
A Workload Generation Environment
for Trace-Driven Simulation of Shared-Bus Multiprocessors

Roberto Giorgi, Cosimo Antonio Prete, Gianpaolo Prina, and Luigi Ricciardi

Dipartimento di Ingegneria dell’Informazione
Facoltà di Ingegneria, Universit`a di Pisa
Via Diotisalvi, 2 - 56126 PISA (Italy)

prete@iet.unipi.it

Abstract

We describe an environment to produce traces represent-
ing significant workloads for a shared-bus shared-memory
multiprocessor used as a general-purpose multitasking ma-
chine, where each processor can include multithread facil-
ities. By means of an exclusively software approach, the
environment produces traces that include both user and ker-
nel references, starting from source traces containing only
user references. The process scheduling and the virtual-
to-physical address translation are simulated, whereas a
stochastic model is provided for the generation of the kernel
reference stream. The paper includes a Section describing
the generation of three different workloads used to evaluate
the performance of a shared-bus shared-memory multipro-
cessor.

1. Introduction

A shared-bus shared-memory multiprocessor architec-
ture represents a low-cost solution for high performance
general-purpose workstations, where the major concern is
to speed-up the execution of a set of system commands,
uniprocess applications and/or multiprocess applications
with coarse/medium grain parallelism [1]. This architec-
ture can be considered a simple extension of a uniprocessor
machine [2]; both kinds of machines generally use the same
operating system model (a Unix-like multitasking process-
ing environment is the most common solution) and the same
user application can be executed on these machines without
recoding.

An intrinsic limitation of the shared-bus architecture is
the low number of processors which can be connected to

In Proc. 30th HICSS, Hawaii, Jan 1997, pp.266-275

the shared bus before saturation (about a few dozen units is
the upper limit allowed by current technology) [1, 2]. Cache
memories and multithreading are two of the solutions pro-
posed in literature to limit the drop of performance due to
bus saturation. The cache [3, 4] contributes to a reduction
in the number of accesses to the shared bus, while the mul-
tithreading reduces the impact of long-latency operations
[5, 6]. In a multiprocessor architecture with private caches,
the coherence-related overhead becomes a major cause of
the drop of global performance. When two or more proces-
sors store a copy of the same memory block in their respec-
tive caches and one of them performs a write operation on a
location within that block, some bus actions (induced by a
coherence protocol [7, 8, 9, 10, 11]) are performed to guar-
antee that each subsequent read operation by any processor
may get the up-to-date value of the modified location.

Multithreaded processors [12, 13, 5, 2] include multiple
contexts that allow the processing unit to switch to another
thread when the current thread is forced to wait for a mem-
ory operation. The multiple contexts cause a double ef-
fect: on the one hand, the cache miss ratio increases, due
to the breaking of locality caused by the interleaved refer-
ences of different threads [4]; on the other hand, if a number
of processes belonging to a parallel application are consid-
ered as threads concurrently running on a single processor,
their impact on bus bandwidth due to coherence overhead
is significantly lower than it would be if they were sched-
uled on different processors. However, the global amount
of shared data tends to increase because the number of run-
ning processes is far larger than in the case of single-thread
processors. The overall performance is a function of cache
interference due to multiple contexts, therefore it strictly de-
pends on the features of the application [6], the number of
threads, the context switching strategy, and the coherence
protocol adopted.

Trace-driven simulation is typically used in order to in-



vestigate how to improve performance of such machines,
because this method has the advantage of not being strictly
linked to a specific kind of architecture and being, there-
fore, flexible in the performance evaluation of different ar-
chitectures [14]. A key point of this methodology is to find
address traces which both represent typical operating con-
ditions and include all information potentially needed for a
reliable simulation of the system. Some important aspects
concerning accuracy [15, 16, 17] must be taken into con-
sideration both in the trace generation phase and in the uti-
lization phase. When recording traces, the most critical is-
sue is trace completeness, i.e., traces must include both user
and operating system address references. Furthermore, a
minimum amount of time distortion must be introduced by
the tracing mechanism. In the utilization phase, one must
be sure to reproduce the correct synchronization between
events concerning processes run on different processors.

In the present work we introduce a methodology and a
set of tools (calledTrace Factory) to generate traces for
performance evaluation of a shared-memory multiproces-
sor system (e.g. multiprocessor workstation architectures),
where each processor may have a multithreaded architec-
ture. For this purpose a set of typical Unix-like workloads
may be generated by: i) tracing a set of uniprocess appli-
cations (e.g. commonly used Unix commands and user pro-
grams) and/or multiprocess applications, and then ii) adding
the kernel activities which most influence global perfor-
mance, such as process scheduling, virtual-to-physical ad-
dress translation, and reference stream generated by the ker-
nel routines. Both process scheduling and memory map-
ping are simulated, whereas the kernel reference stream is
modeled by means of a statistic method already proposed
and validated by the authors in [18]. In the case of a mul-
tithreaded architecture, Trace Factory considers multiple
threads for each processor, and the simulator implements
a proper scheduling policy at the thread level.

The paper is organized as follows: Section 2 presents a
brief overview of the open literature on the subject; Section
3 describes the general organization of the tracing environ-
ment; Section 4 focuses on the methodology employed for
kernel modeling; Section 5 shows an example of trace gen-
eration with three different workloads for performance eval-
uation of a multiprocessor; finally, Section 6 concludes the
paper.

2. Related work

A number of different strategies have been employed in
the literature concerning performance evaluation of mul-
tiprocessor systems: analytical/stochastic models, trace-
driven simulation, complete system simulation, just to men-
tion the most common solutions.

The analytical/stochastic model [19] appears to be the

most flexible and economic solution, yet the low degree of
accuracy which it provides may be unacceptable in the case
of cache performance evaluation, since the model does not
typically include all aspects which characterize cache and
program behavior (e.g. coherence in multiprocessor sys-
tems). This kind of analysis could be of some use to obtain a
quick estimation of system performance, before performing
the actual evaluation by means of a more reliable technique.

