
Cache Memory Design for Embedded Systems
Based on Program Locality Analysis

Roberto Giorgi Cosimo Antonio Prete Gianpaolo Prina

Dipartimento di Ingegneria della Informazione
Università di Pisa - Italy

fgiorgi,prete,prina g@iet.unipi.it

Abstract

Cache memory design in embedded systems can
take advantage from the analysis of the software that
runs on that system, which usually remains the same
for its whole life. Programs can be characterized, in
respect of the memory hierarchy, using locality analy-
sis. We propose an environment which permits to an-
alyze the locality of a program and the effects on the
target system performance. The student can thus figure
out the best tradeoff between costs and performance
for cache, memory and timings exploring different sys-
tem configurations. A fully graphical interface permits
to observe the program behavior from many points of
view: locality surface, working set evolution, perfor-
mance metrics. The tool is currently used as a teach-
ing tool at our University and it is distributed as part
of a commercial development environment for embed-
ded systems.

1 Introduction
In this paper we present how a designer can ex-

ploit the knowledge of the program running on an em-
bedded system for choosing the best configuration of
cache (associativity, block-size and capacity), mem-
ory (access time and dimension), microprocessor and
speed, for that program. The approach makes use of a
software environment used in Computer Architecture
courses at the University of Pisa. We will show that
the student can extract from the program much signifi-
cant information to carry out the actual design activity
of embedded application oriented systems [2]. The en-
vironment has been made up by our University and is
integrated in a toolkit (JumpStart) distributed by VLSI

Technology, Inc., for the design of ARM-based appli-
cations. (ARM [6] is a 32-bit microprocessor designed
by ARM Ltd. and largely used in embedded products.
It uses RISC technology and a fully-static design ap-
proach to obtain both high performance and very low
power consumption.)

2 The Didactic Environment
Actual computer systems and/or commercial design

tools are generally not suitable to be used as didac-
tic tools and to present the basic concepts of architec-
ture design in both basic and advanced Computer En-
gineering courses. Their structure is often too complex
and usually prevents the detection of all the events oc-
curring in the activity of the machine; moreover, the
high number and frequency of these events may re-
quire a too expensive acquisition system, or also, sev-
eral events are not directly observable, since they oc-
cur within the chips. As a result, one cannot gener-
ally obtain an accurate, step-by-step observation of the
internal events occurring in a system. From the de-
signer perspective, tuning an embedded systems and in
particular its cache memory to achieve lower cost and
higher performance, is a difficult task. The designer
has to rapidly find out if a cache is necessary, and if
so, to choose the optimal values for its parameters.

All these reasons encouraged us to develop a new
environment which could combine the different needs
of the potential users.

As a mere didactic tool, the environment offers the
student a wide range of opportunities to investigate the
structure and the behavior of a cache memory, starting
from the basic concepts and definitions up to a rela-
tively complex level of depth. The concept of program

locality is particularly emphasized, since it is one of
the critical issues in this computer architecture branch.

Development

(Jumpstart)

Trace

Program and
Locality
Analysis

Computer
Behavior

Result

Results

Configuration

System
Configuration

System
Simulation

Program

Animation

Analysis

Figure 1. Structure of the software environ-
ment.

As a design tool, the environment allows to project
embedded applications within a proper software de-
velopment environment (JumpStart), and to perform a
trace-driven simulation [5, 4] and performance evalu-
ation of the system.

Possible paths for approaching the design and tun-
ing of target system are showed in figure 1, both from
designer and student point of view.

3 The Program Locality Analysis
In a didactic approach to computer architecture, one

of the key concepts that the student has to deal with is
program locality and how it can influence the choice
of a proper cache structure in order to maximize the
system performance.

In the Program Developmentphase, the user can
build an application, debug it and produce a trace file
to perform a detailed program locality analysis (get-
ting number of unique blocks, locality surface, spatial
locality).

A quantitative approach to locality analysis was first
proposed by Archibaldet al. with the use of thelocal-
ity surface. They proposed a 3D graph where reference
stride and distance are the base axes. Due to limited
space we don’t introduce details on this topic, which
can be found in [3]. We highlight the fact that the de-
signer can produce graphs like the one in Figure 2, in
which we can observe information about locality fea-
tures likesequentialitydue typically to code fetching,

striding typical of numerical algorithms such as matrix
operations,temporalityandloops.

-2
56

-6
4

-1
6

-4 -1 1 4

16 64

25
6

1
16

256
4096

65536

1048576

1,70E+07

0

5

10

15

20

25

30

stride

distance

Locality Surface Temporal Locality (stride=0)

0

5

10

15

20

25

30

1 4 16 64 25
6

10
24

40
96

distance

Spatial Locality (distance=1)

0
10
20
30
40
50
60
70
80
90

-1
28 -3
2 -8 -2 0 2 8 32 12
8

stride

Figure 2. The locality surface of a program.

