

-

Evaluation of a Coherence Protocol
for Eliminating Passive Sharing

in Shared-Bus Multithreaded Multiprocessors

Roberto Giorgi
giorgi@acm.org

January 31, 1999

-

Contents

1 Introduction 1

2 Related Work 5

2.1 Coherence Protocols . 5

2.1.1 Write-Update and Write-Invalidate Protocols. 6

2.1.2 Enhanced Write-Update Protocols. 6

2.1.3 Hybrid Protocols . 7

2.1.4 Adaptive Hybrid Protocols . 9

2.1.5 Selective Protocols . 10

2.1.6 Lock-based Protocols . 11

2.1.7 Protocols for General-Purpose Workloads 11

2.2 Multithreaded Architectures. 14

2.2.1 Multithreaded processors. 14

2.2.2 Cycle-By-Cycle Interleaving . 15

2.2.3 Block Interleaving . 16

2.2.4 Simultaneous Multithreading . .. 19

3 PSCR Protocol 21

3.1 Description of the Idea . 21

3.2 Basic Hardware and Software Support .. 22

3.3 Activities Due To local Processor Operations 23

3.4 Snooping activities. 25

4 Multithreaded Multiprocessor Model 27

5 Methodology 29

5.1 Performance Evaluation Methodologies and Tools. 30

i

ii CONTENTS

5.2 Trace Generation Issues . 31

5.3 Overall Description of Trace Factory Environment 33

5.3.1 Generation of Kernel References . 35

5.3.2 Validation of Kernel Insertion .. 35

5.3.3 Process Management and Virtual-To-Physical Address Translation. 39

5.4 Workload characteristics . 42

5.5 Multiprocessor Simulator . .. 44

5.5.1 Simulator Input Parameters 44

5.5.2 Simulator Output Parameters . 45

6 Performance Evaluation 47

6.1 Reference Case Study . 48

6.2 Influence of Cache Structure . 52

6.3 Influence of the memory latency . 55

6.4 Influence of bus width . 56

6.5 Influence of the Scheduling Policy . 57

6.6 The Multithreaded Case 59

6.7 Enhancing the PSCR Performance: PSCR+ . 61

7 Complexity 63

7.1 Number of Logical States . 63

7.2 Bus Transactions and Signals . 64

7.3 Additional Hardware and Software Support for PSCR. 65

7.4 Low Level Optimizations of PSCR . 66

8 Conclusions 67

Abstract

Single-chip multiprocessors and multiple-thread architectures are becoming an affordable solution

for high-performance general-purpose workstations and servers.

On these machines, the workload is typically constituted of both sequential and parallel ap-

plications. Shared-bus shared-memory multithreaded multiprocessor can be used to speed-up the

execution of such workload. In this environment, the scheduler takes care of the load balancing by

allocating a ready process on the first available processor, thus producing process migration.

Process migration and the persistence of private data into different caches produce an undesired

sharing, named passive sharing. The copies due to passive sharing produce useless coherence

traffic on the bus and coping with such a problem may represent a challenging design problem for

these machines.

Many protocols use smart solutions to limit the overhead to maintain coherence among shared

copies. None of these studies treats passive-sharing directly, although some indirect effect is present

while dealing with the other kinds of sharing. Affinity scheduling can alleviate this problem, but this

technique does not adapt to all load conditions, especially when the effects of migration are massive.

A simple coherence protocol is presented. This protocol eliminates passive sharing using infor-

mation from the compiler that is normally available in operating system kernels. The performance

of this protocol has been evaluated and compared against other solutions proposed in the literature

by means of enhanced trace-driven simulation.

The performance of the proposed dolution outperforms the other protocols, especially in the case

of a multithreaded processor, thus demonstrating its effectiveness in this kind of hardware platform.

The complexity of the proposed approach has been evaluated in terms of the number of protocol

states, additional bus lines and required software support.

The protocol further limits the coherence-maintaining overhead by using information about ac-

cess patterns to shared data exhibited in parallel applications.

iii

iv CONTENTS

Chapter 1

Introduction

Shared-bus shared-memory multithreaded multiprocessors are a suitable platform to speed up the

execution of general-purpose workloads, thus overcoming the intrinsic limitations of uniprocessor

systems [Stenstrom97b]. Shared-bus architecture is the straightforward approach to connect several

processors having private caches by means of a simple interconnection network. Coherency units

have to be added in order to maintain a consistent view of the shared memory for each processor

[Flynn95], [Hennessy96], [Hwang93]. Multithreaded processors have the potential for increased

performance due to their ability to better tolerate long-latency for memory access [Iannucci94].

When scaling up this architecture, the bus soon becomes the bottleneck of the system. In fact,

the bus easily saturates not only because of the traditional bus traffic, present even in cache-based

uniprocessors. The bus saturation is also caused by the traffic induced by cache coherency. Part of

this traffic can be avoided by using an adequate coherence protocol. Indeed, the performance and the

scalability of this architecture mainly depend on the coherency strategy and workload features. In

particular, the scalability is heavily dependent on the adaptivity of coherency strategy to the memory

access patterns exhibited by running applications [Veenstra92].

Several studies have analyzed the access patterns [Eggers88], [Dubois88], [Dubois91], [Prete97],

that depend in great deal on the application itself, highlighting the following main categories of shar-

ing: active sharing, false sharing, andpassive sharing. Active sharing involves data actually shared

among processes [Gupta92], [Adve91]. False sharing occurs when several different processors ac-

cess separate data stored in the same memory block. This problem is due to a mismatch in the

granularity of sharing of the application and the coherence granularity of the cache [Torrellas90],

[Eggers91]. Passive sharing occurs when a private data block is replicated in more than one cache

as a consequence of the migration of the owner process [Prete90], [Prete95b], [Prete97].

Passive sharing greatly influences the performance of a multiprocessor running general-purpose

1

2 CHAPTER 1. INTRODUCTION

workloads composed of both sequential and parallel applications under a multi-tasking operating

system. In previous works, it has been showed that, in this kind of workload, passive sharing has

a substantial weight on the overall performance of the system for all coherence protocol schemes

[Prete97], [Giorgi97e]. In a write-update coherence scheme the number of write transactions, due

to passive sharing, may be as high as 80% of the total write transactions for workloads consisting

of only sequential programs that run concurrently. This value does not decrease below 65% when

a parallel application is added to the same workload [Prete97]. In these cases, passive sharing may

take up 40% and 30% of the bus bandwidth, respectively. This high traffic induced designers to

adopt write-invalidate schemes that partially reduce, but do not eliminate, that overhead. After the

elimination of this overhead, the reconsideration of write-update schemes is worthwhile [Xia96b].

Process migration induces not only the generation of passive sharing, but also the scarce reuse

of cached copies. Mogul and Borg found cache reload overheads of up to 8% of the execution time

[Mogul91]. Process migration cannot be avoided, if the system has a scheduler that automatically

balances the load among processors [Hwang93]. Even, special scheduling strategies like cache-

affinity [Markatos92], [Squillante93], [Torrellas95], [Vaswani91] cannot avoid process migration

in all load conditions. In fact, the scheduler could be forced to reduce affinity in order to have a

running process on each processor. Indeed, the probability of generating passive copies increases

as the time interval between the instant in which the process is suspended from execution and its

next rescheduling on a different processor decreases. This interval is statistically small when the

number of ready processes is comparable to the number of processors. In this scheduling situation,

the cache affinity policy fails.

Different solutions for coherence protocols have been proposed [Stenstrom90], [Tomasevic93],

[Tomasevic94]. These solutions are examined here by grouping them in the following categories.

Write-Update (WU) protocols distribute the write operation involving a shared copy by using the

intrinsic broadcast nature of the shared-bus. Write-Invalidate (WI) protocols maintain coherency by

invalidating remote copies upon each write operating on a shared copy. Hybrid (HY) and Hybrid

Adaptive (HA) protocols use some kind of switching strategy between a WU and WI behavior.

Selective protocols (SE) try to cope with some special problems that affect the performance of the

system. None of the above protocols explicitly treats the problem of passive sharing, although

some indirect effect is present while dealing with other kinds of sharing. For example, protocols

that minimize the overhead of ”migratory sharing” [Cox93], [Stenstrom93], a special case of active

sharing, partially reduce also passive sharing effects.

A cache coherence protocol, named PSCR (Passive Shared Copy Removal), can eliminate pas-

sive sharing in throughput-oriented multiprocessor. The simple idea of this solution is to locally

3

invalidate a cached copy belonging to a process private area as soon as the same block is fetched

by another processor. This information can be produced easily by the compiler and is normally

available in modern kernels and it is used, for example, by memory management mechanism in

multi-tasking environment. PSCR can simply use this information without the need of adding extra

memory into the cache and the modification of program. The protocol has a reduced complexity

since it has only five states, and it needs only an additional line on the bus compared to MOESI pro-

tocol scheme [Sweazey86]. I am not aware of other solutions that explicitly eliminate the overhead

due to private data accesses. The selective invalidation mechanism allows PSCR to gain the benefits

of an update mechanism in shared bus architectures.

To show the effectiveness of PSCR, its performance is evaluated against other protocols either

presented in the literature or used in commercial multiprocessors. Process migration shows up in a

multitasking environment. For this reason, the present work considers general purpose workloads,

which are the usual workloads for the platform under study, instead of purely parallel workloads

which are more common in protocol evaluations [Stenstrom93], [Gee93], [Eggers88]. The first of

these workloads consists of typical sequential programs like Unix system commands, utilities, and

user applications. This scenario simulates the execution of a shell script. In the other two workloads,

a parallel application is added to this basic workload to model also a situation in which the user may

want to run parallel applications along with the other programs. The selected applications (MP3D

and Cholesky) belong to the SPLASH suite [Singh92]. In this scenario, other user generated kind

of sharing is also present along with passive sharing.

The performance evaluation has been carried out by using the ”Trace Factory” environment

[Giorgi97e], [Prete95]. Trace Factory permits the generation of a combined workload in which

the concurrent execution of several applications is simulated, and also includes the most influenc-

ing activities of the kernel, namely virtual memory, scheduling and system calls. Moreover, the

simulation is then performed using an enhanced trace-driven technique that solves some limitations

[Goldschmidt93] of the classical trace driven simulation. Trace-driven simulation offers a good

trade-off between speed and accuracy when the performance evaluation’s target is the memory hi-

erarchy and processor interconnection subsystem [Uhlig97].

The protocol sensitivity to architectural parameters such as several processor/bus speed combina-

tions, cache block sizes, set associativity and bus width has also been analyzed. As for the scheduler,

conditions, in which the processor affinity is high, have been explored.

Finally, starting from the previous reference analysis, the multiple contexts case is examined and

related to the basic analysis.

The protocol performance can be further enhanced if the compiler is able to extract information

4 CHAPTER 1. INTRODUCTION

about the access patterns to shared items. In this case, the evaluation results showed an improvement

when certain blocks belonging to shared areas are treated as if they were private, invalidating them

in advance.

The main approaches to achieve cache coherency in bus-based multiprocessor and some solutions

that may have effects on passive sharing are reviewed in Chapter 2. In this Chapter an overview of

multithreaded architecture solutions and machine is also presented. Chapter 3 presents the new

coherence protocol to treat and avoid passive sharing. Chapter 4 presents the multithreaded multi-

processor model used in the simulations. Chapter 5 discusses the methodology used to evaluate the

performance of PSCR and six other protocols. In Chapter 6, simulation results are presented and

PSCR is compared against others for various case studies. Finally, in Chapter 7, the complexity of

PSCR is analyzed and compared with the one of the other protocols.

Chapter 2

Related Work

In this Chapter, the main approaches to achieve cache coherency in bus-based multiprocessors will

be recalled and some solutions that may have effects on passive sharing will be highlighted. This

list is not intended to be exhaustive. The classification of some solutions is problematic, since the

approach may fall in more than one class.

In addition, an overview of multithreaded architectures is presented, considering also some ex-

ample of academic and commercial machine.

2.1 Coherence Protocols

Across the last fifteen years, many efforts have been made toward a reduction of the overhead

introduced by cache coherence. It is now clear that many factors influence the overhead introduced

by cache coherence. First, the access patterns [Gupta92], [Brorsson94], [Srbljic97] vary for different

data elements in the same application and for different applications. Moreover, data are allocated

to memory blocks that may in turn exhibit different aggregations of the original access patterns.

Finally, when general-purpose workloads are considered, access patterns generated by migrating

processes induce passive sharing1.

Secondly, the access patterns to data may change during the program execution. This suggests

the introduction of some kind of adaptive behavior into coherence schemes. Some processor con-

structors thus started to introduce some support for adaptivity. The MIPS R4000 [Mips92] allows a

per-page dynamic selection of the coherence scheme, the Intel i860XP [Intel91] permits a per-block

update policy selection, the DEC Alpha 21064 [Dec93] implements a custom dynamically adaptive

protocol.

Thirdly, different choices for the architectural or operating system parameters may weigh dif-

1Adve et al. refer to passively shared objects with a different meaning [Adve91]: these are originally shared data that
are not actively shared.

5

6 CHAPTER 2. RELATED WORK

ferently on the coherence overhead. For instance, high block sizes may introduce penalties due to

false sharing [Torrellas90], [Eggers91], scheduler policies like cache-affinity [Squillante93] may

favor the reuse of cached copies and limit passive sharing, variable mapping influences the coher-

ence overhead [Xia96b]. In addition, the architecture itself may condition some characteristic of the

access pattern (e.g., block size may change the WRL).

2.1.1 Write-Update and Write-Invalidate Protocols

First solutions coped with coherency by using some kind of clever static strategy: updating or

invalidating remote copies upon a write operation involving a shared copy. The Write Invalidate

(WI) class consists of those protocols that invalidate remote copies upon a write operation involving

a shared copy. In this class early protocols were Write-Once [Goodman83], Synapse [Frank84],

Illinois [Papamarcos84], Berkeley [Katz85], RB (Read Broadcast) [Rudolph84], and EIP (Efficient

Invalidation Protocol) [Archibald87]. The Write-Update (WU) class consists of those protocols

that update remote copies upon a write operation involving a shared copy: Dragon [McCreight84],

Firefly [Thacker88], and RST (Reduced State Transition) [Prete91]. A first evaluation of most of

these protocols can be found in [Archibald86]. Two new WU protocols have been defined for two

special bus-based machines: on-chip multiprocessor [Takahashi96] and bus-based COMA [Lee94].

