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Abstract - We present an educational software packagean be particularly true in respect to the emerging co-design
(Csim) used as a teaching tool to analyze the structure artdchnologies for the development of embedded applications.
behavior of a cache memory and to help the studentin the de- In embedded systems, low power consumption and/or low
sign of cache memories for embedded systems. By meang®dt requirements encourage the adoption of slow memory de-
an integrated software development environment, the user c@iges, so that designers often turn to on-chip cache memories
create a program and explore its behavior (locality analysis)to provide both high processing power and large slow main
The student can observe the cache actions needed for a mefiemory. The designer can select the right cache configura-
ory operation and evaluate the cache performance as a fungion by considering the specific behavior of the program run-
tion of the configuration parameters. Finally, the parametricning on the embedded system, and thus optimizing the over-
evaluation graphical tools help in the actual design of an emall system specification to meet both low power and perfor-
bedded system, in order to find the cache and memory comance requirements. Tuning such a system, and in particular
figuration which provides the best balance between cost arig cache memory, it's a difficult task. With a minimum of
performance. guesswork, the designer must answer a number of basic ques-
. tions: i) given a system and an application, is it necessary to
Introduction add a cache memory to obtain the requested performance? ii)

In this paper, we present an educational software packalje&©. Which is the optimal cache configuration? iii) given a
(Csim), currently used as a teaching tool in a Computer AgPECific on-chip cache, which is the cheapest main memory
chitecture course at the University of Pisa. The main goal G@tisfying the performance requirements of the application?
Csim is to combine two complementary aspects into a Sing}éllj[hout an accurate tool for system configuration and simu-
instrument: on the one side, it supplies the teacher with a to@tion, reliable answers are hard to come by.
to be used in practical example sessions while dealing with All the reasons just exposed stimulated us to develop a new
the main concepts about cache memories [10]; on the otH@el which could combine the different needs of students. A
side, it aims to help the student in the actual design activity d¢lative easiness is guaranteed concerning the practical use of
embedded application oriented systems [3]. the package, so that the student, when switching from one

The package includes a parametric cache simulation aphase to another, does not need to get familiar with a different
performance analysis tool (ChARM) developed by the Uni= Possibly much more complex — tool.
versity of Pisa for VLSI Technology, Inc. [8], and the Jump- As a mere didactic environment, Csim offers a wide range
Start [7] toolkit, a graphical development environment byof opportunities to the student for investigating the structure
VLSI Technology, Inc., for the design of ARM-based appli-and the behavior of a cache memory, starting from the basic
cations. (ARM [2], [11] is a 32-hit microprocessor designed:oncepts and definitions [9], up to a relatively complex level
by ARM Ltd. and largely used in embedded products.) of depth. The concept of program locality is particularly em-

Design of embedded systems, through new methodolghasized, since it is one of the critical issues in this branch
gies like co-design approacsystem-in-a-chignd ASIC so- of computer architecture. To this purpose, Csim provides an
lutions, implies the demand for specific architectural knowladvanced program-locality analysis and a close evaluation of
edge by computer engineers. Actual computer systems andadirthe quantities which affect the execution time. The student
commercial design tools are generally not suitable to be uséglactively involved in making authentic choices that affect
as didactic tools and to present the basic concepts of archité@e target system, such as changing the parameters of a sim-
ture design in both basic and advanced Computer Enginegfation and analyzing the immediate response of that system
ing courses. Their structure is often too much complex arl@ the user actions; otherwise, elaborate graphics and simula-
usually prevents the detection of all the events occurring i#ions may result not effective.
the activity of the machine; moreover, the high number and As a design tool, the package allows the user: i) to project
frequency of these events may require a too expensive acghis own embedded application within a proper software de-
sition system or, also, several events may not be directly olselopment environment, and ii) to carry out the performance
servable, since they occur within the chip. As a result, onevaluation, in order to choose the system and cache configu-
cannot generally obtain an accurate, step-by-step observati@ation which can guarantee the best performance for the target
of the internal events occurring in a system. This inadequa@application. The designer can perform a parametric simula-



tion to evaluate system performance while varying the timingmining in detail the sequence of actions necessary to a cache
and architecture features of each component of the systecontroller to carry out the requested operation, or by executing
The final results, shown by means of easy-to-read graphs, helgpecified sequence of operations and examining the cache
him to find rather quickly an acceptable tradeoff solution.  status and contents after the execution.
) ) The Performance Analysiphase allows the user to plan,

