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Abstract- Teaching how to design and tune an embeddeghgineers. A typical design path starts from the definition of
system is indeed a difficult task, since the student has to leaime hardware/software requirements needed to implement the
the many trade-offs that lead to the final system configuratiospecified function through the embedded system [Gajski95].
Existing tools are often too complex, or do not stress thafter that, the designer usually has a prototype program and
basic steps in the design path. These steps are very usedyrototype hardware configuration that has to be tuned in or-
during the first training sessions. der to meet the low power consumption and/or low cost re-
The environment Csim2, which is used at our universitguirements or to minimize execution time. At this point, it is
permits the student to become familiar with concepts of prorery important that the designer understands how to modify
gram locality, cache structure and performance tuning, whiléhe system in order accomplish that task. This understanding
analyzing actual data produced by the actual software thatsually rely on a good knowledge about the memory hierarchy
has to be tied with the embedded system. behavior and the program locality effects on that hierarchy.
The student can analyze program behavior by means of Also, due to the conflicting requirements, a trade-off has
locality graphs, or run extensive parametric simulations irto be chosen. For example, low power consumption and low
order to find the best configuration that minimize either syszost requirements suggest the adoption of slow memory de-
tem cost, power consumption, or execution time. Further opices, so that designers often turn to on-chip cache memories
timizations allow the designer to explore more sophisticateth both provide high processing power and allow using large
features like selective cacheing, cache locking, scratch mesiow main memory. In this case, typical question to be an-
ory, and code mapping for better cache exploitation. swered are: i) given a system and an application, is it nec-
In this paper we show the basic capabilities of the enviessary to add a cache memory to obtain the desired perfor-
ronment, and some example of training sessions. By meamance? ii) if so, which is the optimal cache configuration?
of graphs about program locality and performance metricsiji) given a specific on-chip cache, which is the cheapest main
the student is readily conducted to learn how to select an adremory satisfying the performance requirements of the appli-
equate embedded system configuration. cation? Without an accurate tool for system configuration and
simulation, reliable answers are hard to come by.
. All these reasons motivated us to develop a new tool which
1 Introduction could combine the different needs of student and the actual de-
The aim of Csim2 educational environment is to combingigner. A relative easiness is guaranteed concerning the prac-
two complementary exigencies in embedded system architdigal use of the environment, so that the student, when switch-
ture design courses: on the one side, the availability of a todf)g from one phase to another, does not need to get familiar
which can provide practical example sessions in order to showjth a different — possibly much more complex — tool.
the main concepts about embedded system architecture; onAs a mere didactic environment, Csim2 offers a wide range
the other side, fostering the students to the actual design ad-opportunities for investigating the system performance and
tivity of embedded application oriented systems [Gajski95]. system structure up to a relatively complex level of depth.
The idea of building this environment came up from thé'he concept of program locality is particularly emphasized,
observation that actual computer systems and/or commercséice it is one of the critical issues in this branch of com-
design tools are generally not suitable to be used as didactigter architecture. To this purpose, Csim2 provides an ad-
tools and to present the basic concepts of architecture desiganced program-locality analysis and a close evaluation of all
in both basic and advanced Computer Engineering coursélse quantities which affect the execution time. The student
Their structure is often too complex and usually prevents thig actively involved in making authentic choices that affect
detection of all the events occurring in the activity of the mathe target system, such as changing the parameters of a sim-
chine. Moreover, the high number and frequency of thesdation and analyzing the immediate response of that system
events may require a too expensive acquisition system or, al$o the user actions; otherwise, elaborate graphics and simula-
several events may not be directly observable, since they di®mns may result not effective.
cur within the chip. As a design tool, the package allows the user: i) to project
The design of embedded systems, through new methodolis own embedded application within a proper software devel-
gies like co-design, andystem-in-a-chigpproach, implies opment environment; ii) to explore different strategies for the
the demand for specific architectural knowledge by computenemory hierarchy, including different level of caching, split



caches, write-buffering, by means of a graphical design todbe executed and debugged on a dedicated ARM instruction set
iii) to carry out the performance evaluation, in order to choossimulator or loaded in an ARM CPU-based board for a native
the system configuration which can guarantee the best perfefaluation. Once that the application has been developed, the
mance for the target application. user can generate a trace file by simply pointing-and-clicking

