
An approach for investigating design and tuning performance
of embedded systems

R. GIORGI C. A. PRETE G. PRINA

Dipartimento di Ingegneria della Informazione
Università di Pisa - Italy

fgiorgi,prete,prina g@iet.unipi.it

Abstract

Showing the internal behavior of a computer and the didactic path which conducts to the final

design of an embedded system is often a difficult task, without adequate tools. Classical ap-

proaches may skip details of the underlaying architecture which can be fundamental to meet

particular timing or consumption requirements. We propose an approach based on an environ-

ment which allows a high level of detail to be simulated, including cache, memory and I/O

subsystems, but also permits an immediate feedback to the designer for understanding the be-

havior of embedded programs and fine tuning of system performance. The designer is guided

in this process through simple steps based on a graphical interface and animations.

INTRODUCTION

Computer systems are often too complex

to present the main concepts of architecture

design in both basic and advanced Com-

puter Engineering courses. Also, many in-

ternal events happen inside the chips, and

cannot be showed using any kind of probe.

Thus, the use of simulators, integrated envi-

ronments, and graphical tools is a well ac-

cepted methodology to explain the internal

behavior of such systems [1]. This approach

proves particularly important in respect to

the emerging co-design technologies for the

development of embedded system hardware

and software [2]. In that case, the design

process can be quite complex, because it has

to face a number of various and often con-

flicting component requirements: cost ef-

fective performance through small die size

and low power consumption, particularly

for mobile systems, but also high process-

ing power (real time applications) [3]. The

adoption of slow memory devices suggests

using on-chip cache memories to provide

the required processing power.

Tuning such a system, and in particu-

lar its cache memory, requires the analysis

of many details that critically influence sys-

tem performance, while the designer has to

quickly decide which is the best cache con-

figuration tradeoff.

In this paper we present a software en-

vironment used in Computer Architecture

courses at the University of Pisa and de-

rived from a product developed for VLSI

Technology Inc. (San Jose, CA), for ARM-

processor [4] based applications, by the

same University. Using this environment

Development

(Jumpstart)

Trace

Program and
Locality
Analysis

Computer
Behavior

Result
Analysis

Results

Configuration

System
Configuration

System
Simulation

Program

Animation

Figure 1. Structure of the programmer workbench.

a designer can effectively design and tune

an embedded system, choosing the right

configuration of cache (associativity, block-

size and capacity), memory (access time),

and microprocessor speed, for the program

that will run on the system probably for its

whole life.

THE PROGRAMMER WORKBENCH

Whilst in traditional programming envi-

ronments, the designer has to deal simply

with program code without caring about the

underlaying memory hierarchy, embedded

system design workbenches should include

facilities to accurately model the system as

a whole mix of hardware and software com-

ponents. In our approach, we find it use-

ful to put several tools beside a traditional

software development environment (Jump-

Start, commercialized by VLSI Technology,

Inc.), that complete the environment in the

above sense. These tools use the program

trace, extracted from the embedded applica-

tion, to give a feedback to designer regard-

ing some interesting metrics such as the ex-

ecution time on different, not yet built, pro-

totypes of the embedded system. Thus, the

designer can select the appropriate parame-

ter values which allow to meet timing, con-

sumption and cost requirements, as it will be

showed in the following. Figure 1 depicts a

scheme of the design phases.

In the Program Developmentphase, the

user can build an application, debug it and

produce a trace file. Applications can be ex-

ecuted and debugged on a dedicated ARM

instruction set simulator or loaded in an

ARM-based board for native evaluation.

In the System Configurationphase, the

user defines the system architecture and the

features of each component. For each com-

ponent, the designer specifies the timing,

the architecture and the management policy.

TheSystem Simulationphase allows the

user to plan and perform a single simulation

or a performance evaluationexperiment. An

experiment is defined by: i) the trace file; ii)

the system configuration; and iii) one or two

parameters to be varied and the list of values

that those parameters have to assume.

The Results Analysisphase yields line

charts and bar diagrams to show: global

system performance (execution time, lost

Figure 2. Miss percentage for the jpeg compression program (cjpeg).

time in waiting, and word transfer ratio);

cache behavior (miss (Figure 2), code miss,

data miss, read miss, data read miss and

data write miss ratios and cumulative cold

misses); and bus traffic (occupation rate,

number of read-block operations, number

of write operations for write-through cache

models and number of update-block opera-

tions for copy-back cache models).