The methodology based on complete simulation (such
as SIM ICS [20], SimOS [21], or MINT [22]) is the most
flexible and accurate, since it allows a detailed analysis of
all hardware and software aspects and cause-effect links in-
volved in a particular architecture. On the other hand, this
solution involves high implementation costs to obtain an ac-
ceptable degree of accuracy. The main limitation of this
solution is that the slowdown scales linearly with the num-
ber of CPUs being simulated, since the detailed CPU model
does not exploit the parallelism of the underlying machine.
This causes a slowdown factor in the thousands when simu-
lating systems with 16–32 processors with the deepest level
of simulation detail being required [21].

When the target of the performance evaluation is the
memory subsystem, a good trade-off between cost and ac-
curacy is represented by trace-driven simulation [23], which
we already experimented with successfully in [11, 18].
Trace-driven methods are based on the recording of a trace
(sequence of memory addresses referenced by the running
program) and on the utilization of the trace as input for the
memory subsystem simulator. Two critical issues concern-
ing accuracy in tracing shared-memory multiprocessors are:
i) traces must include both user and operating system refer-
ences, and ii) a minimal amount of time distortion must be
induced either by the tracing mechanism (during the record-
ing phase) or by the simulator (in the utilization phase).

Tracing techniques include hardware and software solu-
tions. Hardware monitoring [24] is the solution which can
potentially guarantee best results in terms of accuracy. In-
deed, actual traces, captured by traditional hardware-based
techniques, prove to be particularly useful in the validation
phase of a new architecture. Accuracy, absence of time dis-
tortion and of intrusiveness are the main advantages of this
method. The most critical drawback comes from the fact
that modern trends in technology for processors encourage
the adoption of on-chip caches, so that a great amount of
memory references are handled internally and can no longer
be captured by the hardware tracing mechanism [25]. Other
limiting factors are the high cost of implementation and the
lack of completeness (fragmentation) of the trace gathered,
due to the limited size of storage buffers. Finally, traces ob-
tained from an actual multiprocessor machine by means of
hardware techniques cannot be employed for an exhaustive
performance analysis of the system, because it is not possi-
ble to produce traces with a variable number of processors,

2



and the designer of a new multiprocessor cannot generally
access the trace system to produce new traces.

Software tracing methodologies includeprogram instru-
mentation, single-step executionand microcode modifica-
tion. A major problem, which at various levels affects all
the methods just mentioned, istime dilation, due to the fact
that the software tracing mechanisms generate a heavy over-
head, which causes major changes in the relative timing of
asynchronous events, resulting in a decrease of accuracy,
especially concerning multitasking workloads.

Program instrumentation (e.g. TangoLite [16],
MPTRACE [26] and TRAPEDS [17]) is based on the
modification of program code to record the sequence of
memory accesses generated during the execution. A set of
instructions are added to create the trace section concerning
eachbasic block(set of machine-level instructions which
are always executed in sequence without interruptions)
throughout the program. The instrumentation phase may be
activated at either source or executable level. The latter is
the simplest to handle for the user, but it is quite difficult to
implement and may not be able to instrument all programs;
on the other hand, instrumentation at source level is quite
easy, but the user must have access to the entire source
code and have a full knowledge of the compiler’s code
generation process. Furthermore, the accuracy of the model
is limited by the lack of completeness in the trace, since
it is quite difficult to capture traces of operating system
routines.

The problem of completeness also arises in single-step
execution. This technique can be adopted with micropro-
cessors which allow the execution of a program to be inter-
rupted after each instruction. Nevertheless, since operating
system routines typically disable interruptions, no possibil-
ity usually exists to capture addresses generated by the exe-
cution of operating system routines.

The tracing technique based on microcode modification
(ATUM) uses processor microcode to record addresses in
a reserved part of main memory as a side effect of normal
execution [27]. Compared with other techniques, this one
leads to fewer distortions and a very fast recording (only
10x slowdown); all the system activity can be observed,
with no additional hardware being required. The disadvan-
tages include poor flexibility, since it requires microcode
modification. This also implies that only microcode activ-
ity can be recorded, whereas I/O operations and hardware-
generated memory traffic cannot be captured.

In any case, when the goal is to compare different archi-
tecture solutions, it becomes important to analyze the sys-
tem behavior under a predefined and controlled workload.
Two key points of this approach are: i) traces must repre-
sent actual workloads for the target machine, and ii) the de-
signer must have the possibility to produce proper traces to
investigate the behavior of the system when exposed to par-

ticular (possibly critical) workload conditions. This kind of
flexibility can be guaranteed only by software techniques,
and this is the main reason that we directed our efforts in
this direction in the present work. A possible solution to the
issues exposed above is presented, so that the traces gener-
ated appear to be suitable for a thorough investigation of a
given target architecture.

3. The Trace Factory environment

Trace Factory allows the utilization of a set ofsource
traces including only user references to produce complete
multiprocessortarget traces. Source traces can be obtained
by a tool [25] based on the same microprocessor as in the
target system. Target traces are generated by considering
the source traces, the number of processors, the number
of threads for each processor, and the following three ker-
nel activities: i)kernel memory references, i.e., the refer-
ences due to each system call and kernel management rou-
tine; ii) process scheduling, i.e., the dynamic assignment of
a ready process to an available processor; and iii)virtual-
to-physical address translation, i.e., the mapping of virtual
to physical memory addresses. To correctly reproduce the
temporal sequence of all events in the system, the produc-
tion of the target traces is made according to theon demand
policy (a new reference is generated whenever a request
comes from the simulator), and the scheduler makes use of
the synchronization tags inserted into the trace files by the
tracing mechanism. The interaction between Trace Factory
and the simulator is synchronous, so that the trace gener-
ated is forced to follow the temporal behavior imposed by
the memory subsystem.