For a further parameter space exploration the designer canile the program is running in emulator mode.
perform a parametric simulation to evaluate system perfor- IntheSystem Configuratigphase, the user defines the sys-
mance while varying the timing and architecture features dém architecture and the features of each component. The user
each component of the system. The final results, shown ffiyst draws the schematic of the system architecture at func-
means of easy-to-read graphs, help him to find rather quicktional level. The system may include the following compo-
an acceptable trade-off solution. Thus, focusing on these siments: an ARM core, cache memory that can be combined in
ple crucial steps of the system design, we foster the studedifferent levels or in split instruction/data architecture, a sys-
attitude to select appropriate memory hierarchy and tune tiem bus, memory banks, and a number of I/O devices. For
influencing parameters of the architecture. each component, the designer has to specify the timing and

Second level optimizations include the investigation othe other custom parameters (Figure 2).
more sophisticated techniques lselective cacheing cache
only particular memory areasache lockingto leave some |prEEmEEE GG
data in cache thus avoiding replacemesttratch memona Hlo Edit Took Zoom Qptions Help
small on-chip memory for allocating frequently used data SlZlEl &l sl&lef<|«| al| slel=
code mappindor reducing conflict cache-misses. All these
techniques are supported by adequate tools that help the ¢
signer to select the best strategy for the application code at
data [Lorenzini98]. Etherogeneous multicore architecture i
also permitted, thus allowing the designer to try combination
of processors and DSPs.

The environment has been made up by our Universit
[Prete97b] and the full version is integrated in a toolkit (Jump:
Start) distributed by VLSI Technology, Inc., for the design
of ARM-based applications. (ARM [Jaggar97], [Furber93] is S Adapter
a 32-bit microprocessor designed by ARM Ltd. and largely
used in embedded products. It uses RISC technology and
fully-static design approach to obtain both high performanc
and very low power consumption.)
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2 The Csim2 environment »

To facilitate the students, the package has a very friendl,
point-and-click graphical interface, by which the teacher can . s .
easily show and discuss, using practical examples, the basic':Igure 2. Embedded system configuration example. The

concepts of cache architecture and behavior. The environm&¥Etem includes an ARM core, an internal I/O device, a cache
consists of four phases shown in Figure 1. memory, a bus adapter, and an external RAM and an external

I/O device. The configuration is produced by means of the
configuration editor of the environment.
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The Program Behavior Analysiphase allows the student
to perform two types of trace analysis. The first one uses tradi-
tional program statistics such as the percentages of data/code,
read/write accesses. The second one regards program local-
ity. An accurate knowledge of locality features plays a cru-
cial role in understanding cache concepts. The locality statis-
tics include: the number of unique blocks, the locality surface
ANALYSIS [Grimsrud96], and the spatial locality.
The Performance Analysiphase allows the user to plan,
EARRNES perform a single simulation or a performance evaluaégn
periment and finally analyze the results. An experiment is
defined by: i) the trace file; ii) the system configuration; and
Figure 1. Structure of a Csim session. iii) the varying parameters (one or two). Csim2 may initially
simulate an adequate number of memory references with-
In the Program Developmenghase, the user builds an ap-out an outcome. This allows the cache to exit its cold state
plication, debugs it and produces a trace file. Applications c4dRaston78] and to reach a steady condition. The results con-
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sist of: global system performang¢execution time, lost time ticular, the temporal locality window shows that, in this case,
in waiting, and word transfer ratiojzache behavio(miss, the latest referenced address has a very high probability (more
code miss, data miss, read miss, data read miss and data wititen 80%) to be referenced again within the next 128 memory
miss ratios and cumulative cold misses); g traffic(oc- accesses.
cupation rate, number of read-block operations, number of

write operations for write-through cache models and numbe
of update-block operations for copy-back cache models).

