459 0.729
mp3d 2.04 1.198834 0.210 0.372 1.35 0.46 1.197679 19.900 0.727
ms tracer 5.98 1.199854 0.832 0.332 3.44 0.84 1.199707 22.032 0.732
pde 3.47 1.199707 0.783 0.309 2.16 0.80 1.199707 21.837 0.738

Table 1. Kernel references statistics (CMU
trace set, 1,250,000 references per CPU,
8-CPU multiprocessor)

2.2. Process management

One of the main goals of the multiprocessor scheduler
is to provide an acceptable degree of load balance in order
to allow the programmer to develop his applications with-
out caring about the workload distribution on the proces-
sors. Nevertheless, load balance induces process migration
that causes further coherence overhead. Actually, a memory
block belonging to a private area of a process can be repli-
cated in more than one cache as a consequence of the mi-
gration of the process which owns this block. These copies



have to be treated as shared with respect to the coherence-
related operations, resulting in a heavy and useless burden
for the shared bus (passive sharing[1], process-migration
sharing[9]). Furthermore, on every context switch, a burst
of cache misses occurs, due to the loading of the working
set of the new process. A scheduling policy based on cache
affinity [18] can reduce the amount of cache misses due to
this fact.

Our tool models the process management aspects by
simulating a simple scheduler. The input parameters for the
scheduler are: the number of processes (Nproc), the number
of processors of the target machine (Ncpu), the time slice in
terms of number of references (Tslice) and the process acti-
vation algorithm (two-phaseor non-blocking). The number
of distinct processes to be scheduled is constant for a spe-
cific target trace. The tool simulates the scheduler in the fol-
lowing way: i) it starts from a set of source traces, one trace
for each uniprocess application and as many traces as the
number of processes belonging to the multiprocess applica-
tion, and ii) produces as many target traces as the number
of processors of the target machine. The whole scheduling
activity can be directly driven by the simulator; in this case,
the scheduler operates in connection with the simulator via
synchronous channels, and the scheduling activity is condi-
tioned by the speed of each simulated processor.

The scheduler operates as follows: if a processp is run-
ning on processorP for aD time interval (again specified
in terms of number of references) thenD references of thep
source trace become references for processorP. At the start
of the simulation, all the processes are ready and they are in-
serted in a proper queue, namelyR1. Initially, the scheduler
randomly selectsNcpu processes, and each running process
has a different time slice (namely, the process running on
processori is assigned a time sliceTi = i�Tslice

Ncpu
). After the

first context switch on each processor the next scheduled
process is regularly assignedTslice. This strategy, typically
adopted in operating systems for multiprocessors, avoids a
context switch being simultaneously needed on each pro-
cessor everyTslice, which would produce an undesirable
overlap of miss peaks on all caches and a consequent bus
saturation due to the bus transactions needed to fetch miss-
ing blocks from memory.

On a context switch, a process is extracted fromR1 and
assigned to the available processor. The choice of such
process can be made either according to the cache affinity
strategy mentioned above, or just randomly. The preempted
process may be managed in two different ways. In the
non-blockingactivation strategy, the preempted process is
immediately inserted into theR1 queue. This strategy suf-
fers from the starvation problem: this implies that refer-
ences of a process may be not present within a target trace
when its length is short andNproc

Ncpu
� 1. A second activation

strategy (two-phase) makes use of another queue, namely

R2, initially empty (Figure 1). On every context switch, the
preempted process is inserted intoR2 (phase one). As soon
as the queueR1 becomes empty, all the processes are taken
fromR2 and inserted intoR1 (phase two). This technique
avoids the problem described above, that is, it ensures that a
process does not have to wait an indefinite time for its turn:
indeed, with this strategy, a process cannot be executedn+1
times before each other process is executed exactlyn times.

BLOCKED

R1

R2

R1

EXECUTING
scheduling

synchronization point
out-of-order

context

switch

in-order
synchronization point

READY

empty

Figure 1. State transition diagram in the case
of two-phase activation strategy.