3.1. Generation of kernel references

Kernel reference bursts affect performance because they
interrupt the locality of the memory reference stream of the
running process causing additional cache misses. In our ap-
proach, kernel bursts are obtained by inserting sequences of
kernel references within the user reference stream. These
sequences are generated by means of two statistics:length
of each burst anddistancebetween the starting point of two
subsequent bursts. The burst insertion may also be driven
by information collected in the source traces if the tracing
tool records the system call positions. This allows us to gen-
erate more accurate workloads in the case of processes that
exhibit different numbers of system calls.

Each kernel reference is specified by:area referenced
(code/data),addresswithin the selected area andkind of ac-
cess(read/write). The probability of code/data access and
of data read/write access are input parameters for the tool.
For the specific location within the selected area, the local-
ity of memory references has to be taken into account; the

3



stochastic model used in Trace Factory is introduced in [18].
The reference generator operates as follows: letRi be the
address of the latest reference in an area (R0 assumes a ran-
dom value). The addressRi+1 may be evaluated through
a sequence of steps: first, we evaluate the relative distance
(in words)y = jRi+1 � Rij by transforming a uniformly-
distributed random variablex 2 (0; 1) by means of the (em-
piric) function

y =

�
S � (1�Ax)

5 �Ax � 6

�
(1)

whereA andS express the locality of references in the area
involved and are jointly related to the width and amplitude
peak of the curve representing the distribution of distances
between subsequent references (see Section 4.1).

Once we have evaluatedy in such a way, we transform
it into ~y by changing its sign with probabilitypb that rep-
resents the probability of backward references. Finally, if
the access being considered involves the code area and the
value of~y is positive, this value is incremented by one, in
order to prevent zero distance between two subsequent ac-
cesses in code area. The resulting value of~y is added to
Ri and the outcome is assumed to be the required address
Ri+1.

3.2. Process management

In the case of shared-bus shared-memory multiproces-
sors, one of the main goals of the scheduler is to provide an
acceptable degree of load balance in order to allow the pro-
grammer to develop his applications without caring about
the workload distribution on the processors. Nevertheless,
load balance induces process migration that causes further
coherence overhead. Actually, a memory block belonging
to a private area of a process can be replicated in more than
one cache as a consequence of the migration of the pro-
cess which owns this block. These copies have to be treated
as shared with respect to the coherence-related operations,
resulting in a heavy and useless burden for the shared bus
(passive sharing[14], process-migration sharing[2]). A
scheduling policy based on cache affinity [28] can reduce
the amount of cache misses due to context switches and pas-
sive sharing.

Trace Factory simulates a simple scheduler by consid-
ering the following input parameters: the number of pro-
cesses (Nproc), the number of processors of the target ma-
chine (Ncpu), the number of threads supported by each
processor (Nthr), the time slice in terms of number of
references (Tslice), the process activation algorithm (two-
phaseor non-blocking), and the scheduling strategy (ran-
dom, round-robin or cache-affinity). It starts from a set
of source traces (one trace for each uniprocess application
and as many traces as the number of processes belonging to

the multiprocess application), and produces as many target
traces as the number of processors of the target machine.

The scheduler operates as follows: if a processp is run-
ning on processorP for aD time interval (again specified in
terms of number of references) thenD references of thep
source trace become references for processorP. At the start
of the simulation, all the processes are ready and they are in-
serted in a proper queue, namelyR1. Initially, the scheduler
randomly selectsNcpu processes, and each running process
has a different time slice (namely, the process running on
processori is assigned a time sliceTi = i�Tslice

Ncpu
). After the

first context switch on each processor the next scheduled
process is regularly assignedTslice. This strategy, typically
adopted in operating systems for multiprocessors, avoids a
context switch being simultaneously needed on each pro-
cessor everyTslice, which would produce an undesirable
overlap of miss peaks on all caches and a consequent bus
saturation due to the bus transactions needed to fetch miss-
ing blocks.

On a context switch, a process is extracted fromR1 and
assigned to the available processor. The choice of such
process can be made either according to the cache affinity
strategy, or by means of a round-robin scheme, or just ran-
domly. The preempted process may be managed in two dif-
ferent ways. In thenon-blockingactivation strategy, the pre-
empted process is immediately inserted into theR1 queue.
This strategy suffers from the starvation problem: this im-
plies that references of a process may be not present within
a target trace when its length is short andNproc

Ncpu
� 1. A

second activation strategy (two-phase) makes use of another
queue, namelyR2, initially empty. On every context switch,
the preempted process is inserted intoR2 (phase one). As
soon as the queueR1 becomes empty, all the processes are
taken fromR2 and inserted intoR1 (phase two). This tech-
nique avoids the problem described above, that is, it ensures
that a process does not have to wait an indefinite time for its
turn: indeed, with this strategy, a process cannot be exe-
cutedn+1 times before each other process is executed ex-
actlyn times.

Finally, the scheduler can consider the synchronization
sequence produced by a multiprocess application execu-
tion. In this case, the process scheduling is driven by the
time slice for processes belonging to uniprocess applica-
tions and by both the time slice and the synchronization se-
quence for multiprocess applications. Source traces have to
include synchronization tags for a correct playback of them
[24]. When a process reaches an out-of-order synchroniza-
tion event, it is inserted into a waiting queue to wait for the
synchronization event. Then, it enters either theR1 or the
R2 queue as described above.

In the case of multithreaded architecture, each thread is
assigned its ownTslice, and the system assumes the pres-
ence ofNcpu � Nthr virtual processors. Two levels of

4



scheduling need to be considered: i) an external schedul-
ing (described above), concerning the dynamic allocation
of threads on the available processors in the system, and ii)
and internal scheduling, concerning the context switching
between threads on a single processor. The internal level of
scheduling is completely handled by the simulator and it is
a simple round-robin policy.

