
An Educational Environment
for Designing and Performance Tuning of Embedded Systems

Roberto Giorgi and Cosimo Antonio Prete

Dipartimento di Ingegneria della Informazione
Università di Pisa, Via Diotisalvi 2, I-56126, Italy

Abstract - Teaching how to design and tune an embedded
system is indeed a difficult task, since the student has to learn
the many trade-offs that lead to the final system configuration.

Existing tools are often too complex, or do not stress the
basic steps in the design path. These steps are very useful
during the first training sessions.

The environment Csim2, which is used at our university,
permits the student to become familiar with concepts of pro-
gram locality, cache structure and performance tuning, while
analyzing actual data produced by the actual software that
has to be tied with the embedded system.

The student can analyze program behavior by means of
locality graphs, or run extensive parametric simulations in
order to find the best configuration that minimize either sys-
tem cost, power consumption, or execution time. Further op-
timizations allow the designer to explore more sophisticated
features like selective cacheing, cache locking, scratch mem-
ory, and code mapping for better cache exploitation.

In this paper we show the basic capabilities of the envi-
ronment, and some example of training sessions. By means
of graphs about program locality and performance metrics,
the student is readily conducted to learn how to select an ad-
equate embedded system configuration.

1 Introduction
The aim of Csim2 educational environment is to combine

two complementary exigencies in embedded system architec-
ture design courses: on the one side, the availability of a tool,
which can provide practical example sessions in order to show
the main concepts about embedded system architecture; on
the other side, fostering the students to the actual design ac-
tivity of embedded application oriented systems [Gajski95].

The idea of building this environment came up from the
observation that actual computer systems and/or commercial
design tools are generally not suitable to be used as didactic
tools and to present the basic concepts of architecture design
in both basic and advanced Computer Engineering courses.
Their structure is often too complex and usually prevents the
detection of all the events occurring in the activity of the ma-
chine. Moreover, the high number and frequency of these
events may require a too expensive acquisition system or, also,
several events may not be directly observable, since they oc-
cur within the chip.

The design of embedded systems, through new methodolo-
gies like co-design, andsystem-in-a-chipapproach, implies
the demand for specific architectural knowledge by computer

engineers. A typical design path starts from the definition of
the hardware/software requirements needed to implement the
specified function through the embedded system [Gajski95].
After that, the designer usually has a prototype program and
a prototype hardware configuration that has to be tuned in or-
der to meet the low power consumption and/or low cost re-
quirements or to minimize execution time. At this point, it is
very important that the designer understands how to modify
the system in order accomplish that task. This understanding
usually rely on a good knowledge about the memory hierarchy
behavior and the program locality effects on that hierarchy.

Also, due to the conflicting requirements, a trade-off has
to be chosen. For example, low power consumption and low
cost requirements suggest the adoption of slow memory de-
vices, so that designers often turn to on-chip cache memories
to both provide high processing power and allow using large
slow main memory. In this case, typical question to be an-
swered are: i) given a system and an application, is it nec-
essary to add a cache memory to obtain the desired perfor-
mance? ii) if so, which is the optimal cache configuration?
iii) given a specific on-chip cache, which is the cheapest main
memory satisfying the performance requirements of the appli-
cation? Without an accurate tool for system configuration and
simulation, reliable answers are hard to come by.

All these reasons motivated us to develop a new tool which
could combine the different needs of student and the actual de-
signer. A relative easiness is guaranteed concerning the prac-
tical use of the environment, so that the student, when switch-
ing from one phase to another, does not need to get familiar
with a different – possibly much more complex – tool.

As a mere didactic environment, Csim2 offers a wide range
of opportunities for investigating the system performance and
system structure up to a relatively complex level of depth.
The concept of program locality is particularly emphasized,
since it is one of the critical issues in this branch of com-
puter architecture. To this purpose, Csim2 provides an ad-
vanced program-locality analysis and a close evaluation of all
the quantities which affect the execution time. The student
is actively involved in making authentic choices that affect
the target system, such as changing the parameters of a sim-
ulation and analyzing the immediate response of that system
to the user actions; otherwise, elaborate graphics and simula-
tions may result not effective.