Finally, the scheduler can consider the synchronization
sequence produced by a multiprocess application execution.
In this case, the process scheduling is driven by the time
slice for processes belonging to uniprocess applications and
by both the time slice and the synchronization sequence for
multiprocess applications. Source traces have to include
synchronization tags for a correct playback of them; those
tags are sequential numbers representin the actual synchro-
nization sequence of the parallel application execution [22].
When a process reaches an out-of-order synchronization
event (corresponding to a tag in the trace), it is inserted into
a waiting queue to wait for the synchronization event. Then,
it enters either theR1 or theR2 queue as described above.

2.3. Virtual-to-physical address translation

In virtual memory models based on paging, the locali-
ties of virtual and physical references produced by a run-
ning process may be different. The mapping of sequen-
tial virtual pages of the program into non-sequential physi-
cal pages causes this difference and influences the number
o intrinsic interference(or capacity) missesdue to interfer-
ences among kernel code and data, user data and code ac-
cesses within the same cache set.



The virtual-to-physical address translation is modeled as
follows. We suppose that each process has a private ad-
dress space and a shared address space common to all the
processes belonging to the same multiprocess application,
whereas, kernel instances share a unique address space. The
virtualization is implemented using a paging schemeon de-
mandandwithout prepaging. The page size and the physi-
cal memory size are input parameters for the address trans-
lation mechanism.

3. An example of target trace generation

A possible, quite interesting use of the the proposed
methodology is to perform the analysis of a shared-bus
shared-memory multiprocessor employed as a high perfor-
mance general-purpose machine (e.g. as a Unix worksta-
tion).

A typical workload for the target machine considered
in this example is a mixed set of uniprocess applications,
Unix commands and multiprocess applications. Since the
performance of a multiprocessor also depends on the grain
size of parallel applications, we considered two typical sub-
cases: coarse- and medium-grain parallel applications. We
selected a number of typical Unix commands (awk, cp ,
du , lex , rm andls ) with different command line options,
some utility programs (cjpeg , djpeg andgzip ), a net-
work application (telnet ) and a user application (msim,
the multiprocessor simulator used in this work). In some
cases, traces are taken during different execution sections
of the application: the initial (beg) and middle (mid) sec-
tions. Table 2 describes the features of these source traces
in terms of number of distinct (unique) blocks used by the
program, code, data read and data write access percentages,
and number of system calls.

Distinct Code Data (%) System
Application blocks (%) read write calls

awk (beg) 4963 76.76 14.76 8.47 29
awk (mid) 3832 76.59 14.48 8.93 47
cjpeg 1803 81.35 13.01 5.64 18
cp (beg) 2615 77.53 13.87 8.60 26526
cp (mid) 2039 78.60 14.17 7.23 56388
msim 960 84.51 10.48 5.01 345
dd 139 77.47 16.28 6.25 47821
djpeg (beg) 2013 81.00 12.75 6.26 15
djpeg (mid) 144157 98.33 1.17 0.51 20
du 1190 75.86 16.37 7.77 9474
lex 2126 78.67 15.49 5.84 40
gzip 3518 82.84 14.88 2.28 13
ls -aR 2911 80.62 13.84 5.54 1196
ls -ltR (beg) 2798 78.77 14.58 6.64 1321
ls -ltR (mid) 2436 78.42 14.07 7.51 1778
rm (beg) 1314 86.39 11.51 2.10 10259
rm (mid) 1013 86.29 11.65 2.06 15716
telnet (beg) 781 82.52 13.17 4.31 2401
telnet (mid) 205 82.78 12.93 4.28 2827

Table 2. Statistics of uniprocess applications
and Unix command traces (32-byte block
size, 1,250,000 references)

The two parallel programs used in the case studies,
mp3d andCholesky , come from the SPLASH suite; in
both applications, one of the input parameters is the num-
ber of processes on which the computation is parallelized.
Themp3dprogram simulates rarefied hypersonic flow; the
trace generated is relative to the case of 10,000 molecules
and 20 time steps.Cholesky performs the factorization
of a sparse positive definite matrix using the homonymous
method; the trace was generated using, as input, a 1806-by-
1806 matrix with 30,284 non-zeros elements coming from
the Boing/Harwell sparse matrix test (bcsttk14 ). The
source traces are produced by means of the TangoLite tool;
the parallel application is traced on a virtual MIPS-based
multiprocessor having as many processors as the number
of application processes. Virtual processors are then em-
ulated on a single-processor MIPS workstation executing
sequentially the resulting multiprogrammed load. Table 3
summarizes the statistics concerning multiprocess applica-
tion traces; it also specifies the number of shared blocks
and some statistics concerning the access pattern to shared
blocks.

