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Abstract – A shared-bus shared-memory multiproces-
sor based on multithreaded CPUs is evaluated against dif-
ferent solutions for cache and coherence protocols. Mul-
tithreaded architectures have been intensively studied for
DSM multiprocessors, where memory latencies are a ma-
jor factor in limiting performance. They can be interesting
also for bus-based multiprocessors, since processor speed
is increasing at a much faster rate than memory. In these
systems, not only pure parallel workloads, but also work-
loads consisting of both parallel and sequential applica-
tions are the user demand for processing power. The aim of
this work is to investigate the relations among workloads
of this kind, multithreaded processors, shared-bus archi-
tecture, coherence protocols, cache schemes, and thereby
the consequences on performance. We have used an en-
hanced trace-driven approach that takes into consideration
both user and kernel references. Results show that multi-
threaded processors can play an effective role in boosting
performance even in shared-bus multiprocessors.

Keywords – Multithreaded architectures, Shared-bus
Multiprocessors, Cache Memory, Coherence protocols.

1. Introduction
Bus contention is major problem, in performance scaling

of shared-bus multiprocessors, beside the memory access
latency increase due to high processor-memory speed ratios
[1, 2]. A cache contributes in both hiding memory latency
and reducing the number of accesses to shared bus [3, 4].
Several techniques are used to cope with the latencies in
cache-based multiprocessors: prefetching, write buffering,
relaxed memory consistency models [5], and non-blocking
caches [6].

Cache coherence maintaining causes overhead which
weight differently due to application sharing patterns, co-
herence model and bus operation cost. As for the coherence
protocol many solutions have been proposed in literature
[7, 8, 9, 3], but when many independent processes run on
our target machine, process migration becomes a source of
overhead and new solutions have to be used, such asproces-
sor affinity[10] or the use ofpassive shared copy removal
technique [11]. When a major issue is load balancing, pro-
cessor affinity is not effective in all workload conditions,
whilst protocol level solutions have more flexibility.

Multithreaded processors [12, 13, 14, 2] are character-
ized by multiple contexts that allow the processing unit
to rapidly switch to execute another thread of computa-
tion whenever long latency operations occur, thus increas-
ing processor utilization by overlapping computation with
long-latency operation service. Multiple contexts have
some effects on the caches: the cache miss ratio may in-
crease, due to the breaking of locality caused by the in-

terleaved references of different threads [4]; parallel appli-
cation processes may induce a lower coherence overhead,
when binding those processes to different contexts of the
same processor. The global amount of shared data may
increase, because the number of running processes is far
larger than in the case of single-thread processors. The
overall performance is a function of cache interference be-
tween multiple contexts, which therefore depends on the
features of the application [15, 16], the number of contexts
per processor, the context switching strategy, the cache fea-
tures, and the coherence protocol.

Trace-driven simulation has been typically used to eval-
uate the performance of such machines [17, 18]. Some im-
portant aspects concerning accuracy [19, 20, 21] must be
taken into consideration both in the trace generation and
in the utilization phases. Trace Factory uses an hybrid ap-
proach in which user references were provided by a trac-
ing tool and kernel references were synthesized from ker-
nel patterns of actual multiprocessor traces, to achieve trace
completeness [22]. To give feedback to the delays gener-
ated by the simulated architecture, Trace Factory [23] uses
an on-demand trace-driventechnique in which references
are supplied to the simulator only when needed. The evalu-
ation workloads are tailored for a Unix-like machine.

The paper is organized as follows: Section 2 presents
existing solutions for multithreading and cache coherence,
motivating our choices, Section 3 explains the methodol-
ogy of evaluation, and Section 4 shows the main results of
experiments conducted on significant actual workloads.

2. Multithreading and Cache Coherence
Multithreaded architectures have been intensively stud-

ied as a way for reducing long latencies in DSM multipro-
cessors, and may be interesting also for bus-based multi-
processor. Many solutions have been proposed and stud-
ied for the event(s) triggering the context switch opera-
tion [2, 24]: switch-on-every-instruction-fetchis limited by
the great amount of contexts necessary to keep the execu-
tion pipeline full [25];switch-on-missworks with a smaller
degree of multithreading but causes inter-thread-conflict-
misses, which can break the locality of each thread [26],
and also may cause a loss of shared data that requires ex-
tra coherence overhead [15];instruction interleavingper-
forming better on a uniprocessor, but the difference with
the previous scheme becomes negligible on multiprocessors
[26]. Other variants are:simultaneous multithreading[27],
switch-on-block-of-instructions, switch-on-every-load[28],
andswitch-on-load-miss. Once a switch is decided, one of
the available contexts is activated and several options have
been presented in literature:thread priorization[29], MRU
thread[30], but generally around robinis used.