As a design tool, the package allows the user: i) to project
his own embedded application within a proper software devel-
opment environment; ii) to explore different strategies for the
memory hierarchy, including different level of caching, split



caches, write-buffering, by means of a graphical design tool;
iii) to carry out the performance evaluation, in order to choose
the system configuration which can guarantee the best perfor-
mance for the target application.

For a further parameter space exploration the designer can
perform a parametric simulation to evaluate system perfor-
mance while varying the timing and architecture features of
each component of the system. The final results, shown by
means of easy-to-read graphs, help him to find rather quickly
an acceptable trade-off solution. Thus, focusing on these sim-
ple crucial steps of the system design, we foster the student
attitude to select appropriate memory hierarchy and tune the
influencing parameters of the architecture.

Second level optimizations include the investigation of
more sophisticated techniques likeselective cacheingto cache
only particular memory areas,cache lockingto leave some
data in cache thus avoiding replacement,scratch memorya
small on-chip memory for allocating frequently used data,
code mappingfor reducing conflict cache-misses. All these
techniques are supported by adequate tools that help the de-
signer to select the best strategy for the application code and
data [Lorenzini98]. Etherogeneous multicore architecture is
also permitted, thus allowing the designer to try combinations
of processors and DSPs.

The environment has been made up by our University
[Prete97b] and the full version is integrated in a toolkit (Jump-
Start) distributed by VLSI Technology, Inc., for the design
of ARM-based applications. (ARM [Jaggar97], [Furber93] is
a 32-bit microprocessor designed by ARM Ltd. and largely
used in embedded products. It uses RISC technology and a
fully-static design approach to obtain both high performance
and very low power consumption.)

2 The Csim2 environment
To facilitate the students, the package has a very friendly

point-and-click graphical interface, by which the teacher can
easily show and discuss, using practical examples, the basic
concepts of cache architecture and behavior. The environment
consists of four phases shown in Figure 1.

PROGRAM

DEVELOPMENT

SYSTEM

CONFIGURATION

BEHAVIOR

ANALYSIS

PROGRAM

BEHAVIOR
ANALYSIS

PERFORMANCE

CONFIGURATIONTRACE

SPECIFICATION

ANALYSIS

Figure 1. Structure of a Csim session.

In theProgram Developmentphase, the user builds an ap-
plication, debugs it and produces a trace file. Applications can

be executed and debugged on a dedicated ARM instruction set
simulator or loaded in an ARM CPU-based board for a native
evaluation. Once that the application has been developed, the
user can generate a trace file by simply pointing-and-clicking
while the program is running in emulator mode.

In theSystem Configurationphase, the user defines the sys-
tem architecture and the features of each component. The user
first draws the schematic of the system architecture at func-
tional level. The system may include the following compo-
nents: an ARM core, cache memory that can be combined in
different levels or in split instruction/data architecture, a sys-
tem bus, memory banks, and a number of I/O devices. For
each component, the designer has to specify the timing and
the other custom parameters (Figure 2).

Figure 2. Embedded system configuration example. The
system includes an ARM core, an internal I/O device, a cache
memory, a bus adapter, and an external RAM and an external

I/O device. The configuration is produced by means of the
configuration editor of the environment.

TheProgram Behavior Analysisphase allows the student
to perform two types of trace analysis. The first one uses tradi-
tional program statistics such as the percentages of data/code,
read/write accesses. The second one regards program local-
ity. An accurate knowledge of locality features plays a cru-
cial role in understanding cache concepts. The locality statis-
tics include: the number of unique blocks, the locality surface
[Grimsrud96], and the spatial locality.

The Performance Analysisphase allows the user to plan,
perform a single simulation or a performance evaluationex-
periment, and finally analyze the results. An experiment is
defined by: i) the trace file; ii) the system configuration; and
iii) the varying parameters (one or two). Csim2 may initially
simulate an adequate number of memory references with-
out an outcome. This allows the cache to exit its cold state
[Easton78] and to reach a steady condition. The results con-



sist of: global system performance(execution time, lost time
in waiting, and word transfer ratio);cache behavior(miss,
code miss, data miss, read miss, data read miss and data write
miss ratios and cumulative cold misses); andbus traffic(oc-
cupation rate, number of read-block operations, number of
write operations for write-through cache models and number
of update-block operations for copy-back cache models).