A first attempt to standardize protocols yielded the MOESI class of protocols, in order to im-

plement them on a common platform [Sweazey86]. MESI is a MOESI class protocol, based on

Goodman’s Write-Once 4-state protocol [Goodman83]2 . It is implemented in most of the com-

mercial high-performance microprocessors like AMD K5 and K6, the PowerPC series, the SUN

UltraSparc, SGI R10000, Intel Pentium, Pentium Pro, Pentium II and Merced.

2.1.2 Enhanced Write-Update Protocols

Recently, [Takahashi96] introduced a WU protocol, named CRAC (Coherence solution Reducing

memory accesses using a Centralized coherency unit) suitable for high-performance on-chip mul-

tiprocessors. The protocol is specifically tailored for their architecture and it has five states. They

compared the performance against a WI protocol (Berkeley) and two WU protocols (Dragon and

Firefly) finding a gain over all the other schemes. They attribute the improvement to both to the

centralized coherency unit and the protocol designed for it.

Other new architectures, like the bus-based COMA induced the need to adapt coherence protocols

to that architecture where, for instance, replacement implies a block remapping. [Lee94] introduced

2Culler [Culler98] reports that MESI was first published by [Papamarcos84], and then named Illinois protocol.

2.1. COHERENCE PROTOCOLS 7

DICE protocol for that machine, which maintains coherency by using a WU scheme. The evaluation

shows that a better performance over a WI protocol (Berkeley).

2.1.3 Hybrid Protocols

The performance of a protocol depends on the access patterns exhibited by running programs

and, therefore, neither WU nor WI are the best choice for all programs [Eggers88], [Veenstra92],

[Veenstra94b]. Eggers introduced two metrics named ”write-run length” (WRL) and ”external

rereads” (XRR) to characterize access patterns to shared data [Eggers88], [Eggers89]. The first

metric is the number of write operations issued by a given processor to a memory block before

another processor accesses that block. (A write-run” is the sequence of write—possibly interleaved

by read—references.) The second metric indicates the number of processors that execute read op-

erations on a block, between two consecutive write runs. A natural use of these statistics is to select

the better coherence strategy between WI and WU for a given application. A long write-run and a

low XRR value suggest that a write-invalidate coherence protocol should be chosen. The cost of

the initial misses (caused by invalidation and indicated by the XRR value) is balanced by the large

amount of bus traffic saved because all of the subsequent write operations can execute locally. A

large number of external rereads and a short write-run indicate that a write-update strategy would be

convenient. Of course, the cost of misses and updates plays a decisive role in the strategy selection.

The large variations of WRL and XRR statistics among the programs suggested the introduction

of hybrid protocols (HY). Some proposed protocols start with WU strategy but switch to WI as soon

as a long write-run is encountered or predicted. Others change their behavior for each program,

page, or block and dynamically for the same block. Some protocols use a centralized approach

to invalidate the remote copies: the writer processor broadcasts the invalidate command. In other

protocols, remote caches decide autonomously to invalidate local copies.

The RWB (Read Write Broadcast) protocol [Rudolph84] is one of the first protocols to exhibit a

hybrid nature. After a first write-through on a shared copy, the protocol starts to invalidate.

Karlin et al. proposed the algorithm ”Competitive Snooping” upon which a protocol can be im-

plemented. The protocol switches dynamically between WU and WI modality when the cumulative

cost of sending updates equals the cost (invalidation threshold) that would be incurred if data had

to be read [Karlin86]. They proved that, for any sequence of operations, the overhead of their

algorithm is within a constant factor of the minimum required for that sequence.

Eggers and Katz compared a variant of Competitive Snooping, called SR (Snoopy Reading)

[Eggers89b] with standard protocols. In SR, on a write to a shared copy, the write operation is

8 CHAPTER 2. RELATED WORK

broadcast on the bus and a counter (initialized to 3) in the writer’s cache is decremented. When

the counter reaches zero, the other copies of the block are invalidated and the counter is reset to

three. This protocol has the advantage of using a number of coherence bus-cycles less than twice

the number used by the optimal off-line protocol. The authors found good improvement over Firefly

for two out of four traces. Berkeley and RB performed better than SR, with the other traces.

Archibald introduced EDWP (Efficient Distributed Write Protocol) [Archibald88] which is sim-

ilar to Competitive Snooping protocol. In this case the invalidation threshold is fixed at three, but

the decision to invalidate a copy is delayed until all counters for that block reach the value of zero

(this is detected by means of the shared line). The authors show that this protocol has an improved

performance compared to previous HY protocols.

Veenstra and Fowler introduced and evaluated three hybrid protocols that choose the WU or

WI modality statically per-page, statically per-block or dynamically per-reference, respectively

[Veenstra92]. They found that HY protocols substantially reduce the cost of memory references

for most of the program studied. None of the programs receives a significant additional benefit from

using a dynamic hybrid protocol compared to the per-block static hybrid protocol, for cache block

sizes smaller than 64 bytes.

Gee and Smith proposed a variation of EDWP named ”Update-Once” [Gee93]. They evaluated

the protocol over a wide range of traces and architectural parameters, and compared the performance

against a large set of protocols. They used four WI protocols (Write-Once, Illinois, Berkeley, and

Full-MOESI-Invalidate), three WU protocols (Dragon, Firefly, and MOESI-Update), and one HY

(EDWP). Update-Once has an invalidation threshold of one, and results show that it yields the

highest average performance over the set of protocols.

Another HY protocol is AXP, which is the protocol of Alpha 21064 [Dec93]. The system is

configured with two levels of caches that guarantee that if a block is present in L1 cache then it is

also present in L2 cache. In this protocol, invalidation is performed on a strict local criterion. Upon

an update, if the block is present in both caches, the protocol updates the copy in L2 and invalidates

the copy in L1. If the copy is only present in L2, this copy is invalidated. This local invalidation

mechanism is also referred to as the ”drop rule” [Veenstra94b]. In this case, the invalidation thresh-

old is two. Veenstra and Fowler evaluated AXP, finding that it does not perform better than Illinois

[Veenstra94b].

2.1. COHERENCE PROTOCOLS 9

2.1.4 Adaptive Hybrid Protocols

Adaptive Hybrid (AH) protocols dynamically switch between WU and WI policies or are pattern-

sensitive, modifying the basic protocol behavior to manage the necessary coherence operations

adaptively.

Cox and Fowler introduced an Adaptive protocol with Migratory Sharing Detection (here referred

to as AMSD) for bus-based systems [Cox93]. Migratory sharing is characterized by the exclusive

use of data for a long time interval. Typically, the control over these data migrates from one process

to another [Gupta92], [Stenstrom93]. The protocol identifies migratory-shared data dynamically in

order to reduce the cost of moving them. The implementation is an extension of a common MESI

protocol. The four basic states are augmented with three new states and an additional bus line is

required. The authors evaluated the protocol by considering only the accesses to shared data and by

excluding accesses to synchronization variables, private data, and instructions. They observed that

”treating private data as though they were migratory would reduce the cost of process migration”.

Stenstr¨om et al. also introduced a detection mechanism of migratory sharing for a directory-based

write-invalidate protocol [Stenstrom93], with a solution that is very similar to AMSD. The migra-

tory detection mechanism has also been applied to a directory-based competitive-update protocol

[Grahn96], [Nilsson94]. This competitive-update protocol is an extension of Competitive Snooping

[Karlin86] to directory-based protocols.

Veenstra and Fowler evaluated some variants of the AXP that extend the basic behavior in two

directions. One improvement (AXP+) is on the managing of migratory data [Gupta92], and the

other (AXPa) on the adaptive behavior. They found that the migratory optimization [Cox93],

[Stenstrom93] influences HY protocol performance, more than choosing an optimal threshold for

switching from WU to WI modality. The application of migratory optimization on the adaptive

behavior (AXPa+) does not introduce improvements to the adaptive behavior extension (AXPa).

Anderson and Karlin introduced two protocols that change their behavior not only on a per-block

basis but also dynamically for the same block [Anderson96]. Such protocols are motivated by

the large variability of WRL observed for different programs and for different blocks of the same

programs. These two protocols are based on the Snoopy Reading protocol. The adaptive behavior is

achieved by using an invalidation threshold for each block whose value is adjusted after each write-

run, whereas Snoopy Reading protocol uses a constant invalidation threshold. In the RW (Random

Walk) protocol, the block threshold is initially zero. The threshold is incremented if the block

experiences a WRL not greater than the SR invalidation threshold. It is decremented in the opposite

case. The LTS (Last Three Samples) protocol approximates the mean value of the WRL distribution

10 CHAPTER 2. RELATED WORK

using the last three WRL samples. They compared the performance of these two protocols against

Illinois and Dragon. The performance results were ”in all cases closer to better of WI and WU”

[Anderson96].

2.1.5 Selective Protocols

[Matsumoto93] introduced Allread-write snoopy protocol, which can be represented in the frame-

work of conventional MOESI/MESI model. While accessing marked data, on a read-miss, all caches

read the block, and on a write operation, the issuing cache performs a write-through and all other

caches load the block unless it causes a copy-back transaction. The authors found substantial im-

provement over a WU protocol (Firefly) and a WI protocol (Illinois), but the evaluation has been

carried out only on simple doacross-loop programs. Moreover, additional hardware is required for

taking data on allread (allwrite) accesses. The scheme is classifiable in the SE class of protocol,

since good results have been shown only for array accesses.

Many protocols have been proposed to solve the problem of false sharing copies [Torrellas90],

[Eggers91]. Anderson [Anderson94] introduced SB (Sub-Block) protocol to cope with the problem

of false sharing by using a coherence unit smaller than the transfer unit. The transfer block size is

large to take advantage of spatial locality. The coherence is maintained on part of the block to avoid

false sharing. The base protocol is a variation of Illinois3 . They compared the protocol against

a WI protocol (Illinois) finding some improvement only for particular sizes of the block for each

simulated application.

[Kadiyala95] introduced the DSB (Dynamic Sub-Block) and FSB (Fixed Sub-Block) protocols

and compared their performance with a WI protocol (Berkeley), finding good improvement over the

basic protocol. DSB is an improved version of FSB that dynamically determines the block size on

which to maintain coherency.

[Berg95] compared the performance of some snoopy implementations of originally directory-

based protocols. The OTF (On-The-Fly)4 protocol is derived from [Censier78] protocol; the WBWI

(Write-Back Write-Invalidate) protocol is derived from PBI (Partial Block Invalidation) protocol

[Chen93]. They found a slight advantage in using protocols that treat coherency on sub-blocks.

[Tomasevic92], [Tomasevic96] introduced WIP (Word-Invalidate Protocol) that uses partial in-

validation of the coherence block. The protocol invalidates the whole block after that an invalid

word threshold has been reached. They evaluated the protocol against a WU protocol (Dragon)

and a WI protocol (Berkeley) finding an improvement over Berkeley and sometimes over Dragon.

3Read-snarfing is implemented as in [Eggers89], but without locking out the processor from accessing the cache.
4See also [Dubois93] for the names of these protocols.

2.1. COHERENCE PROTOCOLS 11

[Xia96b] proposed new hardware and software support to reduce data cache misses in a multipro-

cessor operating system. Among the techniques, ”’data privatization”’ is introduced to cope with

false sharing. It consists in a reallocation of private variables in different cache blocks. Also, a WU

protocol (Firefly) is selectively applied to a subset of variables that are known to exhibit fine-grained

sharing. In the other cases, they apply a WI protocol.

SB, DSB, FSB, On-the-Fly, WBWI, and WIP show some positive effect to cope with the problem

known as ”’false sharing”’ [Torrellas90], [Eggers91]. Other techniques exist to cope with this prob-

lem, including padding [Eggers91], program transformations [Jeremiassen95], program restructur-

ing [Cheriton91], separate cache block allocation [Torrellas90], and the adoption of some relaxed

memory consistency model [Dubois91b].

Other techniques exist to cope with this problem. These include padding [Eggers91], program

transformations [Jeremiassen95], separate cache block allocation [Torrellas90], data privatization

[Xia96b], and the adoption of some relaxed memory consistency models [Dubois91b].

2.1.6 Lock-based Protocols

Bitar [Bitar86] introduced a protocol that supports synchronization primitives directly. Although

they introduced interesting innovations, they did not carry out performance evaluation of this proto-

col. [Lee90] also described a protocol that supports lock primitives, having 13 states. The bus-based

version, called Snoopy CBL (Cache-Based Lock) [Ramachandran96] has been evaluated against a

WU protocol (Dragon) a WI protocol (Berkeley) and the previous scheme, called BD (Bitar and

Despain, the authors). The results show a good improvement over all these schemes, especially in

the case of fine-grained sharing.

2.1.7 Protocols for General-Purpose Workloads

When a multiprocessor is used to speed up a workload that consists of sequential independent

applications, the system may a drastical drop in performance [Prete97], [Giorgi97e]. This is due

to passive shared copy coherence overhead, i.e. the private data of those programs that become

shared because of the process migration. Solutions like cache flushing on context switches generate

a substantial increase of cache misses, and inhibit the reuse of cached copies and the adoption of

techniques like affinity-scheduling.

Of course the coherence has to be enforced even in this case, since the machine can also be

used to concurrently run parallel programs, that exchange data using the shared-memory model. In

addition, the system kernel is normally a parallel kernel that runs on each processor and makes use

12 CHAPTER 2. RELATED WORK

of shared data structures.

Figures 2.1 and 2.2 show the percentage of bus write operations due to passive and other shared

copies in the case of Dragon protocol and two different workloads. The effects of passive sharing

are significant in both cases.

0

25

50

75

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of processors

W
rit

e
tr

an
sa

ct
io

ns
 (

%
)

Passive Sharing

Other Sharing

Figure 2.1. Percentage of write transactions due to passive sharing and other sharing in case of the
Dragon protocol. The workload consists of a shell script including typical sequential programs

(system commands, utilities, and user applications). Each processor has a 256-Kbyte, direct
access private cache with 64-byte cache block size. The effects of passive sharing are significant

for a number of processors greater than 6.

A first protocol that tried to eliminate the overhead induced by passive sharing was UCR (Use-

less Copy Removal) [Prete90]. In this case, each cache invalidates locallyunusedcopies, as soon

as another cache fetches that data block. Cache copies are classified as unused when the copy is

not used by the process currently running on the corresponding processor. Since a systematic detec-

tion of this condition requires high hardware overhead to store the process identifier for each block,

an approximation involving only one extra bit per-block was introduced. The evaluation employ-

ing synthetic workloads shows a performance improvement both over RST and Dragon protocol

[Prete95].