Multithreading helps on latency hiding, but also bus traf-



fic reduction plays an important role. A coherence proto-
col aware of the application sharing pattern can reduce the
number of bus operations [31]. In this paper we consider a
write-updateprotocol (Dragon [7]), awrite-invalidatepro-
tocol (Berkeley [9]) and PSCR [11] which uses a selective
invalidation technique to limit the number ofpassive shared
copies, i.e. the copies of private data generated by process
migration. Process migration plays an important role in
a general-purpose multiprocessor, since it allows the pro-
grammer to develop his applications without caring about
load balance.

The interaction between multithreading and coherence
has been pointed out in [24] and is therefore explored here
by highlighting two new aspects: i) the kind of machine,
which is the shared-bus shared-memory multiprocessor, ii)
the kind of workload, which consists of a mix of both
uniprocess and multiprocess applications, including kernel
aspects. The shared-bus multithreaded multiprocessor has
been evaluated considering a switch-on-load-miss strategy
for the switching algorithm and a round-robin scheme for
thread scheduling at context level and comparing some dif-
ferent coherence protocol schemes (Write-Update, Write-
Invalidate, and selective invalidation).

3. Methodology of Evaluation
A good trade-off between cost and accuracy, for evalu-

ating the memory subsystem, is represented by trace-driven
simulation [32, 18]. Starting from a set ofsourcetraces
including only user references we produced complete mul-
tiprocessortarget traces [33], including also kernel refer-
ences. Source traces has been obtained using TangoLite
[20]. Target traces are generated by considering source
traces, number of processors, number of contexts per pro-
cessor, and the following three kernel activities: i)kernel
memory references, i.e. the references due to each system
call and kernel management routine; ii)process scheduling,
i.e., the dynamic assignment of a ready process to an avail-
able thread; and iii)virtual-to-physical address translation,
i.e., the mapping of virtual to physical memory addresses.
To correctly reproduce the temporal sequence of all events,
a new reference is generated whenever a request comes
from the simulator (on demandpolicy). We called such
techniqueon-demand trace-driven[22, 23] for the sake of
differentiating it from the trace-driven technique [34].

In our approach, kernel reference bursts are modeled by
gathering statistics from a series of eight-processor traces
distributed by Carnegie Mellon University and obtained on
an Encore Multimax (shared-bus multiprocessor) machine
[35]. As for the bursts we consider their length and recip-
rocal distance. An evaluation of the error induced by this
method has been carried out in [36].

Another aspect of kernel which influences performance
is the scheduling strategy, which should provide an accept-
able degree of load balance. Nevertheless, load balance in-
duces process migration that causespassive sharing[17]
andprocess-migration sharing[2, 8]: a memory block be-
longing to a private area of a process can be replicated in
more than one cache as a consequence of the migration of
the process which owns this block. These copies have to
be treated as shared with respect to the coherence-related
operations, resulting in a heavy and useless burden for the
shared bus.

For these purposes, two levels of scheduling have to be
considered: i) a high level scheduling, concerning the dy-
namic allocation of threads on the available processors, and
ii) a low level scheduling, managing the context switch

between threads on a single processor. The high level
scheduler parameters are: the number of processes (Nproc),
the number of processors of the target machine (Ncpu),
the number of thread contexts supported by each proces-
sor (Ntc), the time slice in terms of number of references
(Tslice), the process activation algorithm (two-phaseor
non-blocking), and the scheduling strategy (random, round-
robin or cache-affinity). Each thread has its ownTslice, and
the system assumes the presence ofNcpu � Nct contexts.
The low level scheduler uses a round-robin policy.

