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Abstract - We present an educational software package
(Csim) used as a teaching tool to analyze the structure and
behavior of a cache memory and to help the student in the de-
sign of cache memories for embedded systems. By means of
an integrated software development environment, the user can
create a program and explore its behavior (locality analysis).
The student can observe the cache actions needed for a mem-
ory operation and evaluate the cache performance as a func-
tion of the configuration parameters. Finally, the parametric-
evaluation graphical tools help in the actual design of an em-
bedded system, in order to find the cache and memory con-
figuration which provides the best balance between cost and
performance.

Introduction
In this paper, we present an educational software package

(Csim), currently used as a teaching tool in a Computer Ar-
chitecture course at the University of Pisa. The main goal of
Csim is to combine two complementary aspects into a single
instrument: on the one side, it supplies the teacher with a tool
to be used in practical example sessions while dealing with
the main concepts about cache memories [10]; on the other
side, it aims to help the student in the actual design activity of
embedded application oriented systems [3].

The package includes a parametric cache simulation and
performance analysis tool (ChARM) developed by the Uni-
versity of Pisa for VLSI Technology, Inc. [8], and the Jump-
Start [7] toolkit, a graphical development environment by
VLSI Technology, Inc., for the design of ARM-based appli-
cations. (ARM [2], [11] is a 32-bit microprocessor designed
by ARM Ltd. and largely used in embedded products.)

Design of embedded systems, through new methodolo-
gies like co-design approach,system-in-a-chipand ASIC so-
lutions, implies the demand for specific architectural knowl-
edge by computer engineers. Actual computer systems and/or
commercial design tools are generally not suitable to be used
as didactic tools and to present the basic concepts of architec-
ture design in both basic and advanced Computer Engineer-
ing courses. Their structure is often too much complex and
usually prevents the detection of all the events occurring in
the activity of the machine; moreover, the high number and
frequency of these events may require a too expensive acqui-
sition system or, also, several events may not be directly ob-
servable, since they occur within the chip. As a result, one
cannot generally obtain an accurate, step-by-step observation
of the internal events occurring in a system. This inadequacy

can be particularly true in respect to the emerging co-design
technologies for the development of embedded applications.

In embedded systems, low power consumption and/or low
cost requirements encourage the adoption of slow memory de-
vices, so that designers often turn to on-chip cache memories
to provide both high processing power and large slow main
memory. The designer can select the right cache configura-
tion by considering the specific behavior of the program run-
ning on the embedded system, and thus optimizing the over-
all system specification to meet both low power and perfor-
mance requirements. Tuning such a system, and in particular
its cache memory, it’s a difficult task. With a minimum of
guesswork, the designer must answer a number of basic ques-
tions: i) given a system and an application, is it necessary to
add a cache memory to obtain the requested performance? ii)
if so, which is the optimal cache configuration? iii) given a
specific on-chip cache, which is the cheapest main memory
satisfying the performance requirements of the application?
Without an accurate tool for system configuration and simu-
lation, reliable answers are hard to come by.

All the reasons just exposed stimulated us to develop a new
tool which could combine the different needs of students. A
relative easiness is guaranteed concerning the practical use of
the package, so that the student, when switching from one
phase to another, does not need to get familiar with a different
– possibly much more complex – tool.

As a mere didactic environment, Csim offers a wide range
of opportunities to the student for investigating the structure
and the behavior of a cache memory, starting from the basic
concepts and definitions [9], up to a relatively complex level
of depth. The concept of program locality is particularly em-
phasized, since it is one of the critical issues in this branch
of computer architecture. To this purpose, Csim provides an
advanced program-locality analysis and a close evaluation of
all the quantities which affect the execution time. The student
is actively involved in making authentic choices that affect
the target system, such as changing the parameters of a sim-
ulation and analyzing the immediate response of that system
to the user actions; otherwise, elaborate graphics and simula-
tions may result not effective.