The Csim environment perform a single simulation or a performance evaluaggn
eriment and finally analyze the results. An experiment is
efined by: i) the trace file; ii) the system configuration; and
the varying parameters (one or two). Csim may initially

In view of a didactic approach, the package has be
equipped with a very friendly point-and-click graphical inter—i'i{
face, by which the teacher can easily show and discuss, usi c
practical examples, the basic concepts of cache architect(} ulate an adequate numher of memary references without

and behavior. The environment consists of five phases sho doutcom%. This 3”0WS éh? cac?]e to e>|<|t Its cqldlsgatle [1]
in Figure 1. and to reach a steady condition. The results consigjloba

system performandexecution time, lost time in waiting, and
word transfer ratio)cache behaviofmiss, code miss, data
miss, read miss, data read miss and data write miss ratios
and cumulative cold misses); abds traffic(occupation rate,
number of read-block operations, number of write operations
for write-through cache models and number of update-block
operations for copy-back cache models).
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Use of Csim as a didactic tool

In a didactic approach to computer architecture, one of the
key concepts that the student has to deal withragyram lo-
cality. Hence, the first phase of a typical Csim didactic ses-
sion, concerns the analysis of locality features of a program
written directly by the student or chosen within a set of prede-
fined, very simple programs; in the example shown in detail in
this Section, the program is the implementation of the median
filter algorithm applied to a 3434 pixel image with a 3
pixel window [4].

As shown in the previous Section, during f®gram De-

, ) ) velopmenphase (Figure 1) a trace can be produced to allow a
Figure 1. Structure of a Csim session. detailed program locality analysis (number of unique blocks,
locality surface, spatial locality).

In the Program Developmergthase, the user builds an ap-  If we defineT’[i] as thei-th reference of a tracg, for each
plication, debugs it and produces a trace file. Applications cafouple{T'[i], T[j] such that j > i} we can also define the
be executed and debugged on a dedicated ARM instruction ggétance(d) as the numbej — i of intervening references,
simulator or loaded in an ARM CPU-based board for a nativand thestride (s) as the offsef’[j] — T'[i] between the two
evaluation. Once that the application has been developed, {fagerences.
user can generate a trace file by simply pointing-and-clicking The concept obpatial locality refers to the fact that ad-
while the program is running in emulator mode. dress locations close to the “currently” referenced location

In theSystem Configuratigphase, the user defines the sys7'[i] are more likely to occur in the next few references than
tem architecture and the features of each component. The siseations far away. Similarly, the concepttemporal locality
tem may include the following components: an ARM core, aeflects the fact that the address of the “current” referétjde
cache memory, a system bus, memory banks, and a numbeio{ery likely to occur again in the next few references.

I/0 devices. For each component, the designer has to specify A quantitative approach to the locality analysis was first
the timing, the architecture and the management policy.  proposed by Archibal@t al. [5] by means of the introduc-

The Program Behavior Analysighase allows the student tion of thelocality surface They proposed a 3D-graph where
to perform two types of trace analysis. The first one uses traditride and distance are the base axes. The magnitude of lo-
tional program statistics such as the percentages of data/codality surface for a specific couple,@) is defined as the
read/write accesses. The second one regards program logabbability that7[i] + s = T[i + d], whereT[i] + s ¢
ity. An accurate knowledge of locality features plays a crucig7'[i + 1],...,T[i + d — 1]} andi assumes all the values be-
role in understanding cache concepts. The locality statistit@een 1 and the length of the trademinus one. From the
include: the number of unique blocks, the locality surface [S)ocality surface, the designer may derive information about
and the spatial locality. locality features likesequentiality striding, temporalityand