The number of threads supported by each processor, the
cost of context switch between threads, and the context
switch strategy are the parameters which the simulator has
to be supplied with. In particular, three different context-
switch policies are considered:switch on miss, switch on
read missandswitch on block of instructions. These tech-
niques involve different cache behaviors with respect in par-
ticular to the resulting miss rate and the overhead induced
by the coherence protocol [2].

3.3. Virtual-to-physical address translation

In virtual memory models based on paging, the locali-
ties of virtual and physical references produced by a run-
ning process may be different. The mapping of sequential
virtual pages of the program into non-sequential physical
pages causes this difference and influences the number of
intrinsic interference(or capacity) missesdue to interfer-
ences among kernel code and data, user data and code ac-
cesses within the same cache set.

The virtual-to-physical address translation is modeled as
follows. We suppose that each process has a private ad-
dress space and a shared address space common to all the
processes belonging to the same multiprocess application,
whereas, kernel instances share a unique address space. The
virtualization is implemented using a paging schemeon de-
mandandwithout prepaging. The page size and the physi-
cal memory size are input parameters for the address trans-
lation mechanism.

4. The kernel behavior modeling

4.1. Parameter gathering

The stochastic model of kernel references is described
by a set of parameters that can be gathered from an actual
trace including kernel references. The probabilities con-
cerning the kind of area referenced and the access mode
(read/write) can be evaluated by counting the relative oc-
currences of events.

Locality information (that is,A;S andpb) has to be ex-
tracted from the traces, so that the reference stream gen-
erated by Eq. 1 is an accurate representation of the ac-
tual stream. The following data are separately evaluated
for code and data areas in the actual traces: i) the maxi-
mum distance (�) between two subsequent references; ii)

Application Source Brief description

ecas A. Wilson (Encore) Computer Architecture Simulation
hartstone N. Weiderman (SEI at CMU) Real-Time Benchmark
locusroute SPLASH (by J. Rose) Circuit Routing
mp3d SPLASH (by J.D. McDonald) Rarefied Fluid Flow Simulation
ms tracer Fritzz Graphics (M. Rao at CMU) Ray Tracing
pde A. Wilson Partial Differential Equation Solver

Table 1. The CMU multiprocessor traces

the maximum amplitude (P ) of the distribution of distances
between two subsequent references; iii) percentage of back-
ward references (pb) over the total number of non-sequential
accesses. To determine a numerical value for theA andS
parameters, we derive the following conditions:

1. the maximum value for they distribution (Eq. 1.) is
set to the maximum amplitude (P ) of the distribution
of distances between two subsequent references; this
leads to the equation:

P =
1

logA
log

S + 6

S + 5
; (2)

2. the maximum value ofy (Eq. 1.) is set to the maximum
distance (�) between two subsequent references; this
leads to the equation:

� = S
1�A

5A� 6
: (3)

Eqs. 2 and 3 may be linked together to build a system
which can be easily solved with numerical techniques.

Finally, we measure the distribution of the kernel burst
length and of the distance between the beginning of two
successive bursts.

In our case study, we gathered the kernel statistics from
a series of eight-processor traces distributed by Carnegie
Mellon University and obtained by means of an Encore
Multimax (shared-bus multiprocessor) machine (Table 1).
These traces represent a wide variety of application domains
[24]. They include system references and each reference
involves one of four different areas: user code, user data,
kernel code and kernel data. For the sake of simplicity, we
analyzed a sample of 1,250,000 references per processor for
each trace. Table 2 includes the kernel access percentages
(code, data, write), the kernel burst statistics and the result-
ing values ofA, S andpb. The statistics concerning the
distribution of distance and burst length are summarized by
means of average value (�) and standard deviation (�).

4.2. Validation of the model

To estimate the error induced by the synthetic genera-
tion of the kernel reference stream, trace-driven simulation

5



Kernel Kernel burst
references distance length

Application (%) � � � �

ecas 3.45 28098 583 974 440
hartstone 13.13 13877 8718 583 1198
locusroute 7.39 23474 5234 1213 1486
mp3d 3.39 28316 1100 966 290
ms tracer 9.42 22382 5502 1007 2406
pde 5.63 24046 7078 967 1000

Kernel code Kernel data
References References Writes

Application (%) A S pb (%) (%) A S pb

ecas 2.08 1.198834 0.772 0.357 1.37 0.47 1.197679 19.900 0.727
hartstone 8.09 1.199707 0.810 0.356 5.04 1.46 1.198834 21.086 0.698
locusroute 4.10 1.198834 0.827 0.363 3.29 1.37 1.197679 20.459 0.729
mp3d 2.04 1.198834 0.210 0.372 1.35 0.46 1.197679 19.900 0.727
ms tracer 5.98 1.199854 0.832 0.332 3.44 0.84 1.199707 22.032 0.732
pde 3.47 1.199707 0.783 0.309 2.16 0.80 1.199707 21.837 0.738

Table 2. Kernel references statistics (8-CPU
multiprocessor)

was employed to compare the results of five different situ-
ations: i) the original CMU traces; ii) the CMU traces de-
prived of the kernel references; iii) the original traces, with
kernel references replaced by an address stream generated
synthetically, yet preserving the same position and length
of each kernel reference burst as in the original traces; iv)
as in iii), with kernel bursts length and position generated
stochastically by means of a distribution evaluated on a per-
processor basis from the original traces; v) as in iv), with
the distributions evaluated as average values over the entire
set of processors.

Since the kernel references represent only a minimal
part of total accesses, the analysis was extended to cover
2,500,000 references in order to get an amount of data sig-
nificant enough to be used for statistic considerations.