As a design tool, the package allows the user: i) to project
his own embedded application within a proper software de-
velopment environment, and ii) to carry out the performance
evaluation, in order to choose the system and cache configu-
ration which can guarantee the best performance for the target
application. The designer can perform a parametric simula-



tion to evaluate system performance while varying the timing
and architecture features of each component of the system.
The final results, shown by means of easy-to-read graphs, help
him to find rather quickly an acceptable tradeoff solution.

The Csim environment

In view of a didactic approach, the package has been
equipped with a very friendly point-and-click graphical inter-
face, by which the teacher can easily show and discuss, using
practical examples, the basic concepts of cache architecture
and behavior. The environment consists of five phases shown
in Figure 1.
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Figure 1. Structure of a Csim session.

In theProgram Developmentphase, the user builds an ap-
plication, debugs it and produces a trace file. Applications can
be executed and debugged on a dedicated ARM instruction set
simulator or loaded in an ARM CPU-based board for a native
evaluation. Once that the application has been developed, the
user can generate a trace file by simply pointing-and-clicking
while the program is running in emulator mode.

In theSystem Configurationphase, the user defines the sys-
tem architecture and the features of each component. The sys-
tem may include the following components: an ARM core, a
cache memory, a system bus, memory banks, and a number of
I/O devices. For each component, the designer has to specify
the timing, the architecture and the management policy.

TheProgram Behavior Analysisphase allows the student
to perform two types of trace analysis. The first one uses tradi-
tional program statistics such as the percentages of data/code,
read/write accesses. The second one regards program local-
ity. An accurate knowledge of locality features plays a crucial
role in understanding cache concepts. The locality statistics
include: the number of unique blocks, the locality surface [5],
and the spatial locality.

For mere didactic intents, theSystem Behavior Analysis
phase allows the student to carry out a sort of step-by-step
simulation, by executing a single memory operation and ex-

amining in detail the sequence of actions necessary to a cache
controller to carry out the requested operation, or by executing
a specified sequence of operations and examining the cache
status and contents after the execution.

The Performance Analysisphase allows the user to plan,
perform a single simulation or a performance evaluationex-
periment, and finally analyze the results. An experiment is
defined by: i) the trace file; ii) the system configuration; and
iii) the varying parameters (one or two). Csim may initially
simulate an adequate number of memory references without
an outcome. This allows the cache to exit its cold state [1]
and to reach a steady condition. The results consist of:global
system performance(execution time, lost time in waiting, and
word transfer ratio);cache behavior(miss, code miss, data
miss, read miss, data read miss and data write miss ratios
and cumulative cold misses); andbus traffic(occupation rate,
number of read-block operations, number of write operations
for write-through cache models and number of update-block
operations for copy-back cache models).

Use of Csim as a didactic tool
In a didactic approach to computer architecture, one of the

key concepts that the student has to deal with isprogram lo-
cality. Hence, the first phase of a typical Csim didactic ses-
sion, concerns the analysis of locality features of a program
written directly by the student or chosen within a set of prede-
fined, very simple programs; in the example shown in detail in
this Section, the program is the implementation of the median
filter algorithm applied to a 34�34 pixel image with a 3�3
pixel window [4].

As shown in the previous Section, during theProgram De-
velopmentphase (Figure 1) a trace can be produced to allow a
detailed program locality analysis (number of unique blocks,
locality surface, spatial locality).

If we defineT [i] as thei-th reference of a traceT , for each
couplefT [i]; T [j] such that j > ig we can also define the
distance(d) as the numberj � i of intervening references,
and thestride (s) as the offsetT [j] � T [i] between the two
references.

The concept ofspatial locality refers to the fact that ad-
dress locations close to the “currently” referenced location
T [i] are more likely to occur in the next few references than
locations far away. Similarly, the concept oftemporal locality
reflects the fact that the address of the “current” referenceT [i]
is very likely to occur again in the next few references.