Class Parameter Timings

CPU read cycle 2
write cycle 2
duration of each slice (cycles) 14
maximum number of references per slice 2
Probability of 0 references per slice 0.1
Probability of 1 references per slice 0.3
Probability of 2 references per slice 0.6

Cache cache size 256 kbytes
block size 64 bytes
state updating 1
write cycle 1
read cycle 1

Bus width 128 bit
Write transaction 5
Invalidate transaction 5
Update-Block transaction 10
Memory-Read-Block transaction 72
Cache-Read-Block transaction 16

TABLE 1. NUMERICAL VALUES OF THE REFERENCE SIMULATED SYS-
TEM (TIMINGS ARE SPECIFIED IN TERMS OF CLOCK CYCLES).

Distinct Code Data (%) SystemApplication
blocks (%) Read Write calls

awk (beg) 4963 76.76 14.76 8.47 29
awk (mid) 3832 76.59 14.48 8.93 47
cjpeg 1803 81.35 13.01 5.64 18
cp (beg) 2615 77.53 13.87 8.60 26526
cp (mid) 2039 78.60 14.17 7.23 56388
msim 960 84.51 10.48 5.01 345
dd 139 77.47 16.28 6.25 47821
djpeg (beg) 2013 81.00 12.75 6.26 15
du 1190 75.86 16.37 7.77 9474
lex 2126 78.67 15.49 5.84 40
gzip 3518 82.84 14.88 2.28 13
ls -aR 2911 80.62 13.84 5.54 1196
ls -ltR (beg) 2798 78.77 14.58 6.64 1321
ls -ltR (mid) 2436 78.42 14.07 7.51 1778
rm (beg) 1314 86.39 11.51 2.10 10259
rm (mid) 1013 86.29 11.65 2.06 15716
telnet (beg) 781 82.52 13.17 4.31 2401
telnet (mid) 205 82.78 12.93 4.28 2827

TABLE 2. STATISTICS OF UNIPROCESS APPLICATION ANDUNIX COM-
MAND TRACES (64-BYTE BLOCK SIZE, 2,500,000REFERENCES).

4. Performance evaluation
The simulated system consists ofN independent proces-

sors with 256-KByte private cache, that are interconnected
to a single shared bus to access main memory. The coher-
ence schemes Dragon [7], Berkeley [9], PSCR [11] have
been used. As base case study, a machine with 128-bit
shared-bus and 64-Byte cache block is considered below.
As for the number of processors, four configurations have
been considered (3, 6, 9 and 12) and the hardware contexts
explored for each processor configuration are 1 (no multi-
threading), 2 and 3. The simulated processors are MIPS-
R3000-like; paging relays on 4-KByte page size; scheduler
time slice (Tslice) is 200,000 references; the execution time



Workload Processors
Distinct Code Data

Shared
Shared data (%) Write-run

Read (%) Write (%) Accesses Write
WRL XRRblocks (%) blocks

� � � �

MP3D 2 5173 78.14 15.22 6.64 913 9.10 2.22 11.88 10.83 2.15 2.65
4 6480 78.56 14.30 7.14 1625 10.34 3.20 8.18 6.04 1.54 1.60
6 6923 78.70 13.99 7.31 2004 10.91 3.56 7.03 5.06 1.51 1.63

Cholesky 2 14312 79.35 12.88 7.77 1 0.14 0.00 2.00 0.00 2.00 0.00
4 17119 79.83 13.57 6.60 7215 8.29 1.19 4.75 3.47 1.06 0.65
6 19172 80.21 13.65 6.14 8789 9.67 1.32 4.46 3.12 1.06 0.68

TABLE 3. STATISTICS OF MULTIPROCESS SOURCE TRACES(64-BYTE BLOCK SIZE AND 2,500,000REFERENCES). WRL IS THE NUMBER OF WRITE OPERATIONS

TO A MEMORY BLOCK PERFORMED BY A GIVEN PROCESSOR BEFORE ANOTHER PROCESSOR ACCESS THE SAME BLOCK: THE SEQUENCE OF WRITES(EVENTUALLY

INTERLEAVED BY LOADS) IS CALLED WRITE-RUN. XRR INDICATES HOW MANY READ OPERATIONS USE A BLOCK AFTER A WRITE-RUN HAS BEEN TERMINATED.