3 Exploring the program behavior

In a didactic approach to computer architecture, one of the
key concepts that the student has to deal with isprogram lo-
cality. Hence, the first phase of a typical Csim2 didactic ses-
sion, concerns the analysis of locality features of a program
written directly by the student or chosen within a set of prede-
fined, very simple programs; in the example shown in detail in
this Section, the program is the implementation of the median
filter algorithm applied to a 34�34 pixel image with a 3�3
pixel window [Gallagher81].

As shown in the previous Section, during theProgram De-
velopmentphase (Figure 1) a trace can be produced to allow a
detailed program locality analysis (number of unique blocks,
locality surface, spatial locality).

If we defineT [i] as thei-th reference of a traceT , for each
couplefT [i]; T [j] such that j > ig we can also define the
distance(d) as the numberj � i of intervening references,
and thestride (s) as the offsetT [j] � T [i] between the two
references.

The concept ofspatial locality refers to the fact that ad-
dress locations close to the “currently” referenced location
T [i] are more likely to occur in the next few references than
locations far away. Similarly, the concept oftemporal locality
reflects the fact that the address of the “current” referenceT [i]
is very likely to occur again in the next few references.

A quantitative approach to the locality analysis was first
proposed by Archibaldet al. [Grimsrud96] by means of the
introduction of thelocality surface. They proposed a 3D-
graph where stride and distance are the base axes. The mag-
nitude of locality surface for a specific couple (s; d) is de-
fined as the probability thatT [i] + s = T [i + d], where
T [i] + s 62 fT [i + 1]; :::; T [i + d � 1]g and i assumes all
the values between 1 and the length of the traceT minus
one. From the locality surface, the designer may derive in-
formation about locality features likesequentiality, striding,
temporalityand loops. Sequentiality is typically due to the
fetching of consecutive instructions. It is visible as a ridge
along the diagonal region withs = d, in which the length
reflects the distribution of sequential run lengths in the refer-
ence stream, while the amplitude reflects sequential run fre-
quency. Striding is produced by a series of references with a
fixed step and is typical of numerical algorithms, such as ma-
trix operations where the elements are accessed in row order
instead of in column order. It is characterized by a ridge in
the region withs > d. The temporality region, i.e., the re-
gion with s = 0, shows the distribution of distances between
repeated accesses at the same addresses. Finally, loops are
characterized by ridges which are parallel to the stride axis, in
the region with�d < s < 0. Figure 3 gives an example of a
locality surface concerning the median filter program. In par-

ticular, the temporal locality window shows that, in this case,
the latest referenced address has a very high probability (more
than 80%) to be referenced again within the next 128 memory
accesses.

Loops

Sequentiality

Striding

Temporal locality

Spatial locality

-2
56

-6
4

-1
6

-4 -1 1 4

16 64

25
6

1
16

256
4096

65536

1048576

1,70E+07

0

5

10

15

20

25

30

stride

distance

Locality Surface Temporal Locality (stride=0)

0

5

10

15

20

25

30

1 4 16 64 25
6

10
24

40
96

distance

Spatial Locality (distance=1)

0
10
20
30
40
50
60
70
80
90

-1
28 -3
2 -8 -2 0 2 8 32 12
8

stride

Figure 3. The locality surface for median filter program.

According to the definition, spatial locality is the distribu-
tion of the offset between two consecutive addresses in the
trace. It can be obtained from the locality surface in the case
of d = 1. Csim2 can show spatial locality in a specific graph
as distribution of: i) all accesses and ii) data and code accesses
separately.

The user can optionally analyze theunique blocksgraph.
The number of unique blocks for a given numberi of refer-
ences is the number of distinct blocks used by a program be-
fore the referencei-th. These blocks only cause misses in an
infinite cache, the number of unique blocks delineates a lower
bound for the miss ratio. Csim2 shows a family of curves,
where the number of unique blocks is given as a function of
the number of references and the parameter is the block size
(Figure 4).

unique blocks

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 10
0

reference x 1000

4-byte

8-byte

16-byte

32-byte

minimum miss ratio

0
2
4
6
8

10
12
14
16

0 20 40 60 80 10
0

references x 1000

new unique blocks

1

10

100

1000

10000

10 30 50 70 90

references x 1000

Figure 4. Number of unique blocks (total and incremental)
and lower bound of miss ratio for median filter program.