Skeppstedt and Stenstr¨om introduced a variation to Censier and Feautrier protocol [Censier78],

named ”private-detection technique” [Skeppstedt95] by inserting a simple heuristic. The protocol

classifies blocks as effectively private by observing the transaction sequence involving the block.

The results show improvement over the basic protocol. The technique has been evaluated only for

CC-NUMA machines.

2.1. COHERENCE PROTOCOLS 13

Prete et al. describe a technique, named USCR (Useless Shared Copy Removal) [Prete95b] sim-

ilar to UCR, but in this case the selective invalidation is applied to data accesses that the processor

signals to be private. The USCR applied to Dragon and Berkeley protocols is then evaluated on par-

allel applications, showing up substantial improvement of USCR-Dragon but not of USCR-Berkeley

over their respective basic version. On these applications, also, USCR-Dragon exhibits a higher per-

formance than USCR-Berkeley does. The reason is that UCR strategy cannot recover the effect of

undesirable invalidations on real shared copies. This also was a good indication of the fact that once

passive sharing is eliminated WU protocols may continue to be a viable strategy compared to WI

ones.

0

25

50

75

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

W
rit

e
tr

an
sa

ct
io

ns
 (

%
)

Passive sharing

Other sharing

Number of processors

Figure 2.2. Percentage of write transactions due to passive sharing and other sharing in case of the
Dragon protocol. The workload consists of a shell script including typical sequential programs

(system commands, utilities, and user applications) and the parallel application MP3D. The
parallel application and the shared kernel cause write transactions due to true sharing. The
number of processes generated by MP3D is equal to 50% of the number of processors. Each

processor has a 256-Kbyte, direct access private cache with 64-byte cache block size.

Other mechanisms have been presented to minimize the coherence overhead due to invalidations:

DSI [Lebeck95b] eliminates invalidation messages in a directory-based multiprocessor by auto-

matically invalidating its local copy before a conflicting access by another processor. Cheong and

Veidenbaum proposed a solution based on the combination of compile-time reference tagging and

individual invalidation of potentialstalecopies only when referenced [Cheong88]. Carte et al. used

an update time-out mechanism to invalidate replicas of copies that have not been accessed recently

upon receipt of an update [Carter95].

14 CHAPTER 2. RELATED WORK

2.2 Multithreaded Architectures

Multithreaded architectures have been intensively studied as a way for reducing long latencies in

DSM multiprocessors, and may be interesting also for bus-based multiprocessor [Hwang93].

In a single-threaded architecture the computation moves forward one step at a time through a

sequence of states, each step corresponding to the execution of one enabled instruction. The state of

a single-threaded machine consists of thememory state(program memory, data memory, stack) and

theprocessor statewhich consists ofactivity specifier(program counter, stack pointer) andregister

context(a set of register contents). The activity specifier and the register context make up what is

also called thecontextof a thread. Today most architectures are single-threaded architectures

According to [Iannucci94], a multithreaded architecture differs from the single-threaded architec-

ture in that there may be several enabled instructions from different threads which all are candidates

for execution. Similar to the single-threaded machine, the state of the multithreaded machine con-

sists of the memory state and the processor state; the later, however, consists of a collection of

activity specifiers and a collection of register contexts. A thread is a sequentially ordered block

of instructions with a grain-size greater than one (to distinguish multithreaded architectures from

fine-grained dataflow architectures).

2.2.1 Multithreaded processors

Current microprocessors utilize instruction-level parallelism by a deep processor pipeline and

by the superscalar instruction issue technique. A superscalar processor is able to dispatch multiple

instructions each clock cycle from a conventional linear instruction stream.

However, the instruction-level parallelism found in a conventional instruction stream is limited.

Recent studies showed the limits of processor utilization even of today’s superscalar microproces-

sors [Diep95], [Tullsen95]. To overcome this limitation, the solution is to add more coarse-grained

parallelism. The main approaches are the multiprocessor chip and the multithreaded processor. The

multiprocessor chip integrates two or more complete processors on a single chip. Therefore every

unit of a processor is duplicated and used independently of its copies on the chip.

In contrast, the multithreaded processor stores multiple contexts in different register sets on the

chip. The functional units are multiplexed between the threads that are loaded in the register sets.

Depending on the specific multithreaded processor design, only a single instruction pipeline is used,

or a single dispatch unit issues instructions from instruction buffers simultaneously. Because of the

multiple register sets, context switching is very fast. Multithreaded processors tolerate memory la-

tencies by overlapping the long-latency operations of one thread with the execution of other threads

2.2. MULTITHREADED ARCHITECTURES 15

- in contrast to the multiprocessor chip approach. The combination of a multiprocessor chip, which

is easier to implement, and the use multithreading is a promising approach.

Research on multithreaded architectures has been motivated by two concerns: tolerating latency

and bridging of synchronization waits by rapid context switches. Three different approaches of

multithreaded architectures can be distinguished [Silc98]:cycle-by-cycle interleaving[Halstead88],

[Papadopulos91], [Thistle88],block interleaving[Agarwal92], [Sigmund96], and simultaneous mul-

tithreading approach [Tullsen95], [Lo97].

2.2.2 Cycle-By-Cycle Interleaving

In the this interleaving model, the processor switches to a different thread after each instruction.

An instruction of the same thread is fed in the pipeline after the completion of the execution of the

previous instruction. There must be at least as many register sets (loaded threads) available on the

processor as the number of pipeline stages. Since cycle-by-cycle interleaving eliminates control

and data dependencies between instructions in the pipeline, pipeline conflicts cannot arise and the

processor pipeline can be easily built without the necessity of complex forwarding paths. This

conducts to a very simple and therefore potentially very fast pipeline - no hardware interlocking is

necessary. The latency is tolerated by not scheduling a thread until its reference to remote memory

has completed. This model requires a large number of threads and complex hardware to support

them. Interleaving the instructions from many threads also limits the processing power accessible

to a single thread, thereby degrading the single-thread performance.

In this category follow some machine like the HEP (Heterogeneous Element Processor) [Smith81],

the MASA (Multilisp Architecture for Symbolic Applications) [Halstead88], and the Tera MTA

(Multi-Threaded Architecture) [Alverson90], [Alverson92].

The HEP system was a MIMD shared-memory multiprocessor system developed by Denelcor

inc. (Denver, CO, USA) between 1978 and 1985, and is a pioneering example of a multithreaded

machine. Spatial switching occurred between two queues of processes. The main processor pipeline

had eight stages, matching the number of processor cycles necessary to fetch a data item from mem-

ory in register. Thus, eight threads were in execution concurrently within a single HEP processor.

Differently to all other cycle-by-cycle interleaving processor, all threads within a HEP processor

shared the same register set.

The MASA was a multithreaded processor architecture for parallel symbolic computation with

features intended to facilitate Multilisp program execution. MASA had a tagged architecture, mul-

tiple contexts, fast trap handling, and a synchronization bit in every memory word. Its principal

16 CHAPTER 2. RELATED WORK

novelty was the use of multiple contexts both to support interleaved execution from separate in-

struction streams and to speed up procedure calls and trap handling (like register windows).

The Tera MTA is a commercial multithreaded multiprocessor currently produced by Tera Com-

puter Company (Seattle, WA, USA). The machine is a vast multiprocessor with multithreaded pro-

cessor nodes arranged in 3D mesh of pipelined packet-switch nodes. In the case of the maximum

configuration of 4096 nodes, arranged in a 16 X 16 X 16 mesh, there are up to 256 processors, 512

memory units, 256 I/O cache units, 256 I/O processors, and 2816 switching nodes. Each proces-

sor is 64-bit custom chip with up to 128 simultaneous threads in execution. It alternates between

ready threads, using a deep pipeline. Inter-instruction dependencies are explicitly encoded by the

compiler. Each thread has a complete set of registers. Memory units have 4-bit tags on each word,

or full/empty and trap bits. The Tera MTA exploits parallelism at all levels, from fine-grained

instruction-level parallelism within a single processor to parallel programming across processors, to

multiprogramming among several applications simultaneously. Consequently, processor scheduling

occurs at many levels, and managing these levels poses unique and challenging scheduling concerns.

2.2.3 Block Interleaving

In the block-interleaving approach, like in the MIT Sparcle processor [Agarwal93], a single

thread executes until it reaches a long-latency operation, such as a remote cache miss or a failed

synchronization, and then it switches to another context. The Rhamma processor [Gruenewald96],

switches contexts whenever a load, store or synchronization operation is discovered.

In this model, a thread is executed for many cycles before context switching. Context switches are

used only to hide long memory latencies since small pipeline delays are hidden by proper ordering

of instructions performed by the optimizing compiler. Since multithreading is not used to hide

pipeline delays, fewer total threads are needed and a single thread can execute at full speed until the

next context switch. This may also simplify the hardware. There are three variations of this model:

switch-on-load, switch-on-use, explicit-switch.

The switch-on-loadversion switches only on instructions that load data from shared memory,

whilst storing data in shared memory does not cause context switching (since local memory loads

and other instructions all complete quickly and can be scheduled by the compiler). However, context

switches sometimes occur sooner than needed: if a compiler ordered instructions so that a load from

shared memory was issued several cycles before the value was used, the context switch should not

have to occur until the actual use of the value. This strategy is implemented in theswitch-on-use

model [Mankovic87]. In this case, a valid bit is added to each register. The bit is cleared when the

2.2. MULTITHREADED ARCHITECTURES 17

loading from shared memory to the corresponding register is issued and set when the result returns

from the network. A thread context switches if it needs a value from a register whose valid bit

is still cleared. A benefit of this model is that several load instructions can be grouped together

thus prefetching several operands of an instruction. Instead of using valid bits, an explicit context

switch instruction can be added between the group of loads and their subsequent uses. This model,

which is calledexplicit-switch[Culler91], is simpler to implement and requires only one additional

instruction.

In [Boothe93], it is shown that for most applications just two or three threads per processor is

sufficient, once that the cache interaction is taken into account. There are three variations of the

cache-extended block interleaving model. Theswitch-on-missmodel [Agarwal91] context switches

if a load from shared memory instructions misses in the cache. Such a context switch is not detected

immediately, however, so that a number of subsequent instructions have already entered the CPU

pipeline and thus wasted CPU time. Theswitch-on-use-missmodel [Gupta91] context switches

when an instruction tries to use the (still missing) value from a shared load that missed in the cache.

Theconditional-switchmodel provides the benefits of grouping (of the explicit-switch model) and

caching. In this model, the explicit switch instruction is ignored if all load instructions (in the

preceding group) hit the cache; otherwise, the context switch is performed. Some representative

machines in this category are listed below.

The CHoPP [Mankovic87] was a shared memory MIMD with up to 16 powerful computing

nodes. High sequential performance is due to issuing multiple instructions on each clock cycle,

zero-delay branch instructions, and fast execution of individual instructions. Each node can support

up to 64 threads.

The MIT Alewife multiprocessor [Agarwal95], [Agarwal93], [Agarwal90], is based on the mul-

tithreaded Sparcle processor. The Sparcle processor is derived from a Sparc RISC processor. The

eight overlapping register windows of a Sparc processor are organized in four independent non-

overlapping thread contexts, each using two windows (one as register set, the other as a context

for trap and message handlers). Thread switching is triggered by external hardware when a remote

memory access is detected. Emptying the pipeline from instructions of the thread that caused the

context switch and organizational software overhead sum up to a context switching penalty of 14

processor cycles. The Alewife multiprocessor has been operational since May 1994. It uses a low-

dimensional direct interconnection network. Despite its distributed-memory architecture, Alewife

allows efficient shared-memory programming through a multilayered approach to locality manage-

ment. Communication latency and network bandwidth requirements are reduced by a directory-

based cache-coherence scheme referred to as LimitLESS directories. Latencies still occur although

18 CHAPTER 2. RELATED WORK

communication locality is enhanced by runtime and compile-time partitioning and placement of

data and processes.

The MSparc has an approach similar to the Sparcle processor is taken at the University of Old-

enburg (Germany) with the MSparc processor [Miksch96]. MSparc supports up to four contexts on

chip and is compatible to standard Sparc processors. Switching is supported by hardware and can

be achieved within one processor cycle. The multithreading policy is block interleaving with the

switch-on-cache-miss policy as in the Sparcle processor.

The MIT Jellybean Machine (named J-Machine) [Noakes93]. Its name is due to the fact that it

was built entirely of a large number of of Jellybean components. The initial version used an 8 X 8 X

16 cube network, with possibilities of expanding to 64K nodes. The Jellybeans are message driven

processor (MDP) chips, each of which has a 36-bit processor, a 4K word memory, and a router

with communication ports for 6 directions. External memory of up to 1 M words can be added

per processor. The MDP creates a task for each arriving message. In the prototype, each MDP

chip has 4 external memory chips that provide 256K memory words. It is possible to implement a

shared memory model using message passing, in which a message provides a fetch address and an

automatic task sends a reply with the desired data.

The multithreaded Rhamma processor [Gruenewald96] from the University of Karlsruhe (Ger-

many) uses a fast context switch to bridge latencies caused by memory accesses or by synchro-

nization operations. Load/store, synchronization and execution operations of different threads are

executed simultaneously by specialized functional units within the processor. The units are coupled

by FIFO buffers and access different register sets. Each unit stops the execution of a thread when it

recognizes an instruction intended for another unit. To perform a context switch the unit passes the

thread tag to the FIFO buffer of the unit that is appropriate for the execution of the instruction. Then

the unit resumes processing with another thread of its own FIFO buffer. The Rhamma processor

is most similar to the Sparcle. However, the execution unit of the Rhamma processor switches the

context whenever it comes across a load, store or synchronization instruction, and the load/store unit

switches whenever it meets an execution or synchronization instruction (switch-on-load policy). In

contrast to Sparcle, the context switch is in an early stage of the pipeline, thus decreasing context

switching time. On the other hand, the overall performance of the Rhamma processor suffers from

the higher rate of context switches unless the context switch time is very small. Specific implemen-

tation techniques reduce switching costs to zero or at most one processor cycle. These techniques

use a context switch buffer which is a table containing the addresses of instructions that already

yielded a context switch.