Data (%) Shared data (%) Write-run
Workload PEs Processes

Distinct Code
Read Write)

Shared
Accesses Write

WRL XRRBlocks (%) blocks
� � � �

UniP 3 30 31756 78.87 13.89 7.24 7545 15.44 4.52 21.15 11.54 4.88 7.76
6 30 52564 79.15 13.97 6.88 8164 15.84 4.75 20.67 11.01 5.12 8.23
9 30 71245 79.66 14.23 6.11 13892 16.63 5.06 20.13 10.67 5.56 8.95
12 30 97218 79.94 14.31 5.75 13577 17.24 5.32 20.05 9.83 6.32 9.30

Mix1 3 32 44375 79.12 14.56 6.32 8078 15.23 4.49 16.12 11.23 4.58 7.02
6 34 63847 78.95 14.21 6.84 11964 16.05 5.23 15.72 10.78 4.11 6.94
9 34 83671 78.23 14.34 7.43 15845 16.78 5.44 13.34 9.63 3.67 5.83
12 36 85168 78.03 14.25 7.72 17003 17.55 5.45 12.24 9.16 3.40 5.45

Mix2 3 32 45737 79.32 14.32 6.36 8345 15.45 4.41 15.96 11.56 4.73 7.62
6 34 68194 79.01 14.12 6.87 13456 16.03 5.12 15.66 10.84 4.45 6.89
9 34 86123 78.56 14.01 7.43 15234 16.56 5.34 13.56 9.89 4.06 5.45
12 36 91582 78.44 14.21 7.35 17886 17.04 5.31 12.56 10.71 3.34 6.51

TABLE 4. STATISTICS OF TARGET TRACES(64-BYTE BLOCK SIZE AND 2,500,000REFERENCES PERCPU).

analyzed corresponds to 2,500,000 references per proces-
sor. A random selection from the ready queue with a two-
phase activation algorithm has been adopted for the high
level scheduler. The base case study timings and parameter
values for the simulator are summarized in Table 1.

4.1. Workloads
Typical workloads for the target machine under analy-

sis are constituted of uniprocess applications, Unix com-
mands and multiprocess applications. A number of Unix
commands (awk, cp , du , lex , rm and ls ) with differ-
ent command line options, some utility programs (cjpeg ,
djpeg andgzip ), a network application (telnet ) and a
user application (msim, the multiprocessor simulator used
in this work) have been selected. Traces have been taken
during different execution sections of the application: the
initial (beg) and middle (mid) sections. Table 2 describes
the features of these source traces in terms of number of dis-
tinct blocks used by the program code, data read and write
access percentages, and number of system calls.

The two parallel programs used in the case studies,
mp3d andCholesky , are well-known programs from the
SPLASH suite. Table 3 summarizes the statistics concern-
ing multiprocess application traces; it also specifies the
number of shared blocks and some statistics that character-
ize the access pattern to shared blocks such as thewrite-run
length(WRL) andexternal re-reads(XRR) [17].

The performance evaluation has been conducted using
three workloads:UniP has been set up selecting30 unipro-
cess applications;Mix1 andMix2 consist of30 uniprocess
applications and an additional load due to a parallel appli-
cation (MP3DandCholesky , respectively), that generates
a number of processes equal to half the total number of pro-
cessors available on the machine.

Table 4 reports target traces statistics. The simulation
which produced these traces was performed with a 256-
KByte, direct-mapped cache with 64-Byte block size and
the Dragon protocol. Comparing the write-run statistics in
Tables 3 and 4, we can notice how the presence of kernel ac-
tivities and uniprocess applications modifies the write-run
of source traces, in particular because of process migration.

4.2. Simulation results
Let us consider workloadUniP, that consists of indepen-

dent sequential processes only. Bus utilization ratio has not
a clear trend for all processor configurations (Figure 1).

D−3 B−3 P−3 D−6 B−6 P−6 D−9 B−9 P−9 D−12 B−12 P−12
Context/Protocol−CPU

0

10

20

30

40

50

60

70

80

90

100

B
us

 U
til

iz
at

io
n 

P
er

ce
nt

ag
e

Write/Inv

C−Read−B

M−Read−B

Update−B

FIGURE 1. BUS UTILIZATION RATIO FOR DIRECT-ACCES CACHES AND

UNIP WORKLOAD VS. NUMBER OF PROCESSORS(3, 6, 9, 12),TYPE OF

COHERENCE PROTOCOL(DRAGON, BERKELEY, PSCR),AND NUMBER

OF CONTEXTS (1, 2, 3). FOR EACH PROTOCOL-CPU CONFIGURATION

(D, B, P INDICATE DRAGON, BERKELEY, AND PSCR,RESPECTIVELY),
THREE CONTEXT CONFIGURATIONS ARE SHOWN. IN THE CASE OF 12
PROCESSORS ONLY TWO CONFIGURATIONS HAVE BEEN CONSIDERED