For mere didactic intents, th®8ystem Behavior Analysis loops Sequentiality is typically due to the fetching of consec-
phase allows the student to carry out a sort of step-by-stepive instructions. It is visible as a ridge along the diagonal
simulation, by executing a single memory operation and exegion withs = d, in which the length reflects the distribution
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of sequential run lengths in the reference stream, while the The user can optionally analyze thaique blockgraph.
amplitude reflects sequential run frequency. Striding is préfhe number of unique blocks for a given numbeof ref-
duced by a series of references with a fixed step and is typiaences is the number of distinct blocks used by a program
of numerical algorithms, such as matrix operations where thmefore the referenceth. These blocks only cause misses in
elements are accessed in row order instead of in column orden infinite cache, the number of unique blocks delineates a
It is characterized by a ridge in the region with> d. The lower bound for the miss ratio. Csim shows a family of curves,
temporality region, i.e., the region with= 0, shows the dis- where the number of unique blocks is given as a function of
tribution of distances between repeated accesses at the saheenumber of references and the parameter is the block size
addresses. Finally, loops are characterized by ridges whi¢higure 4).

are parallel to the stride axis, in the region withl < s < 0.

Figure 2 gives an example of a locality surface concernir—] Median Filter [-[-
the median filter program. In particular, the temporal locality ©ptions
window shows that, in this case, the latest referenced addrg unique blocks 2w NEW Unigue blocks
has a very high probability (more than 80%) to be reference
again within the next 128 memory accesses.
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The next step in a didactic path is to show how the presence
of a cache memory can exploit program locality in order to im-

. . - . .. prove the system performance. For this purpose, the student
According to the mathematical definition, spatial Iocallt)cfg) Y P purp

Figure 2. The locality surface for median filter program.

is the distributi t the offset b . as to select the system parameters concerning cache organi-
Is the distribution of the offset between two consecutive ad;aion - A cache scheme is defined by the following parame-

?res;esri]n the treé;e._ It can be obtair;}ed from .thlel IOC‘T‘.”W. SUYers: i) the mapping policy; ii) the replacement algorithm; iii)
ace in the case of = 1. Csim can show spatial locality in ya \,hqate policy: iv) the cache size, v) the block size: vi) the

a specific graph as distribution of: i) all accesses and ii) da]"ﬂjgber of blocks for each set (in the case of a set associative

and code accesses separately. Figure 3 shows the locality.g he): and vii) the presence and the length of a write buffer.
data accesses for our example. Figure 5 shows the miss percentage of the median filter
program as a function of the cache size and degree of asso-

‘f)‘imons Median Fiiter [=[= ciativity. For this program, a 2-way set associative cache is
oatal Lo recommended since it supplies the best balance between cost
patial Locality (data accesses) N
! and performance. Also, we notice that a 4-way cache pro-
3 duces quite the same result. At a more detailed level of analy-

sis, the student is called to search, for a given cache structure,
the cache and block sizes which can provide the best results in
4 terms of global performance. Again a new graph can be pro-
duced (like the one in Figures 8 and 9) to find the best value
for the cache block size.

5

2 Finally, we show how th&€ache Behavior Analysisnvi-
. ronment can be employed to perform the step-by-step simula-
““[[' tion. Let us consider the cache configuration just examined (2-
e EsEEINNESITNGcaSTiSsNRimEsEios KByte, 2-way set associative cache with a 32-Byte block size)
EINFRARIIRITFETNL SOTEOOINIAEARNIN and suppose (Figure 6) that the required operation is a read on

: : — location with address (00001FD4) the following events and
Figure 3. Spatial locality in the data area. actions are highlighted: i) the memory block (00000fES
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Figure 5. Miss percentage for median filter program.

not present in cache memory (miss condition), ii) the victi

cache block to be replaced is the block 0 in the setg;Hj))

it is not necessary to update the main memory block becaul
the copy is not modified; iv) the cache loads the memory bloct(%r

(O0O000FE)g and so on.

=

Cache behavior Analysis

|'|A”

we will show how Csim can help a student to find out the
optimal cache and system configuration for a specific applica-
tion. We consider thejpeg program, gpeg image com-
pression/decompression tool [12] which is frequently used in
commercial embedded systems.

First, the student should wonder about the following ques-
tion: for a 20 MHz ARM running an application using the
cjpeg program, is it necessary to add a cache memory in
order to achieve the required performance? We suppose that
the product requires that the image compression be completed
in less than 1s. First, the student traces the execution of the
cjpeg program while compressing an image stored in, e.g.,
“ppm” format, using the JumpsStart trace facility. The ppm
image is a 101-KByte image consisting of 227x149 pixels.
(The sample picture is a red rose and the image produced by
cjpeg occupies 5 KBytes.)