The next step in a didactic path is to show how the presence
of a cache memory can exploit program locality in order to im-



prove the system performance. For this purpose, the student
has to select the system parameters concerning cache organi-
zation. A cache scheme is defined by the following parame-
ters: i) the mapping policy; ii) the replacement algorithm; iii)
the update policy; iv) the cache size, v) the block size; vi) the
number of blocks for each set (in the case of a set associative
cache); and vii) the presence and the length of a write buffer.

Figure 5. Miss percentage for median filter program.

Figure 5 shows the miss percentage of the median filter
program as a function of the cache size and degree of asso-
ciativity. For this program, a 2-way set associative cache is
recommended since it supplies the best balance between cost
and performance. Also, we notice that a 4-way cache pro-
duces quite the same result. At a more detailed level of analy-
sis, the student is called to search, for a given cache structure,
the cache and block sizes which can provide the best results in
terms of global performance. Again a new graph can be pro-
duced (like the one in Figures 7 and 8) to find the best value
for the cache block size.

4 Fostering students to actual design

In the design of embedded systems, a key point is the op-
timization of each component, which needs to meet, as bet-
ter as possible, the specific application for which the whole
system is designed. Also, it should be noticed that often an
embedded system runs only one program for all its life. We
are going to present an example of design training path, and
we will show how Csim2 can help a student to find out the
optimal cache and system configuration for a specific applica-
tion. We consider thecjpeg program, ajpeg image com-
pression/decompression tool [Wallace91] which is frequently
used in commercial embedded systems.

First, the student should wonder about the following ques-
tion: for a 20 MHz ARM running an application using the
cjpeg program, is it necessary to add a cache memory in
order to achieve the required performance? We suppose that
the product requires that the image compression be completed
in less than 1s. First, the student traces the execution of the
cjpeg program while compressing an image stored in, e.g.,
“ppm” format, using the JumpStart trace facility. The ppm

image is a 101-KByte image consisting of 227x149 pixels.
(The sample picture is a red rose and the image produced by
cjpeg occupies 5 KBytes.)

Then, the student defines the system configuration includ-
ing a 20 MHz ARM core, a system bus, a 1-MByte mem-
ory DRAM bank, a 128-KByte memory PROM bank, and a
memory-mapped graphical I/O device. The student needs to
specify the timing and architecture of each component. In
order to obtain a low cost and a low power-consumption solu-
tion, a slow system bus and slow memory devices are selected.

In the case of the ARM core, the student provides the tim-
ing for both read and write operations. For these operations
the simulator requires i) the minimum time necessary for the
ARM core to perform the bus operation and ii) the maximum
available to a slave to complete an operation without requiring
waiting time for the CPU.

A specific window shows the ARM timing plot, derived
from the ARM data book, in order to drive the student to find
the proper values. In our example, considering that the ARM
processor employs a pipelined bus, the student obtains and
sets these values: 50 ns, as minimum time for read/write op-
erations, and 64 ns as the maximum time usable by a slave to
complete an operation.

The simulator models a generic bus, which is capable to
accommodate the typical memory operations. The student has
to specify the data bus width and the time for each type of bus
operation. In our example, the data bus width is 32 bits and
the time is 200 ns for both read (Tread) and write (Twrite)
operations.

Finally, the student specifies the features of memory and
I/O devices. For each module, the configuration parameters
include the module type, the starting address and the size. In
our example, the system includes three modules: a DRAM
bank, a ROM bank and a memory-mapped graphical I/O de-
vice. The simulator requires to know the delays (additional
time with respect to the bus time) introduced by a component
to complete each bus operation. Among the three modules
considered, only the PROM module needs additional time
(200 ns) to complete read operations.

With the system configuration just examined, a simulation
shows that, without cache memory, the application takes up
2.898s to execute the program. The addition of a cache mem-
ory proves to be necessary, therefore, to meet the time require-
ment.

As shown in the previous Section, the designer has to de-
fine the cache structure in terms of cache size, block size,
number of blocks per set, and replacement policy; further-
more, for simulation to be possible, cache timings have to be
specified. Figure 6 shows the scheme used to set the cache
timings: Trd andTwt are the times for reading data from or
writing data to a cache block;Ttag is the tag access time;Tcmp

is the compare time; andTorq is the time needed to initiate an
operation involving an attached module, after a miss has been
detected.