DUE TO THE INSUFFICIENT NUMBER OF PROCESSES TO ACHIEVE ONE

PROCESS FOR EACH CONTEXT. FOR EVERY CONFIGURATION BUS UTI-
LIZATION PERCENTAGE OFWRITES ORINVALIDATIONS FOR BERKELEY

(WRITE/INV), CACHE-READ-BLOCKS (C-READ-B), MEMORY-READ-
BLOCKS (M-READ-B), UPDATE-BLOCKS (UPDATE-B) ARE SHOWN.

Anyway, we can observe that:

� the bus load generally increases with the number of
contexts (the reason for this variation is mainly due to
Read-Block transactions);

� Dragon protocol exhibits a greater utilization of the
bus in respect with the other protocols, whilst PSCR
exhibits a lower one; this trend appears more clearly
for configurations with a higher number of processors;



� Write transactions1are almost constant with the num-
ber of contexts, although they increase with the num-
ber of processors (i.e. number of caches). Only
Dragon protocol has an increase of Write transactions.

Taking in mind that we are considering a workload en-
tirely constituted of sequential programs, the increase of
Write transactions, with the number of processors, can be
reconducted to the increase of shared copies due to passive
sharing and kernel.
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FIGURE 2. BUS UTILIZATION FOR DIRECT-ACCESS CACHE ANDMIX 1
WORKLOAD.
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FIGURE 3. BUS UTILIZATION FOR DIRECT-ACCESS CACHE ANDMIX 2
WORKLOAD.

When a parallel application is added to the previous
workload (Mix1) the bus utilization ratio increases in re-
spect with the previous reference case. This is due to higher
number of Write (Invalidations) and Read-Block transac-
tions (due to invalidations) necessary to keep coherent the
greater number of shared copies generated by the parallel
application itself (Figure 2). Moreover, higher number of
processes inMix1 causes a miss increase.

Again, in this case the bus utilization increase is not con-
stant for all processor configurations; an additional reason
is that, in some cases, processes belonging to the parallel
application are executed onto the same processor. Thus,

1For Berkeley protocol, Invalidation transactions are showed instead of
Write transactions, since the protocol provides this method to keep coher-
ence.

binding more parallel processes on the same processor
while diminishing parallelism, has the benefit of reducing
the bus load. This result seems in contrast with [37], but in
that study workloads were constituted of parallel applica-
tions only, while here sequential programs are considered
too.

Thus, the designer may accept a tradeoff between hav-
ing an increased scalability or a greater speed for the paral-
lel application. This tradeoff may have a difficult solution
since a general purpose multiprocessor makes use of the
concept of process priority. While this concept is not nec-
essary in a parallel machine, in a general purpose machine
the operating system can assign a lower priority to parallel
application, and give a single program a higher priority or
vice-versa.

Also the workloadMix2 confirms the same considera-
tions just said forMix1. In both cases there is not a great
influence by Write-run, instead the coherence protocol is of
a major importance (Figure 3).

The higher miss rate trend with the number of contexts,
observed in the previous cases and shown in detail in Ta-
ble 5 for UniP workload, suggests to analyze also caches
with higher associativity, while maintaining the same cache
size (256 KBytes).

Let us take into consideration again theUniP workload
with a 4-way cache, the bus utilization ratio decreases (Fig-
ure 4) with respect to the same direct-access configuration.
This is due to the better cache utilization by the running
threads, i.e. the different localities take noticeable advan-
tage from having more cache associativity to exploit.
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FIGURE 4. BUS UTILIZATION FOR A 4-WAY CACHE AND UNIP WORK-
LOAD.

A 4-way cache allows a longer average life of cache
blocks: this causes a lower miss ratio (and a lower num-
ber of Read-Block transactions) but also an higher number
of shared copies, and thus an higher number of Write trans-
actions. The increase of Writes is strongly dependent on
the type of coherence protocol (Table 5 and 6).