Then, the student defines the system configuration includ-
ing a 20 MHz ARM core, a system bus, a 1-MByte mem-

nPry DRAM bank, a 128-KByte memory PROM bank, and a

memory-mapped graphical 1/0 device. The student needs to
Becify the timing and architecture of each component. In
der to obtain a low cost and a low power-consumption solu-
on, a slow system bus and slow memory devices are selected.
In the case of the ARM core, the student provides the tim-
ing for both read and write operations. For these operations
the simulator requires i) the minimum time necessary for the

S =‘Type S'"i';r‘;‘;'a"”" ey == ARM core to perform the bus operation and ii) the maximum
P st seonepy) [zzzzzza available to e} sla\k/]e to complete an operation without requiring
S D waiting tlmg or.t e CPU. o '

=T oyt A specific window shows the ARM timing plot, derived
address. o | from the ARM data book, in order to drive the student to find
g akiess the proper values. In our example, considering that the ARM
COCDIIIEMDEROUEE, B processor employs a pipelined bus, the student obtains and
— Seqenesofcdipadios | sets these values: 50 ns, as minimum time for read/write op-

|| 2 victim cache biockis {1, o; erations, and 64 ns as the maximum time usable by a slave to
4 loadofhe memory bock oooore, ] COMPplete an operation.

The simulator models a generic bus, which is capable to
accommodate the typical memory operations. The student has
to specify the data bus width and the time for each type of bus
operation. In our example, the data bus width is 32 bits and
the time is 200 ns for both read’(..q) and write [yrize)

. . operations.

In a window, Csim shows the structure of the selected Finally, the student specifies the features of memory and
cache; in a second window, it summarizes the informatiopo devices. For each module, the configuration parameters
about the operation being executed and shows how the caGRgiude the module type, the starting address and the size. In
uses the memory address. In our example, the addresgr example, the system includes three modules: a DRAM
(00001FD4js is split in (000007)s used as tag field (com- pank, a ROM bank and a memory-mapped graphical 1/O de-
pared with the tag field of both blocks of set (16) in (1E)is  vice. The simulator requires to know the delays (additional
as set field (used as set address), and finally,{143ed as time with respect to the bus time) introduced by a component
byte offset in the block. to complete each bus operation. Among the three modules
. . . considered, only the PROM module needs additional time
Beyond theory: case studies of actual design (200 ns) to complete read operations.

In the design of embedded systems, a key point is the op- With the system configuration just examined, a simulation
timization of each component, which needs to meet, as bethows that, without cache memory, the application takes up
ter as possible, the specific application for which the whol2.898s to execute the program. The addition of a cache mem-
system is designed. Also, it should be noticed that often aory provesto be necessary, therefore, to meet the time require-
embedded system runs only one program for all its life. Wenent.
are going to present an example of design training path, and As shown in the previous Section, the designer has to de-
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Figure 6. Step-by step operation.



fine the cache structure in terms of cache size, block siz ||=]| Direct access B Direct access BE
number of blocks per set, and replacement policy; furthe || ©pfions

more, for simulation to be possible, cache timings haveto t || % Miss s ExecutionTime
apn . 8
specified. Figure 7 shows the scheme used to set the cat || oo | | 00 —bhie
imings: i i gl | s S e
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yvriting datatoa pache blocll}ag is the tag access ti.m@f;mp 61 S .
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Figure 7. Setting the cache timings. _ o .
< 1s). For example, an optimal choice is a 16-KByte, write-

Finally, the student has to specify the timing of bus blockg]\rl\?rlijt%hél?f'f;era access cache with 16-Byte block size without