Another graph which gives insights of program be-
havior is the one that shows the number of unique
blocks for a given numberi of references. These
blocks only cause misses in an infinite cache, the num-
ber of such blocks delineates a low bound for the miss
ratio. This kind of graph shows also the evolution of
the working set as the program runs.

The next step in a didactic path is theSystem Con-
figuration phase in which the user find out how the
presence of a cache memory can exploit program lo-
cality to improve the system performance. All cache
parameters like replacement policy, timing, sizes can
be selected. In theSystem Simulationphase, simula-
tions are then carried out and in theResult Analysis
line charts and bar diagrams for miss ratio, execution
time and other metrics of interest can be examined.

address
32

block
address
27 5

byte in
block

tag
fields

cmp

tag set
22 5

data
fields

 block
address
27 5

byte in
block

tag
fields

cmp

tag set
22 5

miss

data
fields

and

miss

miss

00001FD4

ZZZZZZZZ

Type address data
read
write 00001FD4 ZZZZZZZZ

start step done

1 Miss on 00001FD4;
2 Victim cache block is {1E, 0};
3 no update of victim memory block;
4 load of the memory block 00000FE;

 000 0000 0000 0000 0000 1111 1110 10100

memory block
address

byte
address

 00 0000 0000 0000 0000 0111 1 1110
tag address set address

Sequence of cache actions

Figure 3. Step-by step operation.

Finally, in the Cache Behavior Analysisenviron-

ment can be employed to perform the step-by-step
simulation and review what is happening in great de-
tail (Figure 3).

4 The Approach to Design
In the design of embedded system architectures,

a key point is the optimization of each component,
which should fit as better as possible with the behav-
ioral features of the application for which the whole
system is designed.

The designer should provide the timing for read and
write operations of the ARM core. A specific win-
dow shows the ARM timing plot, derived from the data
book, in order to aid the designer in finding the proper
values. The simulator models a generic bus, which
is capable to accommodate the typical memory opera-
tions. The designer has to specify the data bus width
and the time for each type of bus operation. Then he
specifies the features of memory and I/O devices.

If this system simulation shows that, without cache
memory, the application takes too much time to exe-
cute the program, the designer can add cache memory,
define the cache parameters and again execute a para-
metric simulation to find out an optimal choice. The
designer can now try different solutions for the main
memory by executing simulations in which the varied
parameter is the RAM bank access time.

Another graph can show the silicon area cost of the
chosen configuration by using a metric proposed in [1].

ExecutionTime

0

20

40

60

80

100

120

140

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

1

2

3

4

5

6

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

ExecutionTime

0

20

40

60

80

100

120

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

Figure 4. Miss ratio and execution time.

Writes and miss ratios affect system performance

in a different way. A lower miss ratio magnifies the
influence of write operations on global performance.
In this case, the choice of an optimal update policy
becomes critical. An example of output metrics for an
audio filtering program is shown in Figure 4.

Acknowledgments
This work was supported by the Ministero della

Università e della Ricerca Scientifica e Tecnologica
(MURST), Italy and by VLSI. We wish to thank
Francesco Lazzarini that took part in the develop-
ment of the cache simulator, Angelo Rappelli that con-
tributed in developing the graphical interface for the
Microsoft Windows version, Massimiliano Panico that
conducted performance evaluations of the case studies.

References
[1] M. J. Flynn. Computer Architecture, Pipelined and

Parallel Processor Design. Jones and Bartlett Publish-
ers, 1995.

[2] D. D. Gajski and F. Vahid. Specification and design of
embedded software-hardware systems.IEEE Design &
Test of Computers, 12(1), Spring 1995.

[3] K. Grimsrud, J.Archibald, R. Frost, and B. Nelson. Lo-
cality as a visualization tool. IEEE Transaction on
Computers, 45(11):1319–1326, Nov. 1996.

[4] F. Lazzarini, C. A. Prete, and M. Graziano. Tuning the
configuration of a cache memory for embedded sys-
tems. to appear in IEEE Micro.

[5] C. A. Prete, G. Prina, and L. Ricciardi. A trace-driven
simulator for performance evaluation of cache-based
multiprocessor system.IEEE Transaction on Parallel
and Distributed Systems, 6(9):915–929, Sept. 1995.

[6] A. V. Someren and C. Atack.The ARM RISC Chip, A
Programmer’s Guide. Addison-Wesley, 1993.