The typical metrics representing the performance of
a multiprocessor system were considered: average miss
rate, Global System Power (GSP =

P
UCPU , where

UCPU=Tcpu�Tdelay
Tcpu

�100 and Tdelay is the total CPU delay
time spent in waiting for memory operation completions),
bus utilization ratio, number of write/read-block/update-
block transactions per thousand memory operations.

Table 3 shows some results in terms of both absolute
values and error percentages (with respect to the values ob-
tained from the actual traces). Cases iv) and v), in particular,
point out that it is not generally worth reproducing exactly
the original position of kernel accesses within the global
reference stream in order to improve the accuracy of the
model.

5. Performance evaluation of a multiprocessor

A possible, quite interesting use of the Trace Factory en-
vironment is to perform the analysis of a shared-bus shared-
memory multiprocessor employed as a high performance
general-purpose machine (e.g. as a Unix workstation). The
hardware system consists ofN independent processors;

Application (i) (ii) (iii) (iv) (v)

abs err (%) abs err (%) abs err (%) abs err (%)
Miss rate ecas 0.273 0.225 �17.5 0.283 +3.6 0.284 +4.0 0.290 +6.2

hartstone 0.071 0.016 �77.0 0.081 +14.0 0.075 +5.6 0.088 +23.9
locusroute 0.292 0.113 �61.3 0.295 +1.0 0.267 �8.6 0.280 �4.1
mp3d 0.522 0.473 �9.4 0.528 +1.1 0.528 +1.1 0.530 +1.5
ms tracer 0.071 0.017 �76.0 0.099 +39.4 0.097 +36.6 0.096 +35.2
pde 0.10 0.06 �40.0 0.12 +20.0 0.12 +20.0 0.13 +30.0

Global ecas 684.8 709.6 +3.6 672.3 �1.8 672.2 �1.8 666.8 �2.6
System hartstone 780.4 796.7 +2.1 781.4 +0.1 785.9 +0.7 781.8 +0.2
Power locusroute 723.8 776.3 +7.2 717.9 �0.8 722.0 �0.2 713.7 �1.4

mp3d 632.1 662.4 +4.8 630.9 �0.1 628.3 �0.6 627.4 �0.7
ms tracer 763.5 755.3 �1.1 772.0 +1.1 757.9 �0.7 752.4 �1.4
pde 780.5 792.0 +1.5 780.8 +0.0 779.5 �0.1 777.0 �0.4

Write ecas 47.5 50.5 +6.3 49.7 +4.6 49.3 +3.7 50.0 +5.2
transactions hartstone 10.58 3.47 �67.2 8.55 �19.2 7.56 �28.5 8.78 �17.0

per 1000 locusroute 8.44 6.76 �19.9 7.29 �13.6 7.16 �15.1 7.50 �11.1
memory mp3d 0.88 0.13 �85.2 1.09 +23.8 1.09 +23.8 1.21 +37.5

operations ms tracer 46.2 67.5 +46.1 42.0 �9.1 48.0 +3.9 49.1 +6.3
pde 13.2 9.6 �27.2 12.2 �7.5 11.3 �14.4 12.9 �2.2

Table 3. Kernel model validation (8-CPU mul-
tiprocessor, Dragon protocol)

each processor has a private cache, and the processors are
connected to a single shared bus to access the main memory.

5.1. Workload selection

Typical workloads for the target machine considered in
this example are: i) a set of uniprocess applications and
Unix commands and ii) a mixed set of uniprocess appli-
cations, Unix commands and multiprocess applications. In
the latter case, we considered two typical sub-cases: coarse-
and medium-grain parallel applications. We selected a num-
ber of typical Unix commands (awk, cp , du , lex , rm and
ls ) with different command line options, some utility pro-
grams (cjpeg , djpeg andgzip ), a network application
(telnet ) and a user application (msim, the multiproces-
sor simulator used in this work). Traces are taken during
different execution sections of the application: the initial
(beg) and middle (mid) sections. Table 4 describes the fea-
tures of these source traces in terms of number of distinct
(unique) blocks used by the program, code, data read and
data write access percentages, and number of system calls.

The two parallel programs used in the case studies,
mp3d andCholesky , come from the SPLASH suite; in
both applications, one of the input parameters is the num-
ber of processes on which the computation is parallelized.
Themp3d program simulates rarefied hypersonic flow; the
trace generated is relative to the case of 10,000 molecules
and 20 time steps.Cholesky performs the factorization
of a sparse positive definite matrix using the homonymous
method; the trace was generated using, as input, a 1806-by-
1806 matrix with 30,284 non-zeros elements coming from
the Boing/Harwell sparse matrix test (bcsttk14 ). The
source traces are produced by means of the TangoLite tool;
the parallel application is traced on a virtual multiproces-
sor having as many processors as the number of applica-
tion processes. Table 5 summarizes the statistics concerning
multiprocess application traces; it also specifies the number

6



Distinct Code Data (%) System
Application blocks (%) read write calls

awk (beg) 4963 76.76 14.76 8.47 29
awk (mid) 3832 76.59 14.48 8.93 47
cjpeg 1803 81.35 13.01 5.64 18
cp (beg) 2615 77.53 13.87 8.60 26526
cp (mid) 2039 78.60 14.17 7.23 56388
msim 960 84.51 10.48 5.01 345
dd 139 77.47 16.28 6.25 47821
djpeg (beg) 2013 81.00 12.75 6.26 15
djpeg (mid) 144157 98.33 1.17 0.51 20
du 1190 75.86 16.37 7.77 9474
lex 2126 78.67 15.49 5.84 40
gzip 3518 82.84 14.88 2.28 13
ls -aR 2911 80.62 13.84 5.54 1196
ls -ltR (beg) 2798 78.77 14.58 6.64 1321
ls -ltR (mid) 2436 78.42 14.07 7.51 1778
rm (beg) 1314 86.39 11.51 2.10 10259
rm (mid) 1013 86.29 11.65 2.06 15716
telnet (beg) 781 82.52 13.17 4.31 2401
telnet (mid) 205 82.78 12.93 4.28 2827