Moving the attention to the analysis of theMix1 work-
load we observe that the miss ratio gain over direct-access
case is less evident (Figure 5).

5. Conclusions
In this paper, we have considered multithreaded shared-

bus multiprocessors. For these machines new kind of work-
loads have been analyzed: those that include also unipro-
cess applications. Such workloads can cause passive shar-



Parameter Processors
Dragon Berkeley PSCR

1 2 3 1 2 3 1 2 3

Bus Util. Ratio (%) 3 18.732 21.588 22.872 19.293 23.265 24.945 18.758 21.467 22.739
6 48.428 49.818 49.990 49.283 51.370 50.586 47.440 47.757 46.940
9 68.041 70.526 76.660 65.355 70.149 75.965 61.739 61.129 70.010
12 89.100 89.824 — 85.466 87.025 — 80.782 80.986 —

Miss Rate (%) 3 0.401 0.464 0.490 0.503 0.587 0.625 0.400 0.460 0.489
6 0.533 0.526 0.524 0.714 0.702 0.689 0.530 0.531 0.517
9 0.478 0.472 0.548 0.683 0.708 0.777 0.477 0.468 0.555
12 0.522 0.502 — 0.737 0.741 — 0.506 0.509 —

Write/Inv. Trans. 3 0.358 0.299 0.339 0.113 0.111 0.112 0.331 0.267 0.309
per 100 CPU Operations 6 0.812 0.998 0.957 0.194 0.168 0.170 0.476 0.366 0.339

9 1.503 1.782 1.851 0.219 0.206 0.216 0.439 0.367 0.395
12 1.948 2.388 — 0.242 0.243 — 0.435 0.406 —

TABLE 5. BUS UTILIZATION PERCENTAGE, MISS RATE AND WRITES/INVALIDATIONS FOR DIRECT-ACCES CACHE AND UNIP WORKLOAD VS. NUMBER OF CPUS

(3 ,6,9,12),TYPE OF COHERENCE PROTOCOL(DRAGON, BERKELEY, PSCR),AND NUMBER OF CONTEXTS (1, 2, 3). MISS RATE IS ALSO THE NUMBER OFREAD-
BLOCK BUS TRANSACTIONS PER100 PROCESSOR OPERATIONS, AS WELL AS WRITE/INV IS THE NUMBER OF WRITES (OR INVALIDATIONS FOR BERKELEY) BUS

TRANSACTIONS PER100 PROCESSOR OPERATIONS.

Parameter Processors
Dragon Berkeley PSCR

1 2 3 1 2 3 1 2 3

Bus Util. Ratio (%) 3 17.181 16.029 15.972 18.111 18.207 18.829 17.100 16.009 15.894
6 44.612 39.793 36.627 45.961 41.366 40.170 42.616 36.554 32.436
9 65.994 59.145 62.817 60.985 54.672 55.745 54.685 43.206 44.186
12 87.914 83.324 — 81.341 73.734 — 73.084 59.820 —

Miss Rate (%) 3 0.360 0.334 0.333 0.483 0.476 0.490 0.360 0.336 0.333
6 0.469 0.391 0.346 0.675 0.584 0.566 0.467 0.391 0.345
9 0.418 0.318 0.321 0.648 0.565 0.584 0.413 0.315 0.323
12 0.462 0.348 — 0.700 0.632 — 0.442 0.345 —

Write/Inv. Trans. 3 0.367 0.300 0.297 0.116 0.108 0.111 0.327 0.262 0.263
per 100 CPU Operations 6 0.876 0.973 1.053 0.196 0.170 0.163 0.475 0.363 0.335

9 1.931 2.260 2.650 0.226 0.204 0.212 0.448 0.378 0.388
12 2.530 3.071 — 0.246 0.243 — 0.440 0.448 —

TABLE 6. BUS UTILIZATION PERCENTAGE, MISS RATE AND WRITES/INVALIDATIONS FOR 4-WAY CACHE AND UNIP WORKLOAD.
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FIGURE 5. BUS UTILIZATION FOR A 4-WAY CACHE WITH MIX 1 WORK-
LOAD.

ing, and a coherence protocol aware of that (for example
PSCR), can achieve better performance. We found that
multithreaded processors help to increase performance by
reducing the bus load and thus allowing more scalability,
but more cache associativity should be used to better ex-
ploit multithreading. Moreover, having multiple contexts
and cache associativity, the sharing pattern exhibited by
an additional parallel application running concurrently with
the sequential programs becomes less important. Anyway,
in all cases the coherence protocol can make the difference.
Further studies will explore the tradeoffs of distributing the
available parallelism among processors and threads.
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[3] M. Tomasević and V. Milutinović, The cache coherence problem in
shared-memory multiprocessors – Hardware solutions. IEEE Com-
puter Society Press, Los Alamitos, CA, April 1993.