2.2. MULTITHREADED ARCHITECTURES 19

2.2.4 Simultaneous Multithreading

Simultaneous multithreading approach [Tullsen95], [Lo97], or multithreaded superscalar ap-

proach [Sigmund96] combines a wide issue superscalar instruction dispatch with the multiple con-

text approach by providing several register sets on the multiprocessor and issuing instructions from

several instruction queues simultaneously. Therefore, the issue slots of a wide issue processor can

be filled by operations of several threads. Latencies occurring in the execution of single threads are

bridged by issuing operations of the remaining threads loaded on the processor. In principle, the

full issue bandwidth can be utilized.

The multithreaded processor of the Media Research Laboratory of Matsushita Electric Ind. (Japan)

[Hirata92] is the first approach to simultaneous multithreading. Instructions of different threads are

issued simultaneously to multiple functional units. Simulation results on a parallel ray-tracing ap-

plication showed that using 8 threads a speed-up of 3.22 in case of one load/store unit and of 5.79 in

case of two load/store units can be achieved over a conventional RISC processor. However, caches

or TLBs are not simulated, nor is a branch prediction mechanism.

The simultaneous multithreading approach from the University of Washington (Seattle, WA,

USA) [Eggers97] surveys enhancements of the Alpha 21164 processor and of a hypothetical out-

of-order issue superscalar microprocessor that resembles R10000 and PA-8000. Simulations were

conducted to evaluate processor configurations of an up to 8-threaded and 8-issue superscalar. This

maximum configuration showed a throughput of 6.64 instructions per cycle due to multithreading

using the SPEC92 benchmark suite and assuming a processor with 32 functional units (among them

multiple load/store units) [Tullsen95]. A second approach evaluated more realistic processor con-

figurations and reached a throughput of 5.4 instructions per cycle for the 8-threaded and 8-issue

superscalar case.

The multithreaded superscalar processor approach from the University of Karlsruhe [Sigmund96]

is based on a simplified PowerPC 604 processor. The processor uses various kinds of modern mi-

croarchitecture techniques like separate code and data caches, branch target address cache, static

branch prediction, in-order dispatch, independent execution units with reservation stations, rename

registers, out-of-order execution, and in-order completion. Using the same number of threads, the

multiprocessor chip reaches a higher throughput than the multithreaded superscalar approach. How-

ever, if the chip costs are taken into consideration, a 4-threaded 4-issue superscalar processor out-

performs a multiprocessor chip built from single-threaded processors by a factor of 1.8 in perfor-

mance/cost relation.

20 CHAPTER 2. RELATED WORK

Chapter 3

PSCR Protocol

None of the protocols described in the previous Chapter (except for UCR [Prete90] and USCR

[Prete95b]) explicitly addresses the problem of passive sharing, although some indirect effect is

present while dealing with other kinds of sharing.

The reason why those protocols are not effective is briefly explained below. WU protocols have

the worst behavior, since they update passive copies until dropped because of replacement, gener-

ating a huge amount of unnecessary traffic. WI protocols typically invalidate passive copies on the

first write. Thus, they avoid part of the useless traffic, but this indiscriminate invalidation does not

allow us to take full advantage from the possible remote use of actively shared copies. Therefore,

the more these protocols are effective in treating passive sharing, the more they lose by invalidating

actively shared copies. HY and AH protocols have a certain delay in recognizing passive copies,

and they limit the possible benefits of avoiding some extra update operation. Selective and Adaptive

Hybrid protocols that are able to detect migratory sharing, may produce some positive effects on

passive sharing.

Moreover, PSCR seems to be effective in eliminating passive sharing not only in the case of

single-threaded multiprocessor architectures, but also as the number of contexts is increased. In this

Chapter, the idea behind the protocol is described, while its effectiveness in the multithreaded case

will be evaluated in Chapter 6.

3.1 Description of the Idea

PSCR solution, to treat passive sharing, is simple and straightforward. The selective invalidation

mechanism allows PSCR to eliminate passive sharing and to gain the benefits of an update mech-

anism in bus-based architectures. The idea consists in invalidating the copies belonging to private

data areas of a process as soon as they are fetched by another processor. Such blocks are referred to

asP-blocks, whilst S-blocksare blocks belonging to code or shared data area.

21

22 CHAPTER 3. PSCR PROTOCOL

PSCR ensures that a P-block is never involved in a write transaction. When a cache miss involves

a P-block, the only other copy, possibly left by the migrated process in a remote cache, will be

immediately invalidated. In this way, private data blocks are gradually forced to ”follow” the owner

process in its migration, in order to cause no further coherence-related activity.

3.2 Basic Hardware and Software Support

The proposed approach is both hardware and software based. Private data are supposed to be

allocated into separate memory page at compile time. At loading time, the memory management

unit uses an extra bit (P-bit) for each page descriptor to indicate if the current page belongs to private

data. Compilers and operating system kernels of multiprogrammed environments normally perform

this activity in order to manage virtual memory. Thus, no extra software support is required in

respect to what is normally present. Moreover, no extra information is necessary in program code.

In Section 6.7, an advanced strategy at software level that can increase the protocol performance

is discussed. In Section 7.3, the compiler effort in detecting private data is also discussed.

The hardware implementation is quite simple: the processor uses a dedicated line of the processor-

cache bus to signal, on every memory reference. The shared bus should provide the following bus

transactions:

- Read-Block transaction: the cache loads a copy of a memory block that it does not hold yet.

Unless specified, if the copy is furnished by a cache Read-Block stands forCache Read-Block

transaction, whilst if the copy is furnished by the memory,Memory Read-Block transaction.

- Write transaction: the cache broadcasts the contents of a single location on the shared bus.

- Update-Block transaction: the cache writes back an entire copy that has to be destroyed.

In the case of miss condition, the cache broadcasts the P-block/S-block information on the common

bus by means of a line (L1) during the read-block transaction. If the transaction involves a P-block

and a remote cache holds a copy of that block, the copy is immediately invalidated.

A second line (L2, handled by the ”listening” caches) is required for a couple of (mutually ex-

cluding) purposes: during a read-block or a write transaction involving a S-block (L1 = OFF),

� to indicate that a copy is resident in at least one remote cache, so that the state of the loaded

or newly-written copy must be set to one of the shared states (see below). Other protocols use

a line (named shared-line) with the same issue. during a read-block transaction involving

� a P-block (L1 = ON), to indicate that a dirty copy is resident in a remote cache, so that the

state of the new loaded block must be set to Private-Dirty (see below).

3.3. ACTIVITIES DUE TO LOCAL PROCESSOR OPERATIONS 23

A cached copy may be in four valid states:

- Private-Clean(PC): only one memory block copy exists and it is consistent with main mem-

ory.

- Private-Dirty (PD): only one memory block copy exists, but it has been modified and it is

no longer consistent with main memory. In case of replacement, the cache must first update

main memory.

- Shared-Clean(SC): several memory block copies may exist; they are identical but may be

inconsistent with main memory.

- Shared-Dirty(SD): several memory block copies may exist (one SD and the others SC); they

are identical but are not consistent with main memory. The cache with the SD copy must

update main memory, if the SD copy has to be destroyed for replacement.

Furthermore, there is the Invalid (I) state, to which a P-block is set after a local invalidation (see

below).

3.3 Activities Due To local Processor Operations

The description of a specific coherence protocol must generally consider a couple of independent

aspects: type of access (read/write) requested by the local processor, and cache condition (hit/miss).

In the case of the PSCR protocol, a further distinction needs to be made between operations on

P-blocks and S-blocks. Therefore, eight different cases should be considered. Of course, for two

of them (read hit on either kind of block) no coherence action is needed. As for the remaining six

cases, a detailed description, with the help of the state diagrams (Figure 3.1) is provided below.

� Write hit on P-block: the cached copy is updated. If the copy is PC, its state is changed to

PD. If it is already PD, no state transition is necessary.

� Write hit on S-block: the cached copy is updated. If the copy is PC, its state is changed to PD.

If it is already PD, no state transition is necessary. If the copy is either in SC or in SD state,

a bus write-transaction is used to update both the main memory and the copies that may exist

in remote caches. Because of this transaction, ifL2 line is not active (the block is no longer

shared), the copy state changes to the corresponding private state (SC to PC, SD to PD).

� Read miss on P-block: first, a cache block may have to be chosen for replacement. If the

victim block is in either PD or SD state, an update-block transaction is used to write back

24 CHAPTER 3. PSCR PROTOCOL

Local Write, L2=off during Read-Block transaction

Local Write, L2=off during Write transaction

Remote Read-Block transaction

Local Read,
L2=off during
Read-Block transaction

Local Read or Write,
L2=on during
Read-Block transaction

Local Read, L2=on during Read-Block transaction
Local Write, L2=on/off during Read-Block transaction

Local Read,
L2=off during
Read-Block transaction

Remote
Read-Block
transaction

Local Write
Local Write

Miss
Miss

Local Write, L2=off during Write transaction

Remote Read-Block transaction

SC

PD SD

PC

PD

I

S-blocks P-blocks

Remote Read-Block
 transaction

PC

Figure 3.1. State transition diagrams for PSCR protocol.

the modified block into the main memory. Afterwards,L1 line is activated and a read-block

transaction is used to load the missing block. The block is loaded in PD state ifL2 line

is activated by a remote cache during this transaction; otherwise, it is loaded in PC state.

Finally, the cache supplies the processor with the contents of the involved location.

� Read miss on S-block: first, a replacement phase may be necessary as in the previous case.

During the read-block transaction needed to load the missing block,L1 line is not activated.

The block is loaded in SC state ifL2 line is activated by a remote cache during this transaction;

otherwise, it is loaded in PC state. Finally, the cache supplies the processor with the contents

of the involved location.

� Write miss on P-block: first, a replacement phase may be necessary, as above. During read-

block transaction,L1 line is activated. The block is loaded in PD state and the pertinent

location is updated.

� Write miss on S-block: first, a replacement phase may be necessary as above. During read-

block transaction,L1 line is not activated. The block is loaded in SC state if theL2 line is

activated by a remote cache during this transaction; otherwise, it is loaded in PD state. Finally,

the pertinent location is updated and, if the copy is SC, a write transaction is performed.

3.4. SNOOPING ACTIVITIES 25

3.4 Snooping activities

During each read-block or write transaction, each listening cache checks whether it holds a copy

of the memory block involved. If so, it operates as follow.

In the case of aread-block transaction, two different cases can happen:

� if the transaction involves an S-block (lineL1 off), the cache activatesL2 line. If the state is

private (PC or PD), then it is changed to shared (PC to SC, PD to SD). If the initial state was

PC, PD, or SD, the cache disables the main memory and supplies the data.

� the transaction involves a P-block (lineL1 on), the copy state is set to Invalid. If the cache has

a PD copy of the block itself,L2 line is also activated. Finally, the cache disables the main

memory and supplies the data.

In the case of awrite transactionon an S-block (either if the copy state is SC or SD), the cache

updates the copy and no state transition is performed.

26 CHAPTER 3. PSCR PROTOCOL

Chapter 4

Multithreaded Multiprocessor Model

As seen in Chapter 2, many solutions have been proposed in order to exploit the available chip area

for building a multithreaded architecture.

Since this work aims to evaluate the effectiveness of a coherence solution, that is its impact on the

memory hierarchy, the multithreaded multiprocessor model is presented in a generic basic version,

thus avoiding to model many sophisticate internal details.

Therefore, among the three classes described in Section 2.2 (cycle-by-cycle interleaving, block-

interleaving, simultaneous multithreading), the focus of this work is on block-interleaving, since

cycle-by-cycle interleaving requires a very high number of threads and a more complicated hard-

ware [Tullsen95], and simultaneous multithreading requires a detailed model of the pipeline (which

is not in the scope of this work).

As seen, block-interleaving [Agarwal93] can be used to switch among available hardware con-

texts, once a long-latency operation has been reached.

The number of threads supported by each processor, the cost of context switch between threads,

and the context switch strategy are the parameters which the simulator has to be supplied with.

In particular, three different context-switch policies are considered:switch on miss[Agarwal91],

switch on read miss, andswitch on block of instructions[Muller96]. These techniques involve dif-

ferent cache behaviors with respect in particular to the resulting miss rate and the overhead induced

by the coherence protocol [Hwang93].

From a performance point of view, to achieve both lower execution time and higher scalability

the designer of a multithreaded multiprocessor may have to cope with some constraint like scarce

parallelism or having to change the priority of some critical process.

Once a switch is decided, one of the available contexts is activated and several options have been

presented in literature:thread priorization[Fiske95],MRU thread[Chen96], but generally around

27

28 CHAPTER 4. MULTITHREADED MULTIPROCESSOR MODEL

robin is used.

In this multithreaded architecture model, each thread is assigned its ownTslice, and the system

assumes the presence ofNcpu �Nthr virtual processors. Two levels of scheduling need to be con-

sidered: i) an external scheduling, concerning the dynamic allocation of threads on the available

processors in the system, and ii) and internal scheduling, concerning the context switching between

threads on a single processor. The internal level of scheduling is completely handled by the simula-

tor and it is a simple round-robin policy.

Once that the context switch has been completed the new thread can continue its execution until,

in its turn, it encounters a long-latency operation. If the previous thread was experiencing a long-

latency operation delay or it was waiting for bus-access, the new thread can completely overlap its

execution with this wasted time of that thread.

Multithreading helps on latency hiding, but also bus traffic reduction plays an important role. A

protocol aware of the application sharing pattern can reduce the number of bus operations [Gupta92].

A point of force where to concentrate efforts is the reduction of bus traffic: multithreading helps

on latency hiding but also the number of bus operations should be reduced as much as possible.

Some bus operations can’t be avoided, but much of the coherence overhead can be reduced by using

a protocol adequate for the sharing pattern exhibited by the running applications [Gupta92].

Chapter 5

Methodology

The methodology used in the following analysis is based on trace-driven simulation [Eggers90],

[Stunkel91], [Hollyday92], [Prete95], [Uhlig97]. To ensure accuracy, the kernel activities that most

affect the performance are simulated. Memory references include both user and kernel references,

and they are produced ”on-demand.’

Three kernel activities are simulated: system calls, process scheduling, and virtual-to-physical

address translation. Reference bursts, due to system calls, affect performance interrupting the local-

ity of the memory reference stream of the running process. Virtual-to-physical address translation

may change program localities that influence the number of ”intrinsic-interference” (or ”conflict”)

missescaused by interferences among several accesses in the same cache set. Process scheduling

influences the process migration and, as consequence, passive sharing.