=] Median Filter -~

Spatial locality

Options

Localty Surface _— Temporal Locality (stride=0)

3 Exploring the program behavior
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In a didactic approach to computer architecture, one of th
key concepts that the student has to deal witbréggram lo-
cality. Hence, the first phase of a typical Csim2 didactic ses
sion, concerns the analysis of locality features of a prograt
written directly by the student or chosen within a set of prede

Sequentiality

fined, very simple programs; in the example shown in detail ir Temporal locall ORIt
this Section, the program is the implementation of the media P v - -
filter algorithm applied to a 3434 pixel image with a 83 Figure 3. The locality surface for median filter program.
pixel window [Gallagher81].

As shown in the previous Section, during figram De-  According to the definition, spatial locality is the distribu-

velopmenphase (Figure 1) a trace can be produced to allowgy, of the offset between two consecutive addresses in the
detailed program locality analysis (number of unique block§race. |t can be obtained from the locality surface in the case
locality surface, spatial locality). of d = 1. Csim2 can show spatial locality in a specific graph

If we defineT'[i] as thei-th reference of a tracg, for each  as distribution of: i) all accesses and ii) data and code accesses
couple{T[i], T[j] such that j > i} we can also define the separately.
distance(d) as the numbeyj — i of intervening references,  The user can optionally analyze thaique blockgraph.
and thestride (s) as the offsefl’[j] — T'[i] between the two The number of unique blocks for a given numbef refer-
references. ences is the number of distinct blocks used by a program be-

The concept obpatial localityrefers to the fact that ad- fore the referencéth. These blocks only cause misses in an
dress locations close to the “currently” referenced locatioimfinite cache, the number of unique blocks delineates a lower
T'[i] are more likely to occur in the next few references thabound for the miss ratio. Csim2 shows a family of curves,
locations far away. Similarly, the concepttemporal locality where the number of unique blocks is given as a function of
reflects the fact that the address of the “current” refer@tjde  the number of references and the parameter is the block size
is very likely to occur again in the next few references. (Figure 4).

A quantitative approach to the locality analysis was first
proposed by Archibalét al. [Grimsrud96] by means of the =] Median Filter ==
introduction of thelocality surface They proposed a 3D- [ opiions
graph where stride and distance are the base axes. The m
nitude of locality surface for a specific couple, {) is de-
fined as the probability thaf'[i] + s = T[i + d], where
T[] +s & {T[i +1],...,T[i + d — 1]} andi assumes all |z - o i s

unique blocks new unique blocks
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the values between 1 and the length of the tr@ceninus ﬁ‘;‘;ﬁ:

one. From the locality surface, the designer may derive in _ | —n—16byte

formation about locality features likeequentiality striding, =R sy 1000
temporalityandloops Sequentiality is typically due to the — R
fetching of consecutive instructions. It is visible as a ridgg 1 - /- - p—o—o—o—0=o 00— 16 oMU SS f2e
along the diagonal region with = d, in which the length L2 L A
reflects the distribution of sequential run lengths in the refell s |//  s+attn—s—n—n— | ]

ence stream, while the amplitude reflects sequential run fr¢
quency. Striding is produced by a series of references with
fixed step and is typical of numerical algorithms, suchas mg “s s 2 8 3 o
trix operations where the elements are accessed in row orc reference x 1000 referencesx 1000
instead of in column order. It is characterized by a ridge in

the region withs > d. The temporality region, i.e., the re- Figure 4. Number of unique blocks (total and incremental)
gion with s = 0, shows the distribution of distances between and lower bound of miss ratio for median filter program.
repeated accesses at the same addresses. Finally, loops are

characterized by ridges which are parallel to the stride axis, in

the region with—d < s < 0. Figure 3 gives an example ofa  The next step in a didactic path is to show how the presence
locality surface concerning the median filter program. In pamef a cache memory can exploit program locality in order to im-
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prove the system performance. For this purpose, the studémiage is a 101-KByte image consisting of 227x149 pixels.
has to select the system parameters concerning cache orgéhire sample picture is a red rose and the image produced by
zation. A cache scheme is defined by the following paramejpeg occupies 5 KBytes.)