A quantitative approach to the locality analysis was first
proposed by Archibaldet al. [5] by means of the introduc-
tion of thelocality surface. They proposed a 3D-graph where
stride and distance are the base axes. The magnitude of lo-
cality surface for a specific couple (s; d) is defined as the
probability thatT [i] + s = T [i + d], whereT [i] + s 62
fT [i+ 1]; :::; T [i + d � 1]g andi assumes all the values be-
tween 1 and the length of the traceT minus one. From the
locality surface, the designer may derive information about
locality features likesequentiality, striding, temporalityand
loops. Sequentiality is typically due to the fetching of consec-
utive instructions. It is visible as a ridge along the diagonal
region withs = d, in which the length reflects the distribution



of sequential run lengths in the reference stream, while the
amplitude reflects sequential run frequency. Striding is pro-
duced by a series of references with a fixed step and is typical
of numerical algorithms, such as matrix operations where the
elements are accessed in row order instead of in column order.
It is characterized by a ridge in the region withs > d. The
temporality region, i.e., the region withs = 0, shows the dis-
tribution of distances between repeated accesses at the same
addresses. Finally, loops are characterized by ridges which
are parallel to the stride axis, in the region with�d < s < 0.
Figure 2 gives an example of a locality surface concerning
the median filter program. In particular, the temporal locality
window shows that, in this case, the latest referenced address
has a very high probability (more than 80%) to be referenced
again within the next 128 memory accesses.
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Figure 2. The locality surface for median filter program.

According to the mathematical definition, spatial locality
is the distribution of the offset between two consecutive ad-
dresses in the trace. It can be obtained from the locality sur-
face in the case ofd = 1. Csim can show spatial locality in
a specific graph as distribution of: i) all accesses and ii) data
and code accesses separately. Figure 3 shows the locality of
data accesses for our example.
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Figure 3. Spatial locality in the data area.

The user can optionally analyze theunique blocksgraph.
The number of unique blocks for a given numberi of ref-
erences is the number of distinct blocks used by a program
before the referencei-th. These blocks only cause misses in
an infinite cache, the number of unique blocks delineates a
lower bound for the miss ratio. Csim shows a family of curves,
where the number of unique blocks is given as a function of
the number of references and the parameter is the block size
(Figure 4).
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Figure 4. Number of unique blocks (total and incremental)
and lower bound of miss ratio for median filter program.

The next step in a didactic path is to show how the presence
of a cache memory can exploit program locality in order to im-
prove the system performance. For this purpose, the student
has to select the system parameters concerning cache organi-
zation. A cache scheme is defined by the following parame-
ters: i) the mapping policy; ii) the replacement algorithm; iii)
the update policy; iv) the cache size, v) the block size; vi) the
number of blocks for each set (in the case of a set associative
cache); and vii) the presence and the length of a write buffer.

Figure 5 shows the miss percentage of the median filter
program as a function of the cache size and degree of asso-
ciativity. For this program, a 2-way set associative cache is
recommended since it supplies the best balance between cost
and performance. Also, we notice that a 4-way cache pro-
duces quite the same result. At a more detailed level of analy-
sis, the student is called to search, for a given cache structure,
the cache and block sizes which can provide the best results in
terms of global performance. Again a new graph can be pro-
duced (like the one in Figures 8 and 9) to find the best value
for the cache block size.

Finally, we show how theCache Behavior Analysisenvi-
ronment can be employed to perform the step-by-step simula-
tion. Let us consider the cache configuration just examined (2-
KByte, 2-way set associative cache with a 32-Byte block size)
and suppose (Figure 6) that the required operation is a read on
location with address (00001FD4)16; the following events and
actions are highlighted: i) the memory block (00000FE)16 is



Figure 5. Miss percentage for median filter program.

not present in cache memory (miss condition), ii) the victim
cache block to be replaced is the block 0 in the set (1E)16; iii)
it is not necessary to update the main memory block because
the copy is not modified; iv) the cache loads the memory block
(00000FE)16 and so on.
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Figure 6. Step-by step operation.

In a window, Csim shows the structure of the selected
cache; in a second window, it summarizes the information
about the operation being executed and shows how the cache
uses the memory address. In our example, the address
(00001FD4)16 is split in (000007)16 used as tag field (com-
pared with the tag field of both blocks of set (1E)16); in (1E)16
as set field (used as set address), and finally (14)16 used as
byte offset in the block.