The Trace Factory environment [Giorgi97e] has been used to achieve the flexibility needed to

perform complex evaluations. The approach used in this environment is to produce asourcetrace (a

sequence of memory references, system-call positions and synchronization events in case of paral-

lel programs) by means a tracing tool (Tangolite [Goldschmidt93b], in the evaluation carried out in

this paper). Then, Trace Factory models the execution of complex workload by combining multiple

source traces and simulating system calls, process scheduling and virtual-to-physical translation. Fi-

nally, Trace Factory produces the references (targettrace) furnished as input to a memory-hierarchy

simulator [Prete95].

Trace Factory generates references according to the on-demand policy: it produces a new ref-

erence when the simulator requests one, so that the timing behavior imposed by the memory sub-

system conditions the reference production [Giorgi96]. It simulates system calls by including syn-

thetically generated memory reference bursts. Process management is modeled by simulating a

scheduler that dynamically assigns a ready process to a processor. The process scheduling is driven

29

30 CHAPTER 5. METHODOLOGY

by time-slice for uniprocess application, whilst it is driven by time-slice and synchronization events

for parallel applications. Virtual-to-physical address translation is modeled by mapping sequential

virtual pages into non-sequential physical pages.

In the simulations below, kernel references and bursts are modeled gathering statistics from a set

of traces distributed by Carnegie Mellon University and obtained on an Encore Multimax (shared-

bus multiprocessor) machine [Vashaw93]. As for the bursts, statistics regarding their length and

inter-burst distance have been collected. An evaluation of this methodology has been carried out in

[Prete95], [Giorgi97e]. As for the scheduler, input parameters are the time slice in terms of number

of references, and the process-scheduling policy (”cache affinity” or ”random”).

In the following, the problems related to tracing issues will be treated in detail, presenting the

main characteristics of Trace Factory.

5.1 Performance Evaluation Methodologies and Tools

Many multiprocessor performance evaluation methodologies and tools have been developed by

academic, research and commercial entities during recent years. Two main categories of tools can

be distinguished: in one set, the tools used to perform tuning of applications executed on a specified

computer model, and in a second as well important set, the tools for evaluating different architec-

tural solutions while varying software features. In the former category, important initiatives for

High Performance Computing like the ones from NASA, DARPA and NSF have highlighted the

need of such tools and a comprehensive state of the art list can be found in the two companion is-

sues ofIEEE Computer[Pancake95] andIEEE Parallel and Distributed Technology[Pancake95b].

Other recent tools range from simple software extensions of the processor or operating system mon-

itoring capabilities (PatchWrx [Perl96]), to more sophisticated and articulated environments (AIMS

[Yan96]). As for commercial companies DEC’s ATOM, Intel’s ParAide, CRI’s MPP Apprentice,

Convex’s CXpa have been developed, but also some academic project like Paradyn [Miller95] have

become a multi-platform performance tuning software.

The focus is mainly on tools that put into the hand of computer architects the possibility of

tuning the memory hierarchy and system parameters [Prete95] by selecting an arbitrary and ”ad hoc”

workload to stress the machine. In this direction a number of different strategies have been used

in the literature: analytical/stochastic models, trace-driven simulation, complete system simulation,

just to mention the most common solutions. A classification of the techniques can be issued on the

basis of different metrics, such as accuracy of evaluation, cost of implementation, speed, flexibility

of the method with respect to a wide range of architectures. In the present Section few different

kinds of approach to this issue are mentioned, without any claim to be exhaustive.

5.2. TRACE GENERATION ISSUES 31

The analytical/stochastic model [Vernon88] appears to be the most flexible and economic solu-

tion, but the low degree of accuracy which it provides may be unacceptable in the case of cache

performance evaluation, since the model does not typically include all aspects which characterize

cache and program behavior. This kind of analysis could be of some use in obtaining a quick esti-

mation of system performance, before performing the actual evaluation by means of a more reliable

technique.

The methodology based on complete system simulation is the most flexible and accurate, since

it potentially allows a detailed analysis of all hardware and software aspects involved in a particular

architecture, including a full operating system. The major problem in such methodology is that an

extremely complex model is generally required to simulate the execution of sophisticated software

such as operating systems or multiprogrammed workloads. As a consequence, a large dilation factor

is usually to be expected, particularly when a high detail of simulation has been selected (SIM ICS

[Magnusson95], SimOS [Rosenblum95]). In particular, when dealing with a multiprocessor system,

the slowdown scales linearly with the number of CPUs being simulated. In the case of the SimOS

approach, the level of detail of the simulation can be dynamically controlled by the user in order

to minimize the total simulation time. With the deepest level of detail, a slowdown factor in the

thousands occurs when simulating systems with 16-32 processors [Rosenblum95]. On the other

hand, MINT [Veenstra94] provides a set of simulated processors that run standard Unix executable

files compiled for a MIPS R3000-based multiprocessor. Spinlocks, semaphores, barriers, shared

memory and most Unix system calls are supported. Processors generate multiple streams of memory

reference events that drive a user-provided memory system simulator.

When the target of the performance evaluation is the memory hierarchy and processor inter-

connection subsystem, a good trade-off between speed and accuracy is represented by trace-driven

simulation [Prete95], [Eggers89b]. This method is based on the production of a trace (sequence of

memory references generated by the running program) and on the utilization of the trace as input

for the simulator of the memory hierarchy. Two critical issues concerning accuracy are: i) traces

must include both user and kernel references, and ii) a minimal amount of time distortion must be

induced either by the tracing mechanism (during the recording phase) or by the simulator (in the

utilization phase).

5.2 Trace Generation Issues

Tracing techniques include hardware and software solutions; a detailed schematization appears

quite problematic, since each tool presents at least one feature which makes it unique and not suit-

able to be assimilated to other solutions to be classified into the same group.

32 CHAPTER 5. METHODOLOGY

Hardware monitoring is the solution which can potentially guarantee best results in terms of accu-

racy. Vashaw and Wilson [Vashaw93] used this technique to collect the traces by means of a couple

of identical machines (two Encore Multimax 320s were employed). The procedure is to record at

full speed the references generated by the traced machine into the memory of the tracing machine

until the trace memory is exhausted; then, the tracing machine starts storing the traces. Timestamps

are inserted at synchronization points to allow the correct replay of the collected traces. Accuracy,

absence of time distortion and of intrusiveness are the main advantages of this method. The most

critical drawback of this approach comes from the fact that modern trends in technology for pro-

cessors encourage the adoption of on-chip caches, so that a large number of memory references are

handled internally and can no longer be captured by the hardware tracing mechanism [Stunkel91].

Other limiting factors are the high cost of implementation and the lack of completeness (fragmen-

tation) of the trace gathered, due to the limited size of storage buffers. Finally, traces obtained

from an actual multiprocessor machine by means of hardware techniques cannot be employed for

an exhaustive performance analysis of the system, because it is not possible to produce traces with

a variable number of processors.

Software tracing methods includeprogram instrumentation, single-step execution, andmicrocode

modification. A major problem, which at various levels affects all these methods, istime dilation,

due to the fact that the software tracing mechanisms generate a heavy overhead, which causes major

changes in the relative timing of asynchronous events, resulting in a lower accuracy compared to

hardware approaches.

In program instrumentation, a set of instructions are added to create the portion of the trace rela-

tive to eachbasic block(sequence of machine-level instructions not containing branches) throughout

the program. The instrumentation phase may be activated at either source or executable level. The

latter is simpler to handle for the user, but it is quite difficult to implement and could not allow to

instrument all programs; on the other hand, instrumentation at assembly level is quite easy, but the

user must have access to the entire source code. Also, the accuracy of the model is limited by the

lack of completeness in the trace, since it is quite difficult to capture references of kernel routines.

MPTRACE, TRAPEDS and TangoLite are some examples of tracing tools based on program

instrumentation. MPTRACE [Eggers90], a tool for collecting traces of multithreaded parallel pro-

grams, was developed by Eggers et al. for Sequent i-386 shared memory multiprocessor. It auto-

matically modifies the assembly language version of the application, inserting code to collect traces.

The TRAPEDS [Stunkel92] tracing system was originally developed by Stunkel and Fuchs for the

Intel iPSC/2 hypercube multicomputer. This version traces both user and kernel code, and performs

simulation on-the-fly to avoid large storage costs. A later extension was implemented on a 8-node

5.3. OVERALL DESCRIPTION OF TRACE FACTORY ENVIRONMENT 33

bus-based multiprocessor (Encore Multimax 510). To guarantee the accurate recreation of the inter-

actions between processors, TRAPEDS uses a timer-based approach. TangoLite [Goldschmidt93] is

a software instrumentation system for the MIPS instruction architecture, developed by Goldschmidt

et al. It supports the execution-driven (“on-the-fly”) simulation of multiprocessor workload, and it

can also generate multiprocessor traces. The instrumentation is performed mostly at the assembly

level. The processes are represented as light-weight threads; the scheduling policy guarantees that

events generated by different processors are simulated in chronological order.

The problem of completeness arises in single-step execution. This technique can be adopted with

microprocessors which allow the execution of a program to be interrupted after each instruction.

Nevertheless, since kernel routines typically disable interruptions, no possibility usually exists to

capture references generated by the execution of kernel routines. In the trace generator implemented

by Eggers and Katz for the Sequent architecture [Eggers88], the tracing mechanism uses trace-trap

facilities to halt at each instruction and dump trace information, both for instructions and their

operands.

The tracing technique based on microcode modification (ATUM) uses processor microcode to

record references in a reserved part of main memory as a side effect of normal execution [Sites88].

Compared with other techniques, this one leads to fewer distortions and a very fast recording (only

10x slowdown); all the system activities can be observed, with no additional hardware being re-

quired. The disadvantages include poor flexibility, since microcode modification requires access to

on-chip ROM. Furthermore, the trace length is limited to the amount of the memory reserved for

the trace storage.

In any case, when the goal is to compare different architecture solutions, it becomes important

to analyze the system behavior under predefined and controlled workloads. Two key points of

this approach are: i) traces must represent actual workloads for the target machine, and ii) the

designer must have the possibility to produce proper traces to investigate the behavior of the system

when exposed to particular (possibly critical) workload conditions. This kind of flexibility can be

guaranteed only by software techniques, and this is the main reason why this direction has been

taken.

5.3 Overall Description of Trace Factory Environment

Trace Factory is an operating environment to create traces representing a specific user workload

executed on a specific multiprocessor configuration with a particular kernel behavior. Figure 5.1

show an overview of the processing flow of this environment.

Trace Factory allows the utilization of a set ofsourcetraces including only user references to

34 CHAPTER 5. METHODOLOGY

MP3D
4 proc

awk
ls
cp

UNIX
commands

generic
applications

parallel
applications

C languag e
sources

Tracing tool

AWK
1 proc

cjpeg
gzip

cholesky
mp3d

GZIP
1 proc

LS
1 proc

awk
(mid)

awk
(beg)

gzip
mp3d
003

mp3d
002

mp3d
001

mp3d
000

Source trace s
library
(with user
references only)

Workload definitio n

Process scheduling
Kernel reference modeling

Virtual-to-physical address translation

Trace-driven Multiprocessor
Simulator

number of
processors

MMU page size

Graphics TablesResult analysi s

Kernel Parameter
Gathering

kernel
reference

model

kernel
burst
model

Kernel model

actual traces
(with kernel references)

trace
statistics

page
patterns

sched.
tables

multiprocessor
architecture
description

Target Traces
via synchronou s

channels

Figure 5.1. The global scheme to produce and to use a target trace in a simulation.

produce complete multiprocessortarget traces. Source traces can be obtained by a tool [Stunkel91]

based on the same microprocessor used in the target system. (e.g. TangoLite [Goldschmidt93]

may be used to study a MIPS-based workstation.) Target traces are generated by considering the

source traces, the target machine configuration (e.g. the number of processors) and the following

three kernel aspects: i)kernel memory references, i.e., the reference bursts due to each system call

and kernel management routine; ii)process scheduling, i.e., the dynamic assignment of a ready

process to an available processor; and iii)virtual-to-physical address translation, i.e., the mapping

of virtual addresses, produced by a running process, to physical memory addresses. The reference

sequences can be simply stored into target trace files or supplied to the multiprocessor simulator via

5.3. OVERALL DESCRIPTION OF TRACE FACTORY ENVIRONMENT 35

synchronous channels; in the latter case, the target trace generation is performed on the basis of the

on-demandpolicy: a new reference is produced when requested by the simulator, so that the trace

generated is conditioned by the temporal behavior imposed by the memory subsystem.

5.3.1 Generation of Kernel References

Kernel reference bursts affect performance because they interrupt the locality of the memory

reference stream of the running process causing additional cache misses. In this hybrid approach, the

kernel reference stream is obtained by means of a stochastic model of addresses and burst positions.

Kernel bursts are obtained by inserting sequences of kernel references within the user reference

stream. These sequences are generated by means of two statistics:lengthof each burst anddistance

between the starting point of two subsequent bursts. Each kernel reference is specified by:area

referenced(code/data),addresswithin the selected area andkind of access(read/write). The prob-

ability of code/data access and of data read/write access are input parameters for the tool, together

with additional locality information.

To obtain these statistics, the proposed method is to start from a trace which includes kernel

references, and extract the parameters that describe the model of kernel behavior. In particular, the

probability of code/data access and of data read/write access can be directly evaluated by counting

the relative occurrences of events. Concerning the locality of memory references, the following

parameters can be separately evaluated for code and data areas: i) the maximum distance between

two subsequent references; ii) the maximum amplitude of the distribution of distances between two

subsequent references; iii) the percentage of backward references over the total number of non-

sequential accesses. With the same procedure described in [Prete95], these parameters are used to

set up the shape of an empiric function which gives, step by step, the next address to be inserted

into the synthetic kernel reference stream. Finally, the distribution of the kernel-burst length and

the distance between the beginning of two successive bursts are measured. The burst insertion may

also be driven by information collected in the source traces, if the tracing tool records the system

call positions. This allows us to generate more accurate workloads (e.g., to consider the fact that the

processes typically exhibit a different number of system calls).

5.3.2 Validation of Kernel Insertion

This hybrid method introduces approximations concerning both the address generated and the

distribution of kernel bursts. The weight of such error appears to be somewhat limited considering

that the goal of the present analysis is the trace generation for performance evaluation of the memory

36 CHAPTER 5. METHODOLOGY

subsystem. To estimate the error induced by the synthetic generation of the kernel reference stream,

a series of eight-processor traces distributed by Carnegie Mellon University and obtained by means

of an Encore Multimax (shared-bus multiprocessor) machine (Table 5.1) has been considered. These

traces represent a wide variety of application domains [Vashaw93]; they include both user and kernel

references. A version of the Mach operating system from Carnegie Mellon University was used on

this machine.