ters: i) the mapping policy; i) the replacement algorithm; iii)  Then, the student defines the system configuration includ-
the update policy; iv) the cache size, v) the block size; vi) thing a 20 MHz ARM core, a system bus, a 1-MByte mem-
number of blocks for each set (in the case of a set associatioey DRAM bank, a 128-KByte memory PROM bank, and a
cache); and vii) the presence and the length of a write buffememory-mapped graphical /0 device. The student needs to
specify the timing and architecture of each component. In
order to obtain a low cost and a low power-consumption solu-

=O'Lﬁ0ns Median Filter == tion, a slow system bus and slow memory devices are selected.
s In the case of the ARM core, the student provides the tim-
061 : ing for both read and write operations. For these operations
01 N the simulator requires i) the minimum time necessary for the
0.6 A waty ARM core to perform the bus operation and ii) the maximum
AN " 8 way available to a slave to complete an operation without requiring
\..\ waiting time for the CPU.
o4 A specific window shows the ARM timing plot, derived
0.3 from the ARM data book, in order to drive the student to find
02 the proper values. In our example, considering that the ARM
o — processor employs a pipelined bus, the student obtains and
' sets these values: 50 ns, as minimum time for read/write op-
00 1 16 erations, and 64 ns as the maximum time usable by a slave to
2 8 2 complete an operation.
Cache size (Kbytes) The simulator models a generic bus, which is capable to

accommodate the typical memory operations. The student has
to specify the data bus width and the time for each type of bus
: . . . operation. In our example, the data bus width is 32 bits and
Figure 5 shows the miss percentage of the median fl|t%l?e time is 200 ns for both read}(,.q) and write (yrize)
program as a function of the cache size and degree of aspPerations.
ciativity. For this program, a 2-way set associative cache IS” gina)ly “the student specifies the features of memory and
recommended since it supplies the best balance between devices. For each module, the configuration parameters
and performance. Also, we notice that a 4-way cache Preyqyde the module type, the starting address and the size. In
duces quite the same result. At a more detailed level of analyy,, example, the system includes three modules: a DRAM
sis, the student is called to search, for a given cache structugg, ROM bank and a memory-mapped graphi.cal /O de-
the cache and block sizes which can provide the best result§ e " The simulator requires to know the delays (additional
terms of global performance. Again a new graph can be prgq yith respect to the bus time) introduced by a component
duced (like the one in Figures 7 and 8) to find the best valut% complete each bus operation. Among the three modules

Figure 5. Miss percentage for median filter program.

for the cache block size. considered, only the PROM module needs additional time
(200 ns) to complete read operations.
4 Fostering students to actual design With the system configuration just examined, a simulation

shows that, without cache memory, the application takes up
In the design of embedded systems, a key point is the 0p:898s to execute the program. The addition of a cache mem-
timization of each component, which needs to meet, as besry proves to be necessary, therefore, to meet the time require-
ter as possible, the specific application for which the wholgment.
system is designed. Also, it should be noticed that often an As shown in the previous Section, the designer has to de-
embedded system runs only one program for all its life. Wéine the cache structure in terms of cache size, block size,
are going to present an example of design training path, amdimber of blocks per set, and replacement policy; further-
we will show how Csim2 can help a student to find out thenore, for simulation to be possible, cache timings have to be
optimal cache and system configuration for a specific applicapecified. Figure 6 shows the scheme used to set the cache
tion. We consider thejpeg program, gpeg image com- timings: 7,4 andT,,; are the times for reading data from or
pression/decompression tool [Wallace91] which is frequentlyriting data to a cache blocH,, is the tag access tim@.,,,,,
used in commercial embedded systems. is the compare time; arifl,,., is the time needed to initiate an
First, the student should wonder about the following quesperation involving an attached module, after a miss has been
tion: for a 20 MHz ARM running an application using the detected.
cjpeg program, is it necessary to add a cache memory in Finally, the student has to specify the timing of bus block-
order to achieve the required performance? We suppose tlgierations used by the cache to interact with the main mem-
the product requires that the image compression be complete. In particular, the cache uses thead-blockoperation
in less than 1s. First, the student traces the execution of ttefetch a memory block when a miss condition occurs. An
cjpeg program while compressing an image stored in, e.gupdate-blockoperation allows a copy-back cache to update
“ppm” format, using the JumpsStart trace facility. The ppma memory block when its cached copy is dirty and has to
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block operation is described as a single operation followed by

fast transfer operations,...q (Twrite) is the time needed to Figure 7. Miss ratio and time execution fopeg program.