Beyond theory: case studies of actual design
In the design of embedded systems, a key point is the op-

timization of each component, which needs to meet, as bet-
ter as possible, the specific application for which the whole
system is designed. Also, it should be noticed that often an
embedded system runs only one program for all its life. We
are going to present an example of design training path, and

we will show how Csim can help a student to find out the
optimal cache and system configuration for a specific applica-
tion. We consider thecjpeg program, ajpeg image com-
pression/decompression tool [12] which is frequently used in
commercial embedded systems.

First, the student should wonder about the following ques-
tion: for a 20 MHz ARM running an application using the
cjpeg program, is it necessary to add a cache memory in
order to achieve the required performance? We suppose that
the product requires that the image compression be completed
in less than 1s. First, the student traces the execution of the
cjpeg program while compressing an image stored in, e.g.,
“ppm” format, using the JumpStart trace facility. The ppm
image is a 101-KByte image consisting of 227x149 pixels.
(The sample picture is a red rose and the image produced by
cjpeg occupies 5 KBytes.)

Then, the student defines the system configuration includ-
ing a 20 MHz ARM core, a system bus, a 1-MByte mem-
ory DRAM bank, a 128-KByte memory PROM bank, and a
memory-mapped graphical I/O device. The student needs to
specify the timing and architecture of each component. In
order to obtain a low cost and a low power-consumption solu-
tion, a slow system bus and slow memory devices are selected.

In the case of the ARM core, the student provides the tim-
ing for both read and write operations. For these operations
the simulator requires i) the minimum time necessary for the
ARM core to perform the bus operation and ii) the maximum
available to a slave to complete an operation without requiring
waiting time for the CPU.

A specific window shows the ARM timing plot, derived
from the ARM data book, in order to drive the student to find
the proper values. In our example, considering that the ARM
processor employs a pipelined bus, the student obtains and
sets these values: 50 ns, as minimum time for read/write op-
erations, and 64 ns as the maximum time usable by a slave to
complete an operation.

The simulator models a generic bus, which is capable to
accommodate the typical memory operations. The student has
to specify the data bus width and the time for each type of bus
operation. In our example, the data bus width is 32 bits and
the time is 200 ns for both read (Tread) and write (Twrite)
operations.

Finally, the student specifies the features of memory and
I/O devices. For each module, the configuration parameters
include the module type, the starting address and the size. In
our example, the system includes three modules: a DRAM
bank, a ROM bank and a memory-mapped graphical I/O de-
vice. The simulator requires to know the delays (additional
time with respect to the bus time) introduced by a component
to complete each bus operation. Among the three modules
considered, only the PROM module needs additional time
(200 ns) to complete read operations.

With the system configuration just examined, a simulation
shows that, without cache memory, the application takes up
2.898s to execute the program. The addition of a cache mem-
ory proves to be necessary, therefore, to meet the time require-
ment.

As shown in the previous Section, the designer has to de-



fine the cache structure in terms of cache size, block size,
number of blocks per set, and replacement policy; further-
more, for simulation to be possible, cache timings have to be
specified. Figure 7 shows the scheme used to set the cache
timings: Trd andTwt are the times for reading data from or
writing data to a cache block;Ttag is the tag access time;Tcmp

is the compare time; andTorq is the time needed to initiate an
operation involving an attached module, after a miss has been
detected.
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Figure 7. Setting the cache timings.

Finally, the student has to specify the timing of bus block-
operations used by the cache to interact with the main mem-
ory. In particular, the cache uses theread-blockoperation
to fetch a memory block when a miss condition occurs. An
update-blockoperation allows a copy-back cache to update
a memory block when its cached copy is dirty and has to
be replaced. The time required by a bus block-operation is
calculated by considering the bus width, the block size and
four timing values: Tread, Twrite, Tsread and Tswrite. A
block operation is described as a single operation followed by
fast transfer operations.Tread (Twrite) is the time needed to
perform a single read (write) operation, andTsread (Tswrite)
is the time needed to perform a subsequent sequential read
(write) transfer. In this example, the timings are:Tread =
Twrite = 200ns,Tsread = Tswrite = 160ns.