Table 5.1. The CMU multiprocessor traces.

Application Source Brief description

ecas A. Wilson (Encore) Computer Architecture Simulation
hartstone N. Weiderman (SEI at CMU) Real-Time Benchmark
locusroute SPLASH (by J. Rose) Circuit Routing
MP3D SPLASH (by J.D. McDonald) Rarefied Fluid Flow Simulation
ms tracer Fritzz Graphics (M. Rao at CMU) Ray Tracing
pde A. Wilson Partial Differential Equation Solver

Table 5.2 includes the kernel access percentages (code, data, write) and the statistics concerning

the distribution of distance and burst length. The latter are summarized by means of average value

(�) and standard deviation (�).

Table 5.2. Kernel references statistics.

Kernel Kernel burst Kernel code Kernel data
references distance length ReferencesReferences Writes

Application (%) � � � � (%) (%) (%)

ecas 3.32 27586 793 928 1288 2.12 1.21 0.45
hartstone 8.47 4004 9261 341 1421 5.36 3.11 1.05
locusroute 6.93 20214 120371404 2430 3.96 2.97 1.29
MP3D 3.21 28357 901 911 1134 2.05 1.17 0.43
ms tracer 18.00 11045 185821581 13763 11.83 6.18 0.83
pde 5.30 21805 113691158 2189 3.40 1.90 0.75

Trace-driven simulation was used to compare the results of six different cases: i) the original

CMU traces; ii) the CMU traces deprived of kernel references; iii) the original traces, with kernel

references replaced by an address stream generated synthetically, yet preserving same position and

length of each burst as in the original traces; iv) as in iii), with kernel-burst length and position

generated stochastically by means of a distribution evaluated on a per-processor basis from the

original traces; v) as in iv), with the distributions evaluated as average values over the entire set of

processors; vi) the original traces, with kernel references generated synthetically for all traces on

the basis of MP3D statistics, yet preserving the same position of each burst as in each original trace.

5.3. OVERALL DESCRIPTION OF TRACE FACTORY ENVIRONMENT 37

The following metrics representing the performance of a multiprocessor system are considered in

this validation Section: Global System Power (GSP =
P
UCPU , where UCPU=Tcpu�Tdelay

Tcpu
�100

and Tdelay is the total CPU delay time due to waiting for memory operation completions), average

miss rate, bus utilization, and number of write transactions per thousand memory operations.

Table 5.3. Kernel model validation (case I: low bus utilization).

Application Actual Error (%)

a b c d e f

Global ecas 684.8 +3.6 �1.8 �1.8 �2.6 �1.1
System hartstone 780.4 +2.1 +0.1 +0.7 +0.2 �0.7
Power locusroute 723.8 +7.2 �0.8 �0.2 �1.4 +4.0

MP3D 632.1 +4.8 �0.1 �0.6 �0.7 �0.1
pde 780.5 +1.5 +0.0 �0.1 �0.4 �0.2
Average square error 4.4 0.9 0.9 1.4 1.9

Bus ecas 65.3 �3.7 +3.4 +3.0 +4.2 +2.9
utilization hartstone 18.4 �72.8 �11.1 �17.7 �7.6 +6.0

(%) locusroute 44.6 �53.8 �2.7 �11.4 �8.1 �27.5
MP3D 71.1 �6.7 +1.1 +0.8 +1.3 +1.1
pde 23.1 �35.0 �1.7 �6.9 +3.4 �2.1
Average square error43.5 5.5 10.1 5.6 12.7

Application Actual Error (%)

a b c d e f

Miss rate ecas 0.273 �17.5 +3.6 +4.0 +6.2 +1.5
hartstone 0.071 �77.0 +14.0 +5.6 +23.9 +42.2
locusroute 0.292 �61.3 +1.0 �8.6 �4.1 �29.8
MP3D 0.522 �9.4 +1.1 +1.1 +1.5 +1.1
pde 0.10 �40.0 +20.0 +20.0 +30.0 +24.0
Average square error48.2 11.1 9.1 17.5 25.5

Write ecas 47.5 +6.3 +4.6 +3.7 +5.2 +5.0
transactionshartstone 10.58 �67.2 �19.2 �28.5 �17.0 +3.4

per 1000 locusroute 8.44 �19.9 �13.6 �15.1 �11.1 +11.9
memory MP3D 0.88 �85.2 +23.8 +23.8 +37.5 +23.8

operations pde 13.2 �27.2 �7.5 �14.4 �2.2 �21.0
Average square error51.0 15.5 19.1 19.2 15.4

Table 5.3 shows some results in terms of error percentages with respect to the values obtained

from the actual traces. Columnsa to f correspond to the six situations listed above, respectively. The

simulations were performed for a 256-Kbyte, direct-mapped cache with a block size of 64 bytes and

with the Dragon protocol. The timing parameters concerning the 64-bit bus are the same as in the

example discussed in the Section 5.5 (Table 5.8). The sample trace that has been analyzed consists

of 2,500,000 references per processor.

38 CHAPTER 5. METHODOLOGY

Although large errors affect both the miss rate and the number of bus transactions, a relatively

low error can be observed in the GSP values, due to the fact that the system works with a low bus

utilization (' 45 %). The percentage error concerning the GSP metric would drastically increase

with larger values of bus utilization. Table 5.4 shows the results of a simulation in the case of a

smaller cache size (64 KBytes), with an average bus utilization of 65.5%.

Table 5.4. Kernel model validation (case II: high bus utilization).

Application Actual Error (%)

a b c d e f

Global ecas 357.1 +9.6 + 3.1 +3.1 +0.0 +3.4
System hartstone 765.7 +3.5 +0.2 +0.9 +0.9 �1.2
Power locusroute 555.6 +30.2 +6.3 +9.1 +6.4 +20.2

MP3D 420.4 +15.0 +3.7 +3.6 +3.2 +3.7
pde 740.1 +4.7 +0.3 +1.3 +0.6 +1.3
Average square error15.9 3.5 4.6 3.2 9.3

Bus ecas 95.1 �2.0 �0.7 �0.7 �0.1 �0.6
utilization hartstone 23.9 �71.1 �13.1 �17.1 �16.8 +9.0

(%) locusroute 81.6 �51.5 �11.6 �17.9 �15.4 �31.3
MP3D 94.7 �4.1 �1.0 �0.9 �0.8 �1.0
pde 37.2 �39.1 �3.5 �12.6 �4.2 �10.2
Average square error43.0 8.0 12.4 10.4 15.3

Application Actual Error (%)

a b c d e f

Miss rate ecas 1.247 �6.3 �3.4 �4.0 +0.5 �3.8
hartstone 0.130 �77.7 �4.6 �10.7 �10.0 +28.4
locusroute 0.768 �63.3 �22.6 �29.9 �26.3 �45.8
MP3D 0.891 �15.0 �4.9 �4.7 �4.5 �4.9
pde 0.225 �45.8 �0.8 �8.9 �0.8 �6.2
Average square error49.8 10.6 15.0 12.8 24.4

Write ecas 35.63 +1.4 �0.1 +0.0 �0.7 �0.0
transactionshartstone 8.43 �58.8 �28.8 �35.8 �23.6 �19.0

per 1000 locusroute 4.63 �36.5 �32.2 �20.7 �34.5 +27.9
memory MP3D 0.67 �81.6 �37.6 �36.7 �14.2 �37.6

operations pde 9.75 �16.7 �7.5 �17.6 +2.7 �27.0
Average square error48.4 25.8 25.9 19.8 25.6

In any case, the insertion of a stochastically generated kernel reference stream reduces the error

(compared to the complete elimination of kernel references – columnb), and the reduction is far

more appreciable if detailed information concerning kernel bursts is available. This appears quite

evident from a comparison of columnsd andevs. columnc. The same comparison, however, shows

that it is not generally worth reproducing exactly the original position of kernel accesses within the

5.3. OVERALL DESCRIPTION OF TRACE FACTORY ENVIRONMENT 39

global reference stream in order to improve the accuracy of the model. Finally, the accuracy of

the proposed methodology concerning its effects on the memory subsystem also depends on the

behavioral differences between the workload from which the kernel statistics are extracted and the

applications to which the synthetic kernel generation model is applied (columnf in Tables 5.3 and

5.4).

5.3.3 Process Management and Virtual-To-Physical Address Translation

One of the main goals of the multiprocessor scheduler is to provide an acceptable degree of load

balance in order to allow the programmer to develop his applications without caring about the load

distribution on the processors. Nevertheless, load balance induces process migration that causes

further coherence overhead. Actually, a memory block belonging to a private area of a process

can be replicated in more than one cache as a consequence of the migration of the process which

owns this block. These copies have to be treated as shared with respect to the coherence-related

operations, resulting in a heavy and useless burden for the shared bus (passive sharing[Prete97],

process-migration sharing[Hwang93]). Furthermore, on every context switch, a burst of cache

misses occurs, due to the loading of the working set of the new process. A scheduling policy based

on cache affinity [Squillante93] can reduce the effects of both issues just mentioned.

Trace Factory models the process management aspects by simulating a simple scheduler. The

input parameters for the scheduler are: the number of processes (Nproc), the number of processors

of the target machine (Ncpu), the time slice in terms of number of references (Tslice), the process ac-

tivation policy (two-phaseor non-blocking), and the process scheduling policy (randomor affinity).

Trace Factory simulates the scheduler in the following way: i) it starts from a set of source traces,

one trace for each uniprocess application and as many traces as the number of processes belonging

to the multiprocess application, and ii) produces as many target traces as the number of processors

of the target machine. The whole scheduling activity can be directly driven by the simulator; in this

case, the scheduling activity is conditioned by the speed of each simulated processor.

The scheduler operates as follows: if a processp is running on processorP for aD time interval

(again specified in terms of number of references) thenD references of thep source trace become

references for processorP. At the simulation start up, all the processes are ready and they are

inserted in a proper queue, namelyR1. Initially, the scheduler randomly selectsNcpu processes,

and each running process has a different time slice (namely, the process running on processori

is assigned a time sliceTi =
i�Tslice
Ncpu

). After the first context switch on each processor the next

scheduled process is regularly assignedTslice. This strategy, typically adopted in operating systems

40 CHAPTER 5. METHODOLOGY

for multiprocessors, avoids a context switch being simultaneously needed on each processor every

Tslice, which would produce an undesirable overlap of miss peaks on all caches and a consequent

bus saturation due to the bus transactions needed to fetch missing blocks from memory.

On a context switch, a process is extracted fromR1 and assigned to the available processor.

The choice of such process can be made either according to the cache affinity policy mentioned

above, or just randomly. The preempted process may be managed in two different ways. In the

non-blockingactivation policy, the preempted process is immediately inserted into theR1 queue.

This strategy suffers from the starvation problem: this implies that references of a process may be

not present within a target trace, when its length is short andNproc

Ncpu
� 1. A second activation policy

(two-phase) makes use of another queue, namelyR2, initially empty (Figure 5.2). On every context

switch, the preempted process is inserted intoR2 (phase one). As soon as the queueR1 becomes

empty, all the processes are taken fromR2 and inserted intoR1 (phase two). This technique ensures

that a process does not have to wait an indefinite time for its turn: indeed, a process cannot be

executedn+ 1 times before each other process is executed exactlyn times.

BLOCKED

EXECUTING

R1

R2

context
switch

scheduling

READY

R1
empty

in-order
synchronization point

out-of-order
synchronization point

Figure 5.2. State transition diagram in the case of two-phase activation strategy.

Finally, the scheduler can consider the synchronization sequence produced by a multiprocess

application execution. In this case, the process scheduling is driven by the time slice for processes

belonging to uniprocess applications, and by both the time slice and the synchronization sequence

for multiprocess applications. Source traces have to include synchronization tags representing the

actual synchronization sequence of the parallel application execution [Vashaw93]. When a process

reaches an out-of-order synchronization event, it is inserted into a waiting queue to wait for the

synchronization event. Then, it enters either theR1 or theR2 queue as described above.

In virtual memory models based on paging, the localities of virtual and physical references pro-

duced by a running process may be different. The mapping of sequential virtual pages into non-

5.3. OVERALL DESCRIPTION OF TRACE FACTORY ENVIRONMENT 41

sequential physical pages causes this difference and influences the number ofintrinsic interference

(or capacity) missesdue to interferences among kernel code and data, user data and code accesses

within the same cache set [Hennessy96].

Physical Memor y

KERNEL
CODE

SHARED
DATA

CODE

CODE

CODE

CODE

DATA

SHARED
DATA

SHARED
DATA

KERNEL
DATA

CODE

DATA

DATA

DATA

DATA

CODE

CODE
KERNEL

CODE

KERNEL
DATA

KERNEL
CODE

KERNEL
DATA

KERNEL
CODE

KERNEL
DATA

DATA

Virtual address space
of process i

CODE

SHARED
CODE

DATA

SHARED
CODE

Virtual address space
of process j

Virtual address space
of process k

Figure 5.3. A scheme of the virtual-to-physical address translation.

The virtual-to-physical address translation is modeled as follows. Each process has its own ad-

dress space for code and private data. The kernel and its associated data structures reside at the

top of the virtual address space of each process. When a set of processes share a memory area,

the system ensures that for such processes, the shared areas are mapped on the same set of phys-

ical memory pages. When a number of instances of the same application are active, their code is

shared. Finally, kernel instances share a unique set of physical memory pages. The page size and

the physical memory size are input parameters for the address translation mechanism.

Each process starts its execution without any page being stored into physical memory in advance.

42 CHAPTER 5. METHODOLOGY

As soon as it tries to fetch a location within a page which is not resident in the physical memory, a

page fault is generated and the pertinent page is allocated (on demandpaging). As a consequence of

this page fault, a context switch is generated, the process is suspended from execution and spends a

predefined number of cycles in the waiting queue. In this way; the delay needed to fetch the required

page from disk has been modeled. Since the traces lack any information concerning I/O operations,

no other aspect of I/O interaction is considered.

5.4 Workload characteristics

In the following, the goal is to evaluate and compare coherence protocol performance on a

general-purpose multiprocessor workstation. Thus, the previous technique has been used to gener-

ate three nontrivial real workloads, named Const–30, CVar50–30, and MVar50–30. Each workload

includes 60 million references.

Table 5.5. Statistics of uniprocess application and Unix command traces (64-byte block size,
2,500,000 references).