operations used by the cache to interact with the main mem- o
ory. In particular, the cache uses tread-blockoperation . NOW, the student can also answer the guestion: for the se-
to fetch a memory block when a miss condition occurs. AfCted cache configuration, which is the cheapest main mem-
update-blockoperation allows a copy-back cache to updat8'y Mmeeting the time requirement? The designer can find the
a memory block when its cached copy is dirty and has ta°lution by executing simulations having the RAM bank ac-
be replaced. The time required by a bus block-operation §€SS time as parameter. The simulation shows that the mem-
calculated by considering the bus width, the block size argfY Pank delay can be increased by no more than 30ns with
four timing values: Tyead, Twrites Tsread aNd Towpite. A respect t'o the values specified in the confl|gurat|on. .
block operation is described as a single operation followed by Now, if the student uses the same design path for a differ-
fast transfer operation,caq (Twrie) iS the time needed to €Nt embedded application, he/she finds a different cache and
perform a Sing|e read (Wr|te) Operation, éﬂigead (Tswrite) system Conflggratlon. For examplle,.WG trace the execution
is the time needed to perform a subsequent sequential redf¢herawcaudio program [6] while it converts a 6-KByte
(write) transfer. In this example, the timings arE;.,, = ADPCM sound sample to a 24-KByte raw 16-bit PCM for-
Towrite = 200NS Tsreqq = Tswrite = 160NS. mat. The audio sample is the voice of a man saying “hello,
The student can now execute a parametric simulation i{orld.” Figure 9 shows the miss ratio and the execution time
order to search the optimal cache configuration. Figure igr th(_e same configurations conS|dered_|n the first example.
shows the miss ratio and the execution time versus block siz&€ differences between the graphs of Figures 8 and 9 are due
(from 8 to 64 Bytes) and cache size (from 2 to 32 KBytes) fol® the different locality characteristics of the programs.
two cache configurations. The first cache is a simple write- We assume that the application requires that the conver-
through, direct access cache without a write buffer; the segion should be completed in less than 90ms, in order to show
ond one is a more complex copy-back, two-way set associa-configuration tuning session. The system takes up 359ms to
tive cache with a two-deep write buffer. The cache uses ttexecute the program without cache memory, therefore cache
LRU technique as replacement policy. In both cases, the tirns necessary. Table 1 lists some examples of cache configura-
ings are:T,.q = 35n8,T,; = 35n8,T},, = 20NS,T ., = 10N, tions that allow the system to satisfy the time requirement. If
T,-, = 10ns. the designer selects cache configuration 2, the memory bank
The designer can observe that, in both configurations, exéelays can be increased by 260ns with respect to the values
cution time and miss ratio exhibit different values and behaspecified above.
iors. For cache sizes greater than 16 KBytes, the execution These two examples show that meeting time requirements
time is constant and independent of the block size. In thisf different applications yields different cache configurations.
way the student can select a configuration that best meets cddte student can observe that, in the second example, the
effectiveness and performance requirements (execution timeite-through cache configurations never guarantee the ful-
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help students in the design activity of cache memory to be em-

ployed in ARM-based embedded systems. By means of prac-

tical examples, we have shown how the student can success-
fully use the tool in two typical schemes of a didactic path.
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Figure 9. Miss ratio and execution time foawcaudio

program.
mapp. update cache | block | write exec. max [3]
policy size size | buffer | time delay
(KB) (B) len. (ms) (ns)
1 | direct | copy-back 8 8 0 88.97 40
2 | direct | copy-back 16 16 0 86.40 | 260 [4]
3 | direct | copy-back 8 8 2 88.75 60
4 | direct | copy-back 16 16 2 86.34 | 260
5 | 2-way | copy-back 4 16 0 88.96 40
6 | 2-way | copy-back 8 64 0 88.62 50
7 [ 2way | copyback| 4 16 > | 8886 50 (5]
8 | 2-way | copy-back 8 64 2 88.61 60

Table 1. Some cache configurations that allow the system to
satisfy the time requirements faawcaudio program. ]

[7]

fillment of time requirements. The two examples also show[8]
that write and miss ratios affect the performance of systems
with cache memories in a different way. Thfppeg and
rawcaudio programs have similar write ratios, but exhibit [°]
different miss ratios due to different locality features. A lower
miss ratio enhances the influence of write operations on global
performance. In this case, the choice of an optimal update pol-
icy becomes critical. [10]

Conclusions a1

The growing demand for embedded products requires
highly sophisticated computing functions. Designers must s 12]
lect the most efficient cache/system configuration in order t
resolve complex — even conflicting — requirements for low-
power/high-speed and component cost. This makes accu-
rate and reliable system/cache memory simulation and per-
formance analysis crucial. We have presented an educational
environment based on a trace-driven system simulator that can
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