Table 4. Statistics of uniprocess application
and Unix command traces (64-byte block size,
1,250,000 references)

Shared data (%) Write-run
Workload Processors

Shared
Accesses Write WRL XRRblocks

� � � �

mp3d 2 1335 9.10 2.29 6.96 7.14 1.95 2.38
4 2137 9.97 3.12 5.97 4.29 1.54 1.29
6 2450 10.30 3.39 5.27 3.41 1.51 1.23
8 2742 10.52 3.54 4.96 3.10 1.51 1.27
10 2983 10.69 3.64 4.78 2.91 1.51 1.32
12 3172 10.81 3.71 4.71 2.91 1.51 1.37
14 3312 10.89 3.75 4.61 2.86 1.51 1.42

Cholesky 2 1 0.16 0.00 2.00 0.00 2.00 0.00
4 7806 7.10 0.96 2.78 1.62 1.06 0.65
6 12415 9.23 1.36 2.81 1.54 1.04 0.59
8 14278 10.14 1.46 2.78 1.50 1.04 0.56
10 15527 10.64 1.51 2.77 1.43 1.04 0.63
12 16888 10.78 1.50 2.85 1.51 1.04 0.51
14 17937 10.89 1.48 2.91 1.58 1.04 0.55

Table 5. Statistics of multiprocess source
traces (64-byte block size, 1,250,000 refer-
ences)

of shared blocks and some statistics concerning the access
pattern to shared blocks.

Access patterns to shared data influence the multipro-
cessor performance and may be characterized by means of
two metrics:write-run length(WRL) andexternal re-reads
(XRR) [14]. The former is the number of write operations to
a memory block performed by a given processor before an-
other processor would access the same block: the sequence
of write (eventually interleaved by read) references, just de-
fined, is called awrite-run. The second one indicates how
many read operations will use a block after a write-run has
been terminated and before another one has been initiated.

5.2. The target trace production

Traces are generated choosing the following details con-
cerning the underlying architecture of the simulated multi-
processor: first of all, processors are MIPS-R3000-like and
their number (Ncpu) has been varied from 2 to 24; the pag-
ing has been carried out using a page size of 4 KBytes; the

time slice (Tslice) is 200,000 references; the execution time
analyzed corresponds to 1,250,000 references per proces-
sor. A random selection from the ready queue with a two-
phase activation algorithm was adopted for the choice of a
process on context switches.

Workloads represent a typical situation in which various
users run some typical UNIX commands and different ordi-
nary applications in different times. For this reason, work-
loads include two or three copies of the same program taken
in different execution sections (begandmid). In particular,
workloadUniP has been set up selecting31 uniprocess ap-
plications from Table 1; workloadsMix1 andMix2 consist
of 30 uniprocess applications and an additional load due to a
parallel applications which generates a number of processes
equal to half the total number of processors available on the
machine.

Table 6 describes the features of target traces. The simu-
lation which produced these traces was performed with a
256-Kbyte, direct-mapped cache with 64-byte block size
and the Dragon protocol. Comparing the write-run statis-
tics in Tables 5 and 6, we can notice how the presence of
kernel activities and uniprocess applications modifies the
write-run of source traces, in particular because of process
migration. This aspect strongly motivates the introduction
of kernel modeling in the analysis of such architectures.

Shared data (%) Write-run
Workload Processors

Shared
Accesses Write WRL XRRblocks

� � � �

UniP 8 6843 13.73 4.14 5.97 8.06 3.27 5.17
12 12914 16.42 5.00 6.44 8.36 3.42 5.31
16 17557 17.40 5.30 6.67 8.52 3.89 5.94
20 21247 17.82 5.50 6.68 8.53 4.01 6.13
24 23358 17.88 5.52 6.78 8.58 4.04 6.17

Mix1 8 7772 12.56 3.86 6.25 7.29 2.88 4.70
12 14153 17.16 5.28 5.97 6.89 2.75 4.33
16 22711 18.09 5.78 5.65 6.55 2.62 3.61
20 29199 18.44 5.88 5.33 5.86 2.80 3.71
24 31434 18.84 6.07 5.14 5.56 2.72 3.60

Mix2 8 8226 12.14 3.58 5.51 7.23 3.08 5.03
12 16103 16.94 5.24 5.37 7.26 2.84 4.74
16 23018 17.51 5.43 5.18 7.23 2.36 4.09
20 30189 17.68 5.46 4.94 6.79 2.47 4.37
24 33406 18.08 5.55 4.80 6.63 2.38 4.31

Table 6. Statistics of target traces (64-byte
block size, 1,250,000 references per CPU)

5.3. Simulation results

In the simulator, a multiprocessor is described in terms
of CPU, cache and bus parameters. The CPU features are
described by the clock cycle, the minimal number of clock
cycles for a read/write operation and the temporal distribu-
tion of the memory accesses. To describe that distribution
we define theslice as a fixed lapse of time corresponding
to a constant sequence of CPU clock cycles. The param-
eters which specify the distribution are: the length of the
slice, the maximum number of memory references per slice
(M ) and the probability that in the slice there are exactly

7



Class Parameter Timing I Timing II

CPU read cycle 2 2
write cycle 2 2
average duration of each slice (cycles) 14 14
maximum number of references per slice 2 2
Probability of 0 references per slice 0.1 0.1
Probability of 1 references per slice 0.3 0.3
Probability of 2 references per slice 0.6 0.6

Cache cache size 256 kbytes 256 Kbytes
block size 64 bytes 128 bytes
associativity 1 1
state updating 1 1
write cycle 1 1
read cycle 1 1

Bus width 64 bit 64 bit
write transaction 5 5
update-block transaction 18 34
read-block transaction 32 48
cache-to-cache read-block transaction 22 38

Table 7. Numerical values of some input pa-
rameters for the multiprocessor simulator
(times are specified in terms of clock cycles)

0; 1; 2; : : : ;M memory references. Traditional parameters
describe the cache structure. Finally, the bus is described
by the number of CPU clock cycles for each kind of trans-
action: write, update-block, memory read-block, and cache-
to-cache read-block.