Distinct Code Data (%) SystemApplication
Blocks (%) Read Write Calls

awk (beg) 4963 76.76 14.76 8.47 29
awk (mid) 3832 76.59 14.48 8.93 47
cjpeg 1803 81.35 13.01 5.64 18
cp (beg) 2615 77.53 13.87 8.60 26526
cp (mid) 2039 78.60 14.17 7.23 56388
msim 960 84.51 10.48 5.01 345
dd 139 77.47 16.28 6.25 47821
djpeg (beg) 2013 81.00 12.75 6.26 15
du 1190 75.86 16.37 7.77 9474
lex 2126 78.67 15.49 5.84 40
gzip 3518 82.84 14.88 2.28 13
ls -aR 2911 80.62 13.84 5.54 1196
ls -aR 2911 80.62 13.84 5.54 1196
ls -ltR (beg) 2798 78.77 14.58 6.64 1321
ls -ltR (mid) 2436 78.42 14.07 7.51 1778
rm (beg) 1314 86.39 11.51 2.10 10259
rm (mid) 1013 86.29 11.65 2.06 15716
telnet (beg) 781 82.52 13.17 4.31 2401
telnet (mid) 205 82.78 12.93 4.28 2827

Const–30 consists of 30 typical sequential programs such as system commands, utilities, and

user applications. Some typical Unix commands have been selected (awk, cp, dd, du, lex, rm, and

ls) with different command-line options, three utility programs (cjpeg, djpeg, and gzip), a network

5.4. WORKLOAD CHARACTERISTICS 43

application (telnet), and a user application (msim, the multiprocessor simulator used in this work).

In a typical situation, various users may run different system commands and ordinary applications.

To take into account that users can launch the same program at different times, some commands are

traced in shifted execution sections: initial (beg) and middle (mid). Table 5.5 shows these source

traces in terms of: i) number of distinct (unique) blocks the program uses; ii) code, data-read, and

data-write access percentages; iii) number of system calls.

In CVar50–30 and MVar50–30, a parallel application is added to the basic Const–30 workload.

The parallel application generates a number of processes equal to 50% of the machine processors.

Since the access pattern to shared data of parallel applications influences multiprocessor perfor-

mance significantly, two parallel programs with different sharing behavior, MP3D and Cholesky

(both from the SPLASH suite [Singh92]), have been considered. MP3D simulates rarefied hyper-

sonic flow; the generated trace relates to a case of 10,000 molecules and 20 time steps. Cholesky

factorizes a sparse positive definite matrix, using the homonymous method. For Cholesky, the trace

has been generated by using a 1,806x1,806 matrix with 30,284 nonzero elements coming from the

Boing/Harwell sparse matrix test (bcsttk14) as input.

Table 5.6 summarizes the multiprocess-application trace statistics. The write-run figures show

that: i) MP3D exhibits coarse-grained sharing, since the average write-run length varies from 5.89

to 8.18; and ii) Cholesky exhibits medium-grained sharing, having an average write-run length from

4.75 to 5.10.

Table 5.6. Statistics of multiprocess application source traces (MP3D and Cholesky) in case of
64-byte block and 60,000,000 references. In particular, the table shows the mean value (�) and

standard deviation (�) of WRL and XRR statistics.

Total Data Shared Shared Data Write-run
Workload

of
Distinct

Code
Read Write Distinct Acc. Write WRL XRRTasks

Blocks
(%)

(%) (%) Blocks (%) (%) � � � �

MP3D 4 6480 78.56 14.30 7.14 1625 10.34 3.20 8.18 6.04 1.54 1.60
6 6923 78.70 13.99 7.31 2004 10.91 3.56 7.03 5.06 1.51 1.63
8 7169 78.77 13.84 7.39 2309 11.30 3.76 6.55 4.65 1.50 1.67
10 7308 78.81 13.74 7.45 2597 11.62 3.91 6.25 4.40 1.50 1.71
12 7397 78.83 13.68 7.49 2820 11.88 4.02 6.07 4.32 1.50 1.73
14 7509 78.85 13.65 7.50 3002 12.07 4.10 5.89 4.18 1.51 1.75

Cholesky 4 17119 79.83 13.57 6.60 7215 8.29 1.19 4.75 3.47 1.06 0.65
6 19172 80.21 13.65 6.14 8789 9.67 1.32 4.46 3.12 1.06 0.68
8 20569 80.43 13.66 5.91 10079 10.24 1.36 4.43 3.04 1.05 0.63
10 21557 80.69 13.70 5.61 11268 10.82 1.44 4.54 3.00 1.06 0.74
12 22900 80.98 13.69 5.33 12404 11.18 1.44 4.89 3.67 1.05 0.61
14 23669 81.11 13.70 5.19 12876 11.47 1.48 5.10 3.80 1.05 0.63

The target trace characteristics resulting from a simulation performed in the reference case study

44 CHAPTER 5. METHODOLOGY

Table 5.7. Statistics of target traces produced to evaluate Dragon protocol in case of 64-byte block
and 60,000,000 references. In particular, the table shows the mean value (�) and standard

deviation (�) of WRL and XRR statistics. ”Par. App.” is the percentage of references belonging to
the parallel application

Par. Total Data Shared Shared Data Write-run
Workload PEs App. Distinct

Code
Read Write Distinct Acc. Write WRL XRR

(%) Blocks
(%)

(%) (%) Blocks (%) (%) � � � �

Const–30 8 0 65989 77.00 13.52 9.48 9912 16.52 4.96 20.63 10.48 5.30 8.84
12 0 97218 77.10 13.26 9.64 13577 17.24 5.32 20.05 9.83 6.32 9.30
16 0 125186 77.10 13.24 9.66 15692 17.57 5.44 19.69 10.64 5.82 9.04
20 0 183987 77.28 13.07 9.65 17249 17.63 5.45 19.14 11.21 5.76 9.01
24 0 257916 77.52 12.80 9.68 19954 17.32 5.40 18.54 11.19 5.09 8.40

CVar50–30 8 12.27 82096 77.14 13.35 9.51 11102 16.40 5.93 15.50 10.10 4.01 6.86
12 17.92 85168 76.81 13.37 9.82 17003 17.55 5.45 12.24 9.16 3.40 5.45
16 22.24 105771 76.86 13.25 9.89 20876 17.96 5.74 10.11 8.16 2.95 4.75
20 26.83 122748 76.90 13.28 9.82 21129 18.29 5.88 9.15 7.43 2.74 4.34
24 30.58 155872 76.83 13.19 9.98 22544 18.42 5.94 8.49 6.97 2.57 3.94

MVar50–30 8 11.76 85702 77.28 13.23 9.49 12124 16.26 4.92 15.42 10.93 4.38 7.52
12 16.67 91582 76.99 13.22 9.79 17886 17.04 5.31 12.56 10.71 3.34 6.51
16 21.05 112150 77.12 13.24 9.64 22196 17.41 5.38 10.19 10.15 2.80 5.85
20 25.00 131536 77.10 13.24 9.66 24574 17.66 5.45 9.95 9.89 2.53 5.57
24 28.57 166810 77.27 13.20 9.53 27058 17.77 5.42 9.99 9.91 2.42 5.34

(Section 6.1) are summarized in Table 5.7. Comparing the write-run statistics of Tables 5.6 and 5.7,

it can be observed that the write-run of target traces results quite high, even much higher than in

source traces. This is due to process migration. Therefore, this aspect strongly motivates the intro-

duction of kernel modeling in the evaluation of such multiprocessors with this kind of workload.

5.5 Multiprocessor Simulator

The multiprocessor simulator [Prete95] used in this analysis characterizes a shared-bus multi-

threaded multiprocessor in terms of CPU, cache, and bus parameters. This simulator models simple

multithreaded processor architecture. The target of this evaluation is to show how the memory

hierarchy is influenced by the choice of an adequate coherence protocols. Some memory-latency

hiding techniques is not modeled since they do not modify coherence protocol behavior, and that

are currently used in modern processors.

5.5.1 Simulator Input Parameters

The CPU parameters are the clock cycle, the minimal number of clock cycles for a read/write

operation, and the temporal distribution of the memory accesses. This distribution is described

in terms of the maximum number (M) of references pertime intervaland the probability that this

interval contains exactly 0, 1, 2,. . . ,M memory references. That time interval is a fixed number of

CPU clock cycles.

Both the number of processors and the number of context per processor can be chosen arbitrarily.

5.5. MULTIPROCESSOR SIMULATOR 45

The cache parameters are cache size, block size, associativity, and the access time for read/write

operation. The cache block replacement policy is LRU (Least Recently Used). The simulator mod-

els a multiprocessor having a relaxed memory consistency (processor consistency [Gharachorloo90],

[Adve96], [Hennessy96], [Milutinovic98]). This is implemented allowing the write transaction

buffering.

Finally, the bus parameters are the bus width and the number of CPU clock cycles for each kind of

transaction: write, invalidation, update-block, and memory and cache read-block. Table 5.8 reports

the values of CPU, cache, and bus parameters for the reference case study (Section 6.1). The main

memory is supposed to support write buffering. In this way, the cost of write transaction is equal to

the cost of invalidation transaction.

Table 5.8. Numerical values of the reference simulated system (timings are specified in terms of
clock cycles).

Class Parameter Timings

CPU Read cycle 2
Write cycle 2
Duration of each slice (cycles) 4
Maximum number of references per slice 2
Probability of [0,1,2] references per slicef0.1,0.3,0.6g
Number of Contexts 1

Cache Cache size 256 kbytes
Block size 64 bytes
State updating 1
Write cycle 1
Read cycle 1

Bus Width 64 bit
Write transaction 5
Invalidate transaction 5
Update-Block transaction 32
Memory Read-Block transaction 24
Cache Read-Block transaction 18

5.5.2 Simulator Output Parameters

The simulator can generate a number of statistical values, such as: miss ratio, number of write

transactions invalidation, update-block, and memory and cache read-block per memory operation,

and bus utilization ratio. In the discussion below, the focus is on the Global System Power metric

(GSP) [Archibald86] that represents the number of the processors of an ideal machine that does not

46 CHAPTER 5. METHODOLOGY

have delay in accessing memory:

GSP =
P
Ucpu

where

Ucpu =
(Tcpu�Tdelay)

Tcpu

Tcpu is the time needed to execute the workload, andTdelay is the total CPU delay time due to

waiting for memory operation completion. Instead of execution time, this metric has been used

since in the below experiments the target machine does not execute a single program, but a combi-

nation of portions of programs. At the same time, the workload characteristics (such as the number

of processes of the parallel application) change as the number of processors changes. In this condi-

tion, GSP gives the necessary comparability when the performance evaluation requires varying the

number of processors and other system parameters.

Another metric to show the effectiveness of each protocol in achieving coherence at reduced

traffic overhead, is Processor/Bus Efficiency (PBE):

PBE = GSP=BUR

where the BUR is the bus utilization ratio and its value ranges between 0 and 1. A high value of this

number indicates that a protocol is exploiting the bus more effectively to get a given value of GSP.

For example, if two protocols have the same value of GSP, but have different bus utilization ratios,

then the protocol having the higher PBE is using the bus bandwidth more effectively.

All the statistics regarding single processor performance are averaged over the total number of

processors.

Chapter 6

Performance Evaluation

In this chapter, the effectiveness of PSCR protocol under various architectural parameters and

scheduling policies will be shown.

As a reference case study a 64-bit bus, 64-byte cache block size, direct-mapped cache, single-

threaded multiprocessor will be analyzed considering the three real workload previously introduced:

Const–30, CVar50–30, and MVar50–30.

Successively, the parameter space will be explored. Explicit simulations have been carried out

for different cache block sizes, different cache associativities, different cache sizes, different bus-

widths, different scheduling policies, different processor speeds, different number of contexts per

processor, thus covering a quite widespread range of possibilities for building a multithreaded mul-

tiprocessor that could be used as a general purpose workstation.

The goal is to show the effectiveness of PSCR, in all the above situations. PSCR performance

is compared against six other protocols: Dragon, Berkeley, MESI, Competitive Snooping, Update-

Once, and AMSD. These protocols belong to different classes, that is they use different strategies

to obtain cache coherency. The selection is motivated as follows:

� In the WU class, the most widely used protocols are Dragon and Firefly, however, Dragon is

usually found to perform slightly better.

� In the WI class, two protocols have been evaluated: MESI, the most widely used protocol,

and Berkeley, which is more often evaluated in the literature.

� In the HY class, Competitive Snooping and Update-Once have a good performance over a

wide range of applications and employ different strategies to switch from WU to WI.

� In the AH class, the most promising protocol is AMSD to treat passive sharing.

47

48 CHAPTER 6. PERFORMANCE EVALUATION

6.1 Reference Case Study

As a starting point of this evaluation, and for an in-depth discussion, the case study of a machine

having a 64-bit data bus width, and 64-byte cache block size has been chosen. Each processor has a

256-Kbyte, direct access private cache, and 1 context per processor. This case study is generic and

representative of the various simulated instances (Figure 6.1). In Table 5.8, CPU, cache, and bus

parameter values are reported.

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.1. Reference case study (64-bit bus, 64-byte block size): Global System Power. GSP of
PSCR is at least 40% higher than the other protocols’ GSP.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

B
us

 U
til

iz
at

io
n

R
at

io
 (

%
)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

B
us

 U
til

iz
at

io
n

R
at

io
 (

%
)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

B
us

 U
til

iz
at

io
n

R
at

io
 (

%
)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.2. Reference case study (64-bit bus, 64-byte block size): Bus Utilization Ratio. PSCR
takes advantage of the reduced bus traffic.

The simulations, related to the three workloads described above, yield the following results for

the Global System Power. GSP for PSCR is at least 40% higher than that of other protocols’

GSP. Moreover, PSCR scales up better, making it possible to connect more processors on the same

bus. As expected Dragon has the worst behavior in terms of both absolute performance (GSP) and

scalability. Excluding PSCR, AMSD is the best performing protocol. Its behavior is near or better

6.1. REFERENCE CASE STUDY 49

than all the four other protocols (Competitive Snooping, Update-Once, Berkeley, and MESI), for all

workloads. The behavior of these four protocols exhibits workload sensitivity.

The good performance of PSCR is mainly due to the lower number of bus transactions, and

hence, lower global traffic on the shared bus, which is the bottleneck of the system (Figure 6.2).

The reduced bus traffic minimizes the latency of processor operations.