Distinct Code Data (%) Shared
Application CPUs blocks (%) read write blocks

mp3d 2 9727 78.03 15.01 6.97 1335
4 12588 78.48 14.22 7.31 2137
6 13532 78.65 13.95 7.41 2450
8 14040 78.72 13.81 7.46 2742
10 14347 78.77 13.74 7.49 2983
12 14550 78.80 13.68 7.51 3172
14 14742 78.82 13.65 7.52 3312

Cholesky 2 17102 79.05 11.97 8.98 1
4 24011 79.54 13.21 7.26 7806
6 26154 79.77 13.51 6.71 12415
8 28564 79.95 13.66 6.38 14278
10 30980 80.21 13.69 6.10 15527
12 33493 80.38 13.68 5.94 16888
14 35424 80.44 13.69 5.86 17937

Shared Data (%) Write-run
Application CPUs Accesses Write WRL XRR

� � � �

mp3d 2 9.10 2.29 6.96 7.14 1.95 2.38
4 9.97 3.12 5.97 4.29 1.54 1.29
6 10.30 3.39 5.27 3.41 1.51 1.23
8 10.52 3.54 4.96 3.10 1.51 1.27
10 10.69 3.64 4.78 2.91 1.51 1.32
12 10.81 3.71 4.71 2.91 1.51 1.37
14 10.89 3.75 4.61 2.86 1.51 1.42

Cholesky 2 0.16 0.00 2.00 0.00 2.00 0.00
4 7.10 0.96 2.78 1.62 1.06 0.65
6 9.23 1.36 2.81 1.54 1.04 0.59
8 10.14 1.46 2.78 1.50 1.04 0.56
10 10.64 1.51 2.77 1.43 1.04 0.63
12 10.78 1.50 2.85 1.51 1.04 0.51
14 10.89 1.48 2.91 1.58 1.04 0.55

Table 3. Statistics of multiprocess source
traces (32-byte block size, 1,250,000 refer-
ences)

Access patterns to shared data influence the multipro-
cessor performance and may be characterized by means of
two metrics:write-run length(WRL) andexternal re-reads
(XRR) [1]. The former is the number of write operations to
a memory block performed by a given processor before an-
other processor would access the same block: the sequence
of write (eventually interleaved by read) references, just de-
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Figure 2. Global write-run-length (WRL)
distribution for the mp3d workload.

fined, is called awrite-run. The second one indicates how
many read operations will use a block after a write-run has
been terminated and before another one has been initiated.
The tool can extract these statistics, which are shown in
Table 3. A quite natural use of the write-run is to select
the better coherence strategy betweenwrite-invalidateand
write-updatefor a given workload. Long write-runs suggest
that a write-invalidate coherence protocol should be chosen:
indeed, the cost of the initial miss (due to invalidation) is
balanced by the fact that a large amount of bus traffic can
be saved since all the subsequent write operations can be
executed locally during the write-run. A large number of
external rereads gives an indication on how much a copy is
needed by different processors and, therefore, if it would be
convenient to adopt a write-update strategy. The write-run
length is also a measure of the application grain-size; in fact
these statistics show that: i)mp3d is a coarse-grained appli-
cation since the average value of write-run length varies in
the range (4.61� 6.96); ii) Cholesky exhibits a medium-
grained behavior having an average value write-run length
in the range (2.00� 2.91). Figures 2 and 3 stress the differ-
ences between the shared data access patterns ofmp3dand
Cholesky .

Traces are generated choosing the following details con-
cerning the underlying architecture of the simulated multi-
processor: first of all, processors are MIPS-R3000-like and
their number (Ncpu) has been varied from 2 to 24; the pag-
ing has been carried out using a page size of 4 KBytes; the
time slice (Tslice) is 200,000 references; the execution time
analyzed corresponds to 1,250,000 references per proces-
sor. A random selection from the ready queue with a two-
phase activation algorithm was adopted for the choice of a
process on context switches.
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Figure 3. Global write-run-length (WRL)
distribution for the Choleskyworkload.