Finally, the student has to specify the timing of bus block-
operations used by the cache to interact with the main mem-
ory. In particular, the cache uses theread-blockoperation
to fetch a memory block when a miss condition occurs. An
update-blockoperation allows a copy-back cache to update
a memory block when its cached copy is dirty and has to



Trd ns

Twt ns

Ttag ns

Tcmp ns

Torq ns

35

20

10

505035

10bus 
interface

tag
fields

data
fields

tag

set

cmp

Ttag

Tcmp

Trd, Twt

address data

Torq

Figure 6. Setting the cache timings.

be replaced. The time required by a bus block-operation is
calculated by considering the bus width, the block size and
four timing values: Tread, Twrite, Tsread and Tswrite. A
block operation is described as a single operation followed by
fast transfer operations.Tread (Twrite) is the time needed to
perform a single read (write) operation, andTsread (Tswrite)
is the time needed to perform a subsequent sequential read
(write) transfer. In this example, the timings are:Tread =
Twrite = 200ns,Tsread = Tswrite = 160ns.

The student can now execute a parametric simulation in
order to search the optimal cache configuration. Figure 7
shows the miss ratio and the execution time versus block size
(from 8 to 64 Bytes) and cache size (from 2 to 32 KBytes) for
two cache configurations. The first cache is a simple write-
through, direct access cache without a write buffer; the sec-
ond one is a more complex copy-back, two-way set associa-
tive cache with a two-deep write buffer. The cache uses the
LRU technique as replacement policy. In both cases, the tim-
ings are:Trd = 35ns,Twt = 35ns,Ttag = 20ns,Tcmp = 10ns,
Torq = 10ns.

The designer can observe that, in both configurations, exe-
cution time and miss ratio exhibit different values and behav-
iors. For cache sizes greater than 16 KBytes, the execution
time is constant and independent of the block size. In this
way the student can select a configuration that best meets cost-
effectiveness and performance requirements (execution time
� 1s). For example, an optimal choice is a 16-KByte, write-
through, direct access cache with 16-Byte block size without
a write buffer.

Now, the student can also answer the question: for the se-
lected cache configuration, which is the cheapest main mem-
ory meeting the time requirement? The designer can find the
solution by executing simulations having the RAM bank ac-
cess time as parameter. The simulation shows that the mem-
ory bank delay can be increased by no more than 30ns with
respect to the values specified in the configuration.

Now, if the student uses the same design path for a differ-
ent embedded application, he/she finds a different cache and
system configuration. For example, we trace the execution of
the rawcaudio program [CCITT84] while it converts a 6-
KByte ADPCM sound sample to a 24-KByte raw 16-bit PCM
format. The audio sample is the voice of a man saying “hello,
world.” Figure 8 shows the miss ratio and the execution time

ExecutionTime

0

100

200

300

400

500

600

700

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

2

4

6

8

10

12

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

ExecutionTime

0

100

200

300

400

500

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

1

2

3

4

5

6

7

8

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

Figure 7. Miss ratio and time execution forcjpeg program.

for the same configurations considered in the first example.
The differences between the graphs of Figures 7 and 8 are due
to the different locality characteristics of the programs.

We assume that the application requires that the conver-
sion should be completed in less than 90ms, in order to show
a configuration tuning session. The system takes up 359ms to
execute the program without cache memory, therefore cache
is necessary. Table 1 lists some examples of cache configura-
tions that allow the system to satisfy the time requirement. If
the designer selects cache configuration 2, the memory bank
delays can be increased by 260ns with respect to the values
specified above.

mapp. update cache block write exec. max
policy size size buffer time delay

(KB) (B) len. (ms) (ns)

1 direct copy-back 8 8 0 88.97 40
2 direct copy-back 16 16 0 86.40 260
3 direct copy-back 8 8 2 88.75 60
4 direct copy-back 16 16 2 86.34 260
5 2-way copy-back 4 16 0 88.96 40
6 2-way copy-back 8 64 0 88.62 50
7 2-way copy-back 4 16 2 88.86 50
8 2-way copy-back 8 64 2 88.61 60

Table 1. Some cache configurations that allow the system to
satisfy the time requirements forrawcaudio program.