[4] D. Lenoski and W.-D. Weber,Scalable shared-memory multipro-
cessing. Morgan Kaufmann Publishers, San Francisco, CA, 1995.

[5] S. V. Adve and K. Gharachorloo, “Shared memory consistency mod-
els: A tutorial,” IEEE Computer, vol. 29 (12), pp. 66–76, December
1996.

[6] G. Sohi and M. Franklin, “High-bandwidth data memory systems
for superscalar processors,” inProceedings of the 4th International
Conference on Architectural Support for Programming Languages
and Operating System (ASPLOS), (New York, NY), pp. 53–62, ACM
Press, April 1991.

[7] E. M. McCreight, “The dragon computer system: an early overview,”
in NATO Advanced Study Institute on Microarchitecture of VLSI
Computer, (Urbino, Italy), July 1984.

[8] C. Prete, “A new solution of coherence protocol for tightly coupled
multiprocessor systems,”Microprocessing and Microprogramming,
vol. 30, no. 1-5, pp. 207–214, 1990.

[9] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Shel-
don, “Implementing a cache consistency protocol,” inProceedings
of the 12th Annual International Symposium on Computer Architec-
ture, pp. 276–283, June 1985.



[10] M. S. Squillante and D. E. Lazowska, “Using processor-cache
affinity information in shared-memory multiprocessor scheduling,”
IEEE Transaction on Parallel and Distribuited Systems, vol. 4 (2),
pp. 131–143, February 1993.

[11] C. A. Prete, G. Prina, and L. Ricciardi, “A selective invalidation strat-
egy for cache coherence,”IEICE Transaction on Information and
Systems, vol. E78-D (10), pp. 1316–1320, October 1995.

[12] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz, “April: a pro-
cessor architecture for multiprocessing,” inProceedings of the 17th
International Symposium on Computer Architecture, pp. 104–114,
May 1990.

[13] R. Saavedra-Barrera, D. Culler, and T. von Eicken, “Analysis of mul-
tithreaded architectures for parallel computing,” inProceedings of
ACM Symposium on Parallel Algorithms and Architectures, pp. 169–
178, July 1990.

[14] J. Laudon, A. Gupta, and M. Horowitz, “Architectural and imple-
mentation tradeoffs in the design of multiple-context processors,” in
Multithreaded Computer Architecture: A Summary of the State of
the Art(R. A. Iannucci, G. R. Gao, R. Halstead, and B. Smith, eds.),
pp. 167–200, Kluwer Academic Publisher, 1994.

[15] R. Thekkath and S. J. Eggers, “The effectiveness of multiple hard-
ware contexts,” inProceedings of the 6th International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, pp. 328–337, October 1994.

[16] W.-D. Weber and A. Gupta, “Exploring the benefits of multiple hard-
ware contexts in a multiprocessor architecture: preliminary results,”
in Proceedings of the 16th International Symposium on Computer
Architecture, pp. 273–280, June 1989.

[17] S. J. Eggers, “Simulation analysis of data sharing in shared memory
multiprocessors,” PhD thesis UCB/CSD 89/501, Univ. of California,
Berkeley, April 1989.

[18] C. A. Prete, G. Prina, and L. Ricciardi, “A trace-driven simulator
for performance evaluation of cache-based multiprocessor system,”
IEEE Transaction on Parallel and Distributed Systems, vol. 6 (9),
pp. 915–929, September 1995.

[19] M. A. Hollyday and C. S. Ellis, “Accuracy of memory reference
traces of parallel computations in trace-driven simulations,”IEEE
Transactions on Parallel and Distributed Systems, vol. 3, no. 1,
pp. 97–109, January 1992.