In a typical situation, a number of users run some UNIX
commands and different ordinary applications in different
times. For this reason, the proposed workloads include two
or three copies of the same program taken in different ex-
ecution sections (beg and mid). In particular, workloads
Mix1 andMix2 consist of 30 uniprocess applications and
an additional load due to a parallel applications which gen-
erates a number of processes equal to half the total number
of processors available on the machine.

Distinct Code Data (%) Shared
Workload CPUs blocks (%) read write blocks

Mix1 8 78218 79.05 14.15 6.80 7772
12 94381 78.80 14.42 6.79 14153
16 100941 78.49 14.43 7.09 22711
20 132713 78.74 14.17 7.08 29199
24 159569 78.82 14.11 7.07 31434

Mix2 8 79713 79.23 14.16 6.61 8226
12 100057 79.02 14.26 6.72 16103
16 108540 78.74 14.44 6.82 23018
20 142314 79.03 14.19 6.78 30189
24 170678 79.18 14.16 6.66 33406

Shared data (%) Write-run
Workload CPUs Accesses Write WRL XRR

� � � �

Mix1 8 12.56 3.86 6.25 7.29 2.88 4.70
12 17.16 5.28 5.97 6.89 2.75 4.33
16 18.09 5.78 5.65 6.55 2.62 3.61
20 18.44 5.88 5.33 5.86 2.80 3.71
24 18.84 6.07 5.14 5.56 2.72 3.60

Mix2 8 12.14 3.58 5.51 7.23 3.08 5.03
12 16.94 5.24 5.37 7.26 2.84 4.74
16 17.51 5.43 5.18 7.23 2.36 4.09
20 17.68 5.46 4.94 6.79 2.47 4.37
24 18.08 5.55 4.80 6.63 2.38 4.31

Table 4. Statistics of target traces (32-byte
block size, 1,250,000 references per CPU)

Table 4 describes the features of target traces. The sim-
ulation which produced these traces was performed with a
256-Kbyte, 2-way set-associative cache with 32-byte block
size and the Dragon protocol. The difference between the
Mix1 andMix2 workloads is in the grain size of the paral-
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lel application. In the first case (Mix1), this application is
mp3d, whilst in the second case (Mix2) it is Cholesky .
Observing the statistics of data read and write, it emerges
that these values are quite constant even if the analogous
source applications values variate in a more extended range
(see Table 2 and 3); indeed, there is a kind of averaging ef-
fect in putting together a number of applications in order to
generate a multiprocessor workload. Comparing the write-
run statistics of Tables 3 and 4, we can also notice how
the presence of kernel activities and uniprocess applications
(in particular process migration) modifies the write-run of
source traces. This aspect has been highlighted by Figures 4
and 5, which show the WRL distributions for the two work-
loads; therefore, it strongly motivates the introduction of
kernel modeling in the evaluation of such multiprocessors.

4. Conclusions

We have shown a methodology which permits us to
produce traces including kernel and user references start-
ing from traces containing only user references. Specifi-
cally, the kernel reference sequences, which appear in ac-
tual traces as bursts which break the program locality, have
been produced by means of a stochastic model. This model,
in turn, has been calibrated on data extracted from actual
traces. In the examples, the methodology used to gather
those data has been shown for an actual trace set furnished
by Carnegie Mellon University. Furthermore, the proposed
tool models the scheduling and the translation from virtual
to physical addresses. Both activities have a notable impact
on the behavior of a system including caches: process mi-
gration, normally produced by a scheduler, causespassive
sharingand a consequent large amount of bus overhead to
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Figure 5. Global write-run-length (WRL)
distribution for the Mix2 workload.

guarantee the coherency of shared copies; the remapping
of addresses influences the number ofintrinsic interference
missesdue to code and data accesses of a given process in-
volving the same cache set.

Finally, we have shown, as an example, how the method-
ology can be employed to individuate critical workloads for
a multiprocessor.
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we thank Veljko Milutinović for his valuable comments and
suggestions.