perform a single read (write) operation, afigc.q (Tswrite)

is the time needed to perform a subsequent sequential read

(write) transfer. In this example, the timings arg;..q =

Twrite = 200NS Tsreqq = Tswrite = 160NS. for the same configurations considered in the first example.
The student can now execute a parametric simulation ihhe differences between the graphs of Figures 7 and 8 are due

order to search the optimal cache configuration. Figure tp the different locality characteristics of the programs.

shows the miss ratio and the execution time versus block size We assume that the application requires that the conver-

(from 8 to 64 Bytes) and cache size (from 2 to 32 KBytes) fosion should be completed in less than 90ms, in order to show

two cache configurations. The first cache is a simple writea configuration tuning session. The system takes up 359ms to

through, direct access cache without a write buffer; the seexecute the program without cache memory, therefore cache

ond one is a more complex copy-back, two-way set associts-necessary. Table 1 lists some examples of cache configura-

tive cache with a two-deep write buffer. The cache uses th®ns that allow the system to satisfy the time requirement. If

LRU technique as replacement policy. In both cases, the tirthe designer selects cache configuration 2, the memory bank

ings are:T,q = 35ns,T,; = 35nS,T},, = 20nS,T.,,,, = 10ns, delays can be increased by 260ns with respect to the values

Torq = 10ns. specified above.
The designer can observe that, in both configurations, exe-
cution time and miss ratio exhibit different values and behav- mapp. [ update [ cache| block [ write [ exec. [ max
iors. For cache sizes greater than 16 KBytes, the execution policy | size | size | buffer | time | delay
. . . . . (KB) (B) len. (ms) (ns)
time is constant and independent of the block size. In this === oy ek © 5 BRE AR
way the student can select a configuration that best meets COSt=2diect [ copyback| 16 6 0T 8640 260
effectiveness and performance requirements (execution timg 3 | direct | copy-back| 8 8 2 | 88.75] 60
< 1s). For example, an optimal choice is a 16-KByte, write- ‘51 g'fect COPV-EaC:: 145 12 g gg-gg 24%0
B . _ H : -way | copy-bac .
throqgh, direct access cache with 16-Byte block size without — 5way | copyback| 8 o4 o T 8862 %o
a write buffer. _ 7 | 2way | copyback| 4 16 2 | 8886 50
Now, the student can also answer the question: for the se{ 8 | 2-way | copy-back| 8 64 2 [886L] 60

lected cache configuration, which is the cheapest main mem- i )

ory meeting the time requirement? The designer can find théable 1. Some cache configurations that allow the system to
solution by executing simulations having the RAM bank ac- satisfy the time requirements faawcaudio program.

cess time as parameter. The simulation shows that the mem-

ory bank delay can be increased by no more than 30ns with

respect to the values specified in the configuration.

Now, if the student uses the same design path for a differ- These two examples show that meeting time requirements
ent embedded application, he/she finds a different cache apiddifferent applications yields different cache configurations.
system configuration. For example, we trace the execution ®he student can observe that, in the second example, the
therawcaudio program [CCITT84] while it converts a 6- write-through cache configurations never guarantee the ful-
KByte ADPCM sound sample to a 24-KByte raw 16-bit PCMfillment of time requirements. The two examples also show
format. The audio sample is the voice of a man saying “helldhat write and miss ratios affect the performance of systems
world.” Figure 8 shows the miss ratio and the execution timwith cache memories in a different way. Thgpeg and
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