[20] S. R. Goldschmidt,Software Coherence in Multiprocessor Memory
Systems.PhD thesis, Stanford University, Computer Systems Labo-
ratory, June 1993.

[21] C. B. Stunkel, B. Janssens, and W. K. Fuchs, “Address tracing of
parallel systems via trapeds,”Microprocessors and Microsystems,
vol. 16, no. 5, pp. 249–261, 1992.

[22] R. Giorgi, C. Prete, G. Prina, and L. Ricciardi, “A hybrid approach to
trace generation for performance evaluation of shared-bus multipro-
cessors,” inProceedings 22nd EuroMicro International Conference,
Prague, pp. 207–214, September 1996.

[23] R. Giorgi, C. Prete, G. Prina, and L. Ricciardi, “Trace factory:
a workload generation environment for trace-driven simulation of
shared-bus multiprocessor,”to appear on IEEE Concurrency.

[24] A. Agarwal, “Performance tradeoffs in multithreaded processors,”
IEEE Transactions on Parallel and Distributed Systems, vol. 3 (5),
pp. 525–539, September 1992.

[25] D. M. Tullsen and S. J. Eggers, “Effective cache prefetching on bus-
based multiprocessors,”ACM Transactions on Computer Systems,
vol. 13, no. 1, pp. 57–88, February 1995.

[26] J. Laudon, A. Gupta, and M. Horowitz, “Interleaving: A mul-
tithreading technique targeting multiprocessors and workstations,”
in Proceedings oh the 6th International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
pp. 308–318, Oct. 1994.

[27] D. M. Tullsen, S. Eggers, and H. M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” inProceedings of the
22th Annual International Symposium on Computer Architecture,
pp. 392–403, June 1995.

[28] H. L. Muller, P. W. A. Stallard, and D. H. D. Warren, “Multitasking
and multithreading on a multiprocessor with virtual shared memory,”
in Proceedings of the 2nd IEEE Symposium on High-Performance
Computer Architecture (HPCA-2), pp. 212–221, February 1996.

[29] J. James and A. S. Fiske, “Thread scheduling mechanisms for
multiple-context parallel processors,” Tech. Rep. AITR-1545, Artifi-
cial Intelligence Laboratory, Massachusetts Institute of Technology
(MIT), Cambridge, Massachusetts, June 1995.

[30] Y. Y. Chen, J. K. Peir, and C. T. King, “Performance of shared cache
on multithreaded architectures,” inProceedings of the Fourth Eu-
romicro Workshop on Parallel and Distributed Processing - PDP
‘96. Braga, Portugal, pp. 541–8, January 1996.

[31] A. Gupta and W.-D. Weber, “Cache invalidation patterns in shared-
memory multiprocessors,”IEEE Transactions on Computers, vol. C-
41 (7), pp. 794–810, July 1992.

[32] S. J. Eggers and R. H. Katz, “Evaluating the performance of
four snooping cache coherency protocols,” inProceedings of the
16th Annual International Symposium on Computer Architecture,
(Jerusalem, Israel), pp. 2–15, May 28–June 1, 1989.

[33] C. B. Stunkel, B. Janssens, and W. K. Fuchs, “Address tracing for
parallel machines,”IEEE Computer, vol. 24, no. 1, pp. 31–45, Jan-
uary 1991.

[34] S. R. Goldschmidt and J. L. Hennessy, “The accuracy of trace-driven
simulation of multiprocessors,” inProceedings of the ACM Sigmet-
rics Conference on Measurement and Modeling of Computer Sys-
tems(B. D. Gaither, ed.), pp. 146–157, May 1993.

[35] B. Vashaw, “Address trace collection for trace driven simulation
of bus based, shared memory multiprocessors,” technical report
CMUCDS-93-4, Carnegie Mellon University, Pittsburgh, PA, March
1993.

[36] R. Giorgi, C. Prete, G. Prina, and L. Ricciardi, “A workload genera-
tion environment for trace-driven simulation of shared-bus multipro-
cessor,” inProceedings 30th HICSS, Hawaii, IEEE Press, pp. 266–
275, January 1997.

[37] R. Thekkath and S. J. Eggers, “Impact of sharing-based thread place-
ment on multithreaded architecture,” inProceedings of the 21th An-
nual International Symposium on Computer Architecture, pp. 176–
186, April 1994.