For mere didactic intents, theComputer

Behavior Animationphase shows an exam-

ple of how a computer works. For exam-

ple, in the case of cache memory, the stu-

dent can execute a single memory operation

and examine in detail the sequence of ac-

tions necessary for the cache controller to

carry out the requested operation, or exe-

cute a specified sequence of operations and

examine cache status and contents after the

execution (Figure 3).

Finally, theProgram and Locality Anal-

ysis phase allows the student to perform

two types of trace analysis. The first

one uses traditional program statistics such

as the percentages of data/code, read/write

accesses. The second one encompasses

program locality. The locality statistics

produced include: the number of unique

blocks, the temporal locality, and the spa-

tial locality (Figure 4). Analyzing these fig-

ures the student can understand the program

behavior, and thus fine-tune the cache and

main memory subsystems.

A DIDACTIC CASE STUDY

One of the key concepts that the de-

signer has to deal with is program local-

ity [5]. Typical modules designed to boost

speed are prefetching, write-buffers, cache.

Anyway, the cache is often the most criti-

cal component in achieving higher perfor-

mance. The student can thus use theCom-

puter Behavior Animationto view how this

component behaves and theProgram and

Locality Analysisto understand how a cache

can influence the performance.

As an example, for a 2-KByte, 2-way

set associative cache with a 32-Byte block

size), let us suppose that the student se-

lects a read operation on location with ad-

dress (00001FD4)16. The following events

address
32

block
address
27 5

byte in
block

tag
fields

cmp

tag set
22 5

data
fields

 block
address
27 5

byte in
block

tag
fields

cmp

tag set
22 5

miss

data
fields

and

miss

miss

00001FD4

ZZZZZZZZ

Type address data
read
write 00001FD4 ZZZZZZZZ

start step done

1 Miss on 00001FD4;
2 Victim cache block is {1E, 0};
3 no update of victim memory block;
4 load of the memory block 00000FE;

 000 0000 0000 0000 0000 1111 1110 10100

memory block
address

byte
address

 00 0000 0000 0000 0000 0111 1 1110
tag address set address

Sequence of cache actions

Figure 3. Step-by-step operation.

and actions are evidenced (Figure 3): i) the

memory block (00000FE)16 is not present

in cache memory (miss condition), ii) the

victim cache block to be replaced is the

block 0 in the set (1E)16; iii) it is not nec-

essary to update the main memory block be-

cause the copy is not modified; iv) the cache

loads the memory block (00000FE)16 and so

on. The window shows also the structure

of the selected cache, the information about

the operation being executed and how the

cache uses a specified memory address. In

our example, the address (00001FD4)16 is

split in (000007)16 used as tag field; (com-

pared with the tag field of both blocks of set

(1E)16); in (1E)16 as set field (used as set ad-

dress), and finally, (14)16 used as byte offset

in the block.

Then, the student can analyze locality

features of the program that he has to de-

velop, and examine how the presence of a

cache memory can exploit program local-

ity. Figure 2 shows the miss percentage

of an application based on ajpeg image

compression/decompression tool [6], a soft-

ware package that is frequently used in com-

mercial embedded systems. Global perfor-

mance of a given system is strictly depen-

dent on the specific application being con-

sidered: using different workloads may lead

to different results. Figure 2 also shows that,

for the cjpeg program, a 4-way set asso-

ciative cache is recommended since it sup-

plies the best balance between cost and per-

formance. At a more detailed level of anal-

ysis, the student is called to search, for a

given cache structure, cache and block sizes

which can provide the best results in terms

of global performance and cost. Again a

new graph can be produced (Figure 5) to

find the best value for the cache block size.

A CASE STUDY OF ACTUAL DESIGN

In this case the key point is the opti-

mization of each component, which needs

to fit as better as possible the behavioral fea-

tures of the specific application for which

the whole system is designed.

Let us suppose that the program requires

an image compression to be completed in

less than 1s and we wish to find out whether

or not cache is necessary.

Spatial Locality (data accesses)

0

1

2

3

4

5

6

7

-2
56

-2
40

-2
24

-2
08

-1
92

-1
76

-1
60

-1
44

-1
28

-1
12 -9
6

-8
0

-6
4

-4
8

-3
2

-1
6 0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

stride

Figure 4. Spatial locality in the data area.