The target architecture of our analysis is a shared-bus
multiprocessor with a 256-Kbyte, direct-mapped cache; the
bus width is assumed to be 64 bits. Two block sizes are
considered: 64 bytes and 128 bytes, which involve two dif-
ferent set of timings for bus transactions (I and II in Table 7,
respectively). The following coherence protocols are con-
sidered: Dragon [7], Update-Once [8], Berkeley [9], Com-
petitive Snoopy Caching [10] and PSCR [11]. The Dragon
protocol is based on awrite-updatestrategy, whereas the
other protocols use an invalidation strategy to limit the co-
herence overhead. In particular, PSCR employs a selective
invalidation technique in order to limit the number ofpas-
sive shared copies: it invalidates the copies belonging to
private data area of a process as soon as they are fetched
by another processor. Berkeley and Update-Once invalidate
on the first or on the second write on a shared copy, respec-
tively. Competitive Snoopy Caching switches fromwrite-
updateto write-invalidatefor each cached block when the
number of cycles for write broadcasts issued equals the sum
of the cycles potentially needed to reread the block. This
technique limits the coherence-related overhead to twice the
optimal value.

In the case of theUniP workload, the actual shared areas
belong only to the kernel, and the process migration cre-
ates a high number of uselesspassive shared copies. Since
PSCR systematically destroys these passive shared copies,
it provides better performances than other protocols (Fig-
ure 1). For the same reason all the protocols that invalidate
shared copies have better performance than Dragon. Since
the various protocols adopt different invalidation strategies,
the difference between timing costs for write and read-block

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

cpu

Dragon
Berkeley

PSCR
Competitive

Update Once

(a)

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

cpu

Dragon
Berkeley

PSCR
Competitive

Update Once

(b)

Figure 1. Global System Power of multipro-
cessor executing the UniP workload. (a) Tim-
ing I. (b) Timing II.

transactions causes a different reciprocal behavior of the
protocols. In particular, PSCR and Competitive Snoopy
Caching take advantage of the situation labeled as ‘Timing
II’ (128-byte block-size).

Figure 2 shows the system behavior with theMix1 work-
load. The introduction of a coarse-grain parallel application
determines a drop in global performance for each proto-
col, due to the coherence-overhead introduced by the actual
shared copies. Even in this case, the behavior changes with
the block size and Berkeley is the protocol which exhibits
the worst penalization with 128-byte block size.

Finally, Figure 3 shows that a medium-grain parallel ap-
plication (Mix2 workload) introduces a lower overhead.

6. Conclusions and further research

We have shown an environment which permits us to pro-
duce traces including kernel and user references starting
from traces containing only user references. The target sys-
tem is a shared-bus shared-memory multiprocessor, where
each processor can either have a traditional architecture or
include multithread facilities. Specifically, the kernel ref-
erence sequences, which appear in actual traces as bursts
which break the program locality, have been produced by
means of a stochastical model. This model, in turn, has been
calibrated on data extracted from actual traces. In the ex-

8



200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

cpu

Dragon
Berkeley

PSCR
Competitive

Update Once

(a)

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

cpu

Dragon
Berkeley

PSCR
Competitive

Update Once

(b)

Figure 2. Global System Power of multipro-
cessor executing the Mix1 workload. (a) Tim-
ing I. (b) Timing II.

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

cpu

Dragon
Berkeley

PSCR
Competitive

Update Once

(a)

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

cpu

Dragon
Berkeley

PSCR
Competitive

Update Once

(b)

Figure 3. Global System Power of multipro-
cessor executing the Mix2 workload. (a) Tim-
ing I. (b) Timing II.

amples, the methodology used to gather those data has been
shown and validated for a trace set furnished by Carnegie
Mellon University. Furthermore, Trace Factory models the
scheduling and the translation from virtual to physical ad-
dresses. Both activities have a notable impact on the behav-
ior of a system including caches: process migration, nor-
mally produced by a scheduler, producespassive sharing
and a consequent large amount of bus overhead to guarantee
the coherence of shared copies; the remapping of addresses
influences the number ofintrinsic interference missesdue
to code and data accesses of a given process involving the
same cache set.

The future goals of our research activity include the gen-
eration of workloads suitable to evaluate the impact of mul-
tithreading on the efficiency of different cache structures
and coherence protocols.

7. Acknowledgments

This work was supported by the Ministero della Univer-
sità e della Ricerca Scientifica e Tecnologica (MURST),
Italy. Thanks to Steve Herrod at Stanford University for
providing and helping with TangoLite. The multiproces-
sor traces, distributed by Carnegie Mellon University, were
collected by Bart Vashaw with the assistance and supervi-
sion of Drew Wilson of Encore Computer Corporation and
Dan Siewiorek of Carnegie Mellon University. We are also
grateful to Pierfrancesco Foglia for his contribution to the
validation of the methodology. Finally, we thank Veljko Mi-
lutinović for his valuable comments and suggestions.

References

[1] J. Hennessy, and D. A. Patterson,Computer Architec-
ture – a Quantitative Approach, 2nd edition, Morgan
Kaufmann, 1996.

[2] K. Hwang, Advanced Computer Architecture: Par-
allelism, Scalability, Programmability, McGraw-Hill,
1993.