The student can now execute a parametric simulation in
order to search the optimal cache configuration. Figure 8
shows the miss ratio and the execution time versus block size
(from 8 to 64 Bytes) and cache size (from 2 to 32 KBytes) for
two cache configurations. The first cache is a simple write-
through, direct access cache without a write buffer; the sec-
ond one is a more complex copy-back, two-way set associa-
tive cache with a two-deep write buffer. The cache uses the
LRU technique as replacement policy. In both cases, the tim-
ings are:Trd = 35ns,Twt = 35ns,Ttag = 20ns,Tcmp = 10ns,
Torq = 10ns.

The designer can observe that, in both configurations, exe-
cution time and miss ratio exhibit different values and behav-
iors. For cache sizes greater than 16 KBytes, the execution
time is constant and independent of the block size. In this
way the student can select a configuration that best meets cost-
effectiveness and performance requirements (execution time
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Figure 8. Miss ratio and time execution forcjpeg program.

� 1s). For example, an optimal choice is a 16-KByte, write-
through, direct access cache with 16-Byte block size without
a write buffer.

Now, the student can also answer the question: for the se-
lected cache configuration, which is the cheapest main mem-
ory meeting the time requirement? The designer can find the
solution by executing simulations having the RAM bank ac-
cess time as parameter. The simulation shows that the mem-
ory bank delay can be increased by no more than 30ns with
respect to the values specified in the configuration.

Now, if the student uses the same design path for a differ-
ent embedded application, he/she finds a different cache and
system configuration. For example, we trace the execution
of the rawcaudio program [6] while it converts a 6-KByte
ADPCM sound sample to a 24-KByte raw 16-bit PCM for-
mat. The audio sample is the voice of a man saying “hello,
world.” Figure 9 shows the miss ratio and the execution time
for the same configurations considered in the first example.
The differences between the graphs of Figures 8 and 9 are due
to the different locality characteristics of the programs.

We assume that the application requires that the conver-
sion should be completed in less than 90ms, in order to show
a configuration tuning session. The system takes up 359ms to
execute the program without cache memory, therefore cache
is necessary. Table 1 lists some examples of cache configura-
tions that allow the system to satisfy the time requirement. If
the designer selects cache configuration 2, the memory bank
delays can be increased by 260ns with respect to the values
specified above.

These two examples show that meeting time requirements
of different applications yields different cache configurations.
The student can observe that, in the second example, the
write-through cache configurations never guarantee the ful-
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program.

mapp. update cache block write exec. max
policy size size buffer time delay

(KB) (B) len. (ms) (ns)

1 direct copy-back 8 8 0 88.97 40
2 direct copy-back 16 16 0 86.40 260
3 direct copy-back 8 8 2 88.75 60
4 direct copy-back 16 16 2 86.34 260
5 2-way copy-back 4 16 0 88.96 40
6 2-way copy-back 8 64 0 88.62 50
7 2-way copy-back 4 16 2 88.86 50
8 2-way copy-back 8 64 2 88.61 60

Table 1. Some cache configurations that allow the system to
satisfy the time requirements forrawcaudio program.

fillment of time requirements. The two examples also show
that write and miss ratios affect the performance of systems
with cache memories in a different way. Thecjpeg and
rawcaudio programs have similar write ratios, but exhibit
different miss ratios due to different locality features. A lower
miss ratio enhances the influence of write operations on global
performance. In this case, the choice of an optimal update pol-
icy becomes critical.

Conclusions

The growing demand for embedded products requires
highly sophisticated computing functions. Designers must se-
lect the most efficient cache/system configuration in order to
resolve complex – even conflicting – requirements for low-
power/high-speed and component cost. This makes accu-
rate and reliable system/cache memory simulation and per-
formance analysis crucial. We have presented an educational
environment based on a trace-driven system simulator that can

help students in the design activity of cache memory to be em-
ployed in ARM-based embedded systems. By means of prac-
tical examples, we have shown how the student can success-
fully use the tool in two typical schemes of a didactic path.
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