These two examples show that meeting time requirements
of different applications yields different cache configurations.
The student can observe that, in the second example, the
write-through cache configurations never guarantee the ful-
fillment of time requirements. The two examples also show
that write and miss ratios affect the performance of systems
with cache memories in a different way. Thecjpeg and



ExecutionTime

0

20

40

60

80

100

120

140

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

1

2

3

4

5

6

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

ExecutionTime

0

20

40

60

80

100

120

2 4 8 16 32
Cache size (Kbytes)

ms
8-byte
16-byte
32-byte
64-byte

Miss

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16 32
Cache size (kbytes)

%

8-byte
16-byte
32-byte
64-byte

Figure 8. Miss ratio and execution time forrawcaudio
program.

rawcaudio programs have similar write ratios, but exhibit
different miss ratios due to different locality features. A lower
miss ratio enhances the influence of write operations on global
performance. In this case, the choice of an optimal update pol-
icy becomes critical.

5 Conclusions

The growing demand for embedded products requires
highly sophisticated computing functions. Designers must se-
lect the most efficient cache/system configuration in order to
resolve complex – even conflicting – requirements for low-
power/high-speed and component cost. This makes accu-
rate and reliable system/cache memory simulation and per-
formance analysis crucial. We have presented an educational
environment based on a trace-driven system simulator that can
help students in the design activity of cache memory to be em-
ployed in ARM-based embedded systems. By means of prac-
tical examples, we have shown how the student can success-
fully use the tool in two typical schemes of a didactic path.

6 Acknowledgments

This work was supported by the Ministero della Universit`a
e della Ricerca Scientifica e Tecnologica (MURST), Italy and
by VLSI Technology Inc. We wish to thank Francesco Laz-
zarini that took part in the development of the cache simulator,
Angelo Rappelli that contributed in developing the graphical
interface for the Microsoft Windows version, Massimiliano
Panico that performed performance evaluations of the case
studies.

References
[CCITT84] 32 Kbit/s Adaptive Differential Pulse Code

Modulation (ADPCM), CCITT (Int‘l Tele-
graph and Telephone Consultative Commit-
tee), 1984.

[Easton78] M. Easton, “Computation of cold-start miss
ratio,” IEEE Trans. Computers, vol. C-27,
no. 5, pp. 404–8, May 1978.

[Furber93] S. B. Furber, P. Day, J. D. Garsidex, N. C.
Paver, and J. V. Woods, “A Micropipelined
ARM,” Proc. IFIP TC 10/WG 10.5 Int’l Conf.
on Very Large Scale Integration (VLSI ’93),
Sept. 1993.

[Gajski95] D. D. Gajski and F. Vahid, “Specification and
Design of Embedded Software-Hardware Sys-
tems,” IEEE Design & Test of Computers,
vol. 12, no. 1, Spring 1995.

[Gallagher81] N. Gallagher and G. Wise, “A theoretical anal-
ysis of the properties of median filters,”IEEE
Trans. Acoustics Speech and Signal Proc.,
vol. 29, pp. 1136–1141, 1981.

[Grimsrud96] K. Grimsrud, J.Archibald, R. Frost, and
B. Nelson, “Locality as a Visualization Tool,”
IEEE Trans. Computers, vol. 45, no. 11,
pp. 1319–1326, Nov. 1996.

[Jaggar97] D. Jaggar, “ARM Architecture and Systems,”
IEEE Micro, pp. 9–11, July 1997.

[Lorenzini98] S. Lorenzini, G. Luculli, and C. A. Prete, “A
Fast Procedure Placement Algorithm for Op-
timal Cache Use,”Proc. MELECON’98, Tel
Aviv, Israel, May 1998.

[Prete97b] C. A. Prete, M. Graziano, and F. Lazzarini,
“The ChARM Tool for Tuning Embedded
Systems: Selecting and tuning system con-
figurations to meet cost, performance, and
power consumption requirements,”IEEE Mi-
cro, vol. 17, no. 4, pp. 67–76, July/Aug. 1997.

[Wallace91] G. K. Wallace, “The JPEG Still Picture Com-
pression Standard,”Communications of the
ACM, vol. 34, no. 4, pp. 30–44, Apr. 1991.