[3] M. Tomašević and V. Milutinović, eds.The cache co-
herence problem in shared-memory multiprocessors –
Hardware solutions. IEEE Computer Society Press,
Los Alamitos, CA, April 1993.

[4] D.E. Lenoski and D.W. Weber,Scalable shared-
memory multiprocessing, Morgan Kaufmann Publish-
ers, San Francisco, CA, 1995.

[5] J. Laudon, A. Gupta, and M. Horowitz, “Architec-
tural and implementation trade-offs in the design
of multiple-context processors”, Stanford University
Technical Report CSL-TR-92-523, May 1992.

9



[6] W.D. Weber and A. Gupta, “Exploring the benefits of
multiple hardware contexts in a multiprocessor archi-
tecture: preliminary results”, inProc. 16th. Int. Symp.
Comput. Arch., June 1989, pp. 273-280.

[7] E. M. McCreight, “The Dragon computer system:
an early overview”, in NATO Advanced Study Insti-
tute on Microarchitecture of VLSI Computer, Urbino,
Italy, July 1984.

[8] J.D. Gee, and A.J. Smith, “Evaluation of cache consis-
tency algorithm performance”,Proc. Int’l. Workshop
on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems (Mascots), San Jose,
CA, February 1996, pp. 236-249.

[9] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins,
and R.G. Sheldon, “Implementing a cache consistency
protocol”, in Proc. 12th Int. Symp. Comput. Arch.,
pp. 276-283, June 1985.

[10] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator,
“Competitive Snoopy Caching”,Proceedings of the
27th Ann. Symp. on Foundations of Computer Science,
1986, pp. 244-254.

[11] C.A. Prete, G. Prina, and L. Ricciardi, “A selective in-
validation strategy for cache coherence”,IEICE Trans.
Information and Systems, vol. E78-D, n. 10, October
1995, pp. 1316-20.

[12] A. Agarwal, B.H. Lim, D. Kranz, and J. Kubiatowicz,
“April: a processor architecture for multiprocessing”,
in Proc. 17th. Int. Symp. Comput. Arch., May 1990,
pp. 104-114.

[13] R. Saavedra-Barrera, D. Culler, and T. von Eicken,
“Analysis of multithreaded architectures for parallel
computing”, in ACM Symp. on Parallel Algorithms
and Architectures, July 1990, pp. 169-178.

[14] S.J. Eggers, “Simulation analysis of data sharing in
shared memory multiprocessors”, Ph.D. dissertation,
Univ. of California, Berkeley, April 1989.

[15] M.A. Holliday and C.S. Ellis, “Accuracy of mem-
ory reference traces of parallel computations in trace-
driven simulation”, IEEE Trans. Parallel Distrib.
Syst., vol. 3, n. 1, January 1992, pp. 97-109.

[16] S.R. Goldschmidt,Simulation of Multiprocessors,
Speed and Accuracy, doctoral dissertation, Stanford
University, Stanford, Calif., June 1993.

[17] C.B. Stunkel, B. Janssens, and W.K. Fuchs, “Address
tracing of parallel systems via TRAPEDS”,Micropro-
cessors and Microsyst., vol. 16 n. 5, 1992, pp. 249-
261.

[18] C.A. Prete, G. Prina and L. Ricciardi, “A trace-driven
simulator for performance evaluation of cache-based
multiprocessor systems”,IEEE Trans. Parallel Dis-
trib. Syst., vol. 6, n. 9, September 1995, pp. 915-29.

[19] M.K. Vernon, E.D. Lazowska, and J. Zahorian, “An
accurate and efficient performance analysis technique
for multiprocessor snooping cache-consistency proto-
cols”, inProc. 15th Int. Symp. Comput. Arch., pp. 308-
315, May 1988.

[20] P. Magnusson and B. Werner, “Efficient memory sim-
ulation in SIM ICS”, Technical Report, Swedish Insti-
tute of Computer Science, 1995.

[21] M. Rosenblum, S.A. Herrod, E. Witchel, and A.
Gupta, “Complete computer simulation: the SimOS
approach”,IEEE Parallel and Distributed Technology,
vol. 3, n. 4, Winter 1995, pp. 34-43.

[22] J.E. Veenstra and R.J. Fowler, “MINT: a front end for
efficient simulation of shared-memory multiproces-
sors”, Proc. 2nd Int.’l Workshop on Modeling, Anal-
ysis and Simulation of Computer and Telecommunica-
tions Systems (Mascots), Durham, NC, January 1994,
pp. 201-207.

[23] S. Eggers and R.H. Katz, “Evaluating the performance
of four snooping cache coherency protocols”,Proc.
16th Int. Symp. Comput. Arch., 1989, pp. 2-15.

[24] B. Vashaw, “Address trace collection and trace-driven
simulation of bus based, shared memory multiproces-
sors”, Research Report, Dept. of Elec. and Comp.
Eng., Carnegie Mellon Univ., Pittsburgh, PA, March
1993.

[25] C.B. Stunkel, B. Janssens, W.K. Fuchs, “Address trac-
ing for parallel machines”,IEEE Computer, vol. 24,
n. 1, Jan. 1991, pp. 31-38.

[26] S. Eggers, D. Keppel, E. Koldinger and H. Levy,
“Techniques for efficient inline tracing on a shared-
memory multiprocessor”,Proc. ACM SIGMetrics Int.
Conf. Measurement and Modeling of Computer Sys-
tems, 1990, pp. 37-47.

[27] R.L. Sites and A. Agarwal, “Multiprocessor cache
analysis using ATUM”,Proc. 15th Int. Symp. Comput.
Arch., 1988, pp. 186-195.

[28] M.S. Squillante and D.E. Lazowska, “Using
processor-cache affinity information in shared-
memory multiprocessor scheduling”,IEEE Trans.
Parallel Distrib. Syst., vol. 4, n. 2, pp. 131-143, Feb.
1993.

10