References

[1] S.J. Eggers.Simulation analysis of data sharing in
shared memory multiprocessors. Ph.D. dissertation,
Univ. of California, Berkeley, April 1989.

[2] S. Eggers and R.H. Katz. A characterization of sharing
in parallel programs and its application to coherency
protocol evaluation.Proc. 15th Int. Symp. Comput. Ar-
chitecture, 1988, pp. 373-382.



[3] S. Eggers and R.H. Katz. Evaluating the performance
of four snooping cache coherency protocols.Proc.
16th Int. Symp. Comput. Architecture, 1989, pp. 2-15.

[4] S. Eggers, D. Keppel, E. Koldinger and H. Levy.
Techniques for efficient inline tracing on a shared-
memory multiprocessor.Proc. ACM SIGMetrics Int.
Conf. Measurement and Modeling of Computer Sys-
tems, 1990, pp. 37-47.

[5] J.D. Gee and A.J. Smith. Evaluation of cache consis-
tency algorithm performance.Proc. Int. Workshop on
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (Mascots), San Jose,
CA, February 1996, pp. 236-249.

[6] S.R. Goldschmidt.Simulation of Multiprocessors,
Speed and Accuracy. Doctoral dissertation, Stanford
University, Stanford, Calif., June 1993.

[7] J. Hennessy and D. A. Patterson.Computer Architec-
ture – a Quantitative Approach. 2nd edition, Morgan
Kaufmann, 1996.

[8] M.A. Holliday and C.S. Ellis. Accuracy of mem-
ory reference traces of parallel computations in trace-
driven simulation.IEEE Trans. Parallel Distributed
Syst., vol. 3, no. 1, January 1992, pp. 97-109.

[9] K. Hwang. Advanced Computer Architecture: Par-
allelism, Scalability, Programmability. McGraw-Hill,
1993.

[10] A. Karlin, M. Manasse, L. Rudolph and D. Sleator.
Competitive Snoopy Caching.Proceedings of the 27th
Annual Symposium on Foundations of Computer Sci-
ence, 1986, pp. 244-254.

[11] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins and
R.G. Sheldon. Implementing a cache consistency pro-
tocol. Proc. 12th Int. Symp. Comput. Architecture,
June 1985, pp. 276-283.

[12] P. Magnusson and B. Werner. Efficient memory simu-
lation in SIM ICS. Technical Report, Swedish Institute
of Computer Science, 1995.

[13] E. M. McCreight.The Dragon computer system: an
early overview. NATO Advanced Study Institute on
Microarchitecture of VLSI Computer, Urbino, Italy,
July 1984.

[14] C.A. Prete, G. Prina and L. Ricciardi. A trace-driven
simulator for performance evaluation of cache-based
multiprocessor systems.IEEE Trans. Parallel and
Distributed Syst., vol. 6, no. 9, September 1995,
pp. 915-29.

[15] C.A. Prete, G. Prina and L. Ricciardi. A selective in-
validation strategy for cache coherence.IEICE Trans.
on Information and Systems.vol. E78-D, no. 10, Oc-
tober 1995, pp. 1316-20.

[16] M. Rosenblum, S.A. Herrod, E. Witchel and A. Gupta.
Complete computer simulation: the SimOS approach.
IEEE Parallel and Distributed Technology, vol. 3,
no. 4, Winter 1995, pp. 34-43.

[17] R.L. Sites and A. Agarwal. Multiprocessor cache
analysis using ATUM.Proc. 15th Int. Symp. Comput.
Architecture, 1988, p. 186-195.

[18] M.S. Squillante and D.E. Lazowska. Using processor-
cache affinity information in shared-memory mul-
tiprocessor scheduling.IEEE Trans. Parallel Dis-
tributed Syst., vol. 4, no. 2, pp. 131-143, Feb. 1993.

[19] C.B. Stunkel, B. Janssens and W.K. Fuchs. Ad-
dress tracing for parallel machines.IEEE Computer,
vol. 24, no. 1, Jan. 1991, pp. 31-38.

[20] C.B. Stunkel, B. Janssens and W.K. Fuchs. Address
tracing of parallel systems via TRAPEDS.Micro-
processors and Microsystems, vol. 16, no. 5, 1992,
pp. 249-261.
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