The designer defines the system config-

uration including a 20 MHz ARM core [4],

a system bus, a 1-MByte memory DRAM

bank, a 128-KByte memory PROM bank

and a memory-mapped graphical I/O de-

vice. He also needs to specify the timing

and architecture of each component. In or-

der to obtain a low power-consumption so-

lution, a slow system bus and slow memory

devices should be selected. Also, it is up to

the designer to select the input parameters

of the embedded programs in such a way

that the worst timing case is examined.

Choosing a memory having 150ns ac-

cess time and a 250ns PROM a simulation

shows that, without cache memory, the ap-

plication takes up 2.898s to execute the pro-

gram. Thus, the addition of a cache memory

is necessary to meet time requirements.

The designer can now execute a paramet-

ric simulation in order to search the opti-

mal cache configuration. Figure 5 shows

the miss ratio and the execution time versus

block size (from 8 to 64 Bytes) and cache

size (from 2 to 32 KBytes) for two cache

configurations. The first cache is a simple

write-through, direct access cache; the sec-

ond one is a more complex copy-back, two-

way set associative cache. The cache uses

the LRU technique as replacement policy.

The designer can observe that, in both

configurations, execution time and miss ra-

tio exhibit different values and behaviors.

So, the student can select a configuration

that best meets cost-effectiveness and per-

formance requirements (execution time�

1s). For example, an optimal choice is a 16-

KByte, write-through, direct access cache

with 16-Byte block size.

The designer can find out the cheapest

main memory that meets time requirements,

by executing simulations where the varying

parameter is the DRAM access time. Simu-

lation shows that the memory delay can be

180ns (30ns more than the initial constraint)

without loosing the required performance.

CONCLUSIONS

The growing demand for embedded

products requires highly sophisticated com-

puting functions at low cost and low con-

sumption. Designers must select the most

efficient system configuration in order to

ExecutionTime

0

100

200

300

400

500

600

700

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

2

4

6

8

10

12

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

ExecutionTime

0

100

200

300

400

500

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

1

2

3

4

5

6

7

8

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

Figure 5. Miss ratio and time execution for the jpeg compression program.

resolve complex, even conflicting, require-

ments for low-power/high-speed and com-

ponent cost. This makes accurate and re-

liable system simulation and performance

analysis crucial. We have presented an ap-

proach based on a trace-driven system sim-

ulator that can help students in the design

activity of cache memory to be employed in

ARM-based embedded systems. By means

of practical examples, we have shown how

the student can successfully use the tool in

a typical didactic path.

ACKNOWLEDGMENTS

This work was supported by the Min-

istero della Universit`a e della Ricerca Sci-

entifica e Tecnologica (MURST), Italy and

by VLSI. We wish to thank Francesco Laz-

zarini that took part in the development of

the cache simulator, Angelo Rappelli that

contributed in developing the graphical in-

terface for the Microsoft Windows version,

Massimiliano Panico that performed perfor-

mance evaluations of the case studies.

REFERENCES
[1] C. A. Prete, “Cachesim: A graphical soft-

ware environment to support the teach-
ing of computer system with cache mem-
ories,” in Proceedings of 7th SEI Conf. on
Software Engineering Education, Springer-
Verlag, Jan. 1994.

[2] D. D. Gajski and F. Vahid, “Specification
and design of embedded software-hardware
systems,”IEEE Design & Test of Comput-
ers, vol. 12, no. 1, Spring 1995.

[3] F. Lazzarini, C. A. Prete, and M. Graziano,
“Tuning the configuration of a cache mem-
ory for embedded systems.” to appear in
IEEE Micro.

[4] A. V. Someren and C. Atack,The ARM
RISC Chip, A Programmer’s Guide.
Addison-Wesley, 1993.

[5] K. Grimsrud, J.Archibald, R. Frost, and
B. Nelson, “Locality as a visualization
tool,” IEEE Transaction on Computers,
vol. 45, pp. 1319–1326, Nov. 1996.

[6] G. K. Wallace, “The jpeg still picture com-
pression standard,”Communications of the
ACM, vol. 34, pp. 30–44, Apr. 1991.