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ro

ce
ss

or
-B

us
 E

ffi
ci

en
cy

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ro

ce
ss

or
-B

us
 E

ffi
ci

en
cy

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ro

ce
ss

or
-B

us
 E

ffi
ci

en
cy

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.3. Reference case study (64-bit bus, 64-byte block size): Processor/Bus Efficiency. PSCR
exploits better the available bus bandwidth. This enhances the protocol scalability.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28

M
is

s
R

at
io

 (
%

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28

M
is

s
R

at
io

 (
%

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28

M
is

s
R

at
io

 (
%

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.4. Reference case study (64-bit bus, 64-byte block size): Miss rate. PSCR exhibits the
smaller miss ratio. The invalidation strategy of Update Once, Berkeley, MESI, and AMSD causes a

miss ratio increase for those workloads including a parallel application. Competitive Snoopy
Caching has an intermediate behavior.

In addition, PSCR exploits the available bus bandwidth better, that is, for a given percentage

of bus utilization, PSCR delivers a higher GSP in comparison to all other protocols (Figure 6.3).

This is also evident by Dragon behavior and PSCR bus utilization. For example in Figure 6.3 for

the Const–30 workload, Dragon reaches 80% for 11 processors and starts to saturate (Figure 6.1).

Instead, PSCR reaches 80% for 20 processors, but it still has the possibility to scale up. This two

50 CHAPTER 6. PERFORMANCE EVALUATION

advantages (reduced global traffic and better usage of the available bus bandwidth) of PSCR can

be further explained by detailing the quantity and type of bus transactions actually needed by each

protocol. This is showed in the following graphs (Figure 6.4-6.7), and discussed below.

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20 22 24 26 28

W
rit

e
T

ra
ns

ac
tio

ns
 p

er
 1

00
 R

ef
s.

Number of Processors

PSCR
Competitive
Update Once
MESI
Dragon

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20 22 24 26 28

W
rit

e
T

ra
ns

ac
tio

ns
 p

er
 1

00
 R

ef
s.

Number of Processors

PSCR
Competitive
Update Once
MESI
Dragon

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20 22 24 26 28

W
rit

e
T

ra
ns

ac
tio

ns
 p

er
 1

00
 R

ef
s.

Number of Processors

PSCR
Competitive
Update Once
MESI
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.5. Reference case study (64-bit bus, 64-byte block size): number of Write transactions per
100 references. We represent data relative only to those protocols having write transactions. The
introduction of a parallel application (CVar50–30 and MVar50–30) increases the number of write
transactions. In the case of Dragon, this does not happen since this protocol is more sensitive to

passive-sharing effects, which increase as the number of processes (for a given number of
processors).

0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20 22 24 26 28

In
va

lid
at

io
n

T
ra

ns
ac

tio
ns

 p
er

 1
00

 R
ef

s.

Number of Processors

Berkeley
AMSD

0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20 22 24 26 28

In
va

lid
at

io
n

T
ra

ns
ac

tio
ns

 p
er

 1
00

 R
ef

s.

Number of Processors

Berkeley
AMSD

0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20 22 24 26 28

In
va

lid
at

io
n

T
ra

ns
ac

tio
ns

 p
er

 1
00

 R
ef

s.

Number of Processors

Berkeley
AMSD

const–30 cvar50–30 mvar50–30

Figure 6.6. Reference case study (64-bit bus, 64-byte block size): number of Invalidate
transactions per 100 references for Berkeley and AMSD protocols. Parallel applications sharing

increases the number of invalidations for Berkeley and AMSD.

The reduction of coherency-related operations (write and invalidate transactions) results in a real

advantage, only if the number of read-block transactions does not increase due to a higher miss rate.

Miss and write handling introduce a different bus cost and latency for the processors. Miss

operations due to read operations may introduce a delay, when the processor or other units have to

6.1. REFERENCE CASE STUDY 51

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20 22 24 26 28C
ac

he
-t

o-
C

ac
he

 T
ra

ns
ac

tio
ns

 p
er

 1
00

 R
ef

s.

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20 22 24 26 28C
ac

he
-t

o-
C

ac
he

 T
ra

ns
ac

tio
ns

 p
er

 1
00

 R
ef

s.

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20 22 24 26 28C
ac

he
-t

o-
C

ac
he

 T
ra

ns
ac

tio
ns

 p
er

 1
00

 R
ef

s.

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.7. Reference case study (64-bit bus, 64-byte block size): number of cache read-block
transactions. AMSD and Berkeley heavily employ this cheaper transaction.

wait for the operation termination in order to continue the execution. As for the write operations (in

both hit/miss conditions), they can be managed in an asynchronous way because of write buffering,

i.e. the processor can start working on the next operation even though the current one has not been

actually completed. This implies that write operations do not involve idle time for the CPU directly,

although they may significantly affect miss cost, because they cause more bus traffic. Moreover,

it has to be considered that the amount of data to be transferred on the shared bus is significantly

lower in case of write transaction than in case of read-block transaction.

PSCR protocol has both a low miss rate (Figure 6.4) and a limited number of write transactions

(see Figure6.5). These two aspects are strongly correlated, in that PSCR selective invalidation

strategy only eliminates the useless copies of P-blocks, without causing further unnecessary misses.

Berkeley, AMSD, MESI, and Update-Once exhibit a lower number of coherence-related bus op-

erations (invalidations in some cases, writes in others) than PSCR, but at the cost of an increased

miss rate. This effect is due to the invalidation strategy. In case of Berkeley and AMSD, the in-

validation strategy causes a miss increase, whose consequences are limited because these protocols

heavily employ the cheaper cache read-block transaction (Figure 6.7). This fact explains the per-

formance differences among Berkeley, AMSD, MESI, and Update-Once that have similar values of

miss ratio. Competitive Snooping has a low number of write transactions, like PSCR, and a good

behavior as for the misses, thus it has an intermediate behavior between PSCR and all the other

protocols (except Dragon). Dragon is greatly penalized by the high number of write transactions.

The introduction of parallel applications (CVar50–30 and MVar50–30 workloads) penalizes the

global performance of each protocol (except Dragon), because of the overhead required to keep the

active shared copies coherent (Figures 6.1, 6.4, 6.6, and 6.7). The differences in terms of write per-

52 CHAPTER 6. PERFORMANCE EVALUATION

centage and write-run length between CVar50–30 and MVar50–30 cause different overhead (Figures

6.4, 6.5, and 6.6) and performance (Figure 6.1) for all protocols (except Competitive Snooping). In

the case of Dragon, this phenomenon is not observable, because of the saturation of the bus, which

starts from a low number of processors. On the contrary, the reuse of active shared copies causes a

GSP increase for Dragon in case of CVar50–30 and MVar50–30.

6.2 Influence of Cache Structure

In the second step of this analysis, the behavior of the protocols in the case of a 2-way and a 4-

way set-associative cache is examined. The other parameters have the same values as in the previous

case. For all protocols, the simulation yielded the following results:

� a decrease of the miss rate (and, as a consequence, the number of read-block transactions);

� an increase of the number of write or invalidate transactions.

The miss rate decrease is essentially due to the higher associativity, which offers more caching al-

ternatives for blocks sharing the same cache set. The increase of the number of write or invalidate

transactions is caused by the high number of shared copies, in turn due to the longer lifetime of

cached blocks. PSCR exhibits the highest increment in the GSP values, as the associativity in-

creases. This can be explained as follows.

Bus traffic results from the sum of two components: i) number of read-block transactions caused

by miss conditions, and ii) number of coherence actions (write and invalidate transactions).

Misses have three independent sources: misses due to newly accessed blocks, capacity misses,

and invalidation misses. The higher associativity causes a reduction of capacity misses and conse-

quently enhances the effects of coherence-related bus traffic on global performance. Furthermore,

the increase of associativity generally produces an increase of coherence-related activity, since a

larger number of shared copies can be involved in write operations. For this reason, the protocols

that generate the lowest total number of coherence-related bus actions yield higher GSP.

The complete set of graphs is not reported, since they are qualitatively similar to those obtained

in the reference case study. To summarize the results, it can be observed from GSP graphs, that

protocols exhibit a good scalability until the system reaches a critical number of processors. For

each protocol, beyond this critical point does not make sense to attach more processors on the bus.

A quantitative estimation of this critical point can be given by defining it as the point in which

GSP graph slope is 70% of the initial slope. Figure 6.8 shows the critical point for direct-access

(reference case) and 2-way set-associative cache.

6.2. INFLUENCE OF CACHE STRUCTURE 53

8 10 12 14 16 18 20 22 24 26 28

PSCR

AMSD

Competitive

Update Once

Berkeley

MESI

Dragon

Critical Point (Number of Processors)

Direct Access
2-way

8 10 12 14 16 18 20 22 24 26 28

PSCR

AMSD

Competitive

Update Once

Berkeley

MESI

Dragon

Critical Point (Number of Processors)

Direct Access
2-way

8 10 12 14 16 18 20 22 24 26 28

PSCR

AMSD

Competitive

Update Once

Berkeley

MESI

Dragon

Critical Point (Number of Processors)

Direct Access
2-way

const–30 cvar50–30 mvar50–30

Figure 6.8. The critical point for direct-access and 2-way set-associative cache. PSCR has the
highest GSP as the associativity increases.

Figure 6.9 shows the GSP of each protocol at the critical point in the case of direct-access, 2-way

and 4-way set-associative caches. Generally, both scalability and processing power furnished by the

machine greatly increase as switching from one to two ways. This increment is limited in case of

two- and four-way caches.

6

8

10

12

14

16

18

20

22

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) Direct Access

2-way

4-way

6

8

10

12

14

16

18

20

22

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) Direct Access

2-way

4-way

6

8

10

12

14

16

18

20

22

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) Direct Access

2-way

4-way

const–30 cvar50–30 mvar50–30

Figure 6.9. The GSP of PSCR against all other protocols, at the critical point for direct-access,
2-way, 4-way caches. For each workload and protocol, the GSP at the critical point is reported.
PSCR exhibits the highest performance increase than the other protocols, as the number of ways

increases. Dragon has a behavior quite independent of the number of ways.

The performance of 64, 128, 256 and 512-Kbyte, 2-way caches has been analyzed. In all the

experiments, PSCR had the best performance, compared with the other protocols. The performance

slightly increases for all the protocols with the cache size, in a way similar to the case of increased

associativity. The results show a decrease of the miss rate and an increase of the number of shared

copies, due to the longer lifetime of cached blocks.

54 CHAPTER 6. PERFORMANCE EVALUATION

As the cache size is decreased, Dragon exhibits a small increase in its performance. For a 64-

Kbyte cache, its performance is also comparable with WI protocols, especially when true sharing

is higher (CVar50–30 and MVar50–30 workloads). As said above, and known from the literature,

this is due to the high update traffic of Dragon. For smaller cache sizes the copy eviction due to

the limited cache size, is equivalent to a mechanism of copy invalidation that eliminates the remote

copies, which are not accessed for long time intervals (i.e. that exhibit a long WRL). Finally, the

performance as the block size is varied (Figure 6.10) has been analyzed. For Const–30 workload,

PSCR exhibits a slight GSP improvement as the block size increases from 64 bytes to 128 bytes.

For a 256-byte block size, GSP values are slightly lower than in the 64-byte case. Dragon’s GSP has

the same values in the 64 and 128-byte case, whilst there is a slight decrease in the 256-byte case.

WI protocols are clearly penalized in the 256-byte case, reducing their performance at Dragon level.

Competitive Snooping does better than WI protocols in case of 128 and 256-byte block size. In case

of CVar50–30 and MVar50–30 workloads, WI protocols becomes even worse than the Dragon one.

0
2
4
6
8

10
12
14
16
18
20
22

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) 64B
128B
256B

0
2
4
6
8

10
12
14
16
18
20
22

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) 64B
128B
256B

0
2
4
6
8

10
12
14
16
18
20
22

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) 64B
128B
256B

const–30 cvar50–30 mvar50–30

Figure 6.10. The GSP of PSCR against all other protocols, at the critical point for 2-way set
associative caches with 64, 128 and 256-byte block size). PSCR is always the best performing
protocol. This is due to the Write-Update strategy on S-blocks. Dragon has a behavior quite

independent of the block size.

Indeed, the bigger block size naturally causes a miss ratio decrease, but a longer time to handle

the miss itself. In case of Dragon and PSCR protocols, the latter two phenomena have opposite but

balanced weigh on the performance (64 and 128-byte case). For the 256-byte case the even longer

time to load the block becomes more weighing on GSP. WI protocols are greatly penalized by the

higher miss cost due to the bigger block size. Competitive Snooping adapts its behavior based on

the ratio between miss and write cost, thus achieving better performance than WI protocols.

6.3. INFLUENCE OF THE MEMORY LATENCY 55

6.3 Influence of the memory latency

The value of memory latency considered in the evaluations just exposed is somewhat low relative

to current and future machines [Gee93]. For this reason, a system with larger memory latency (30

cycles, against the 6 cycles for a memory access in the reference case) has been considered. In this

case, for all protocols, it has been found that a 128-byte block size yields a better performance than

a 64-byte one, due to the higher cost of memory access. New bus timings are shown in Table 6.3.

Table 6.1. Bus timings (cycles) for the high-latency case study (64-bit bus, 128-byte block size).

READ-BLOCK
MEMORY CACHE

WRITE INVALIDATE UPDATE-BLOCK

96 40 5 5 34

The simulation results are presented in Figure 6.11. Each protocol reaches the critical point for

a lower number of processors, in respect to the previous situations. Even in this situation, PSCR

exhibits the best performance for all the considered workloads. Dragon and Competitive Snooping

take advantage of this situation. The higher miss cost penalizes the protocols based on non-selective

invalidation. The write cost is constant. For this reason, good results are obtained by Dragon (which

does not invalidate), Competitive Snooping (which takes into account the cost ratio of read-block to

write transaction in making decisions about invalidating) and PSCR (which only invalidates private

data copies). The good behavior of Dragon is obtained only in the case of CVar50–30 and MVar50–

30 workloads. This is due to the presence of parallel workload, which allows Dragon to reuse the

shared copies, thus obtaining a miss ratio decrease (Figure 6.4).

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 22

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 22

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 22

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.11. High-latency case study (64-bit bus, 128-byte block size): Global System Power. In
this case, the increased latency limits the system scalability.

56 CHAPTER 6. PERFORMANCE EVALUATION

6.4 Influence of bus width

In the case of larger bus widths (128 to 256 bits), it has been found again that the block size that

yielded an optimal performance is 128 bytes for all protocols.

All protocols provide better performance and a wider linear range. This appears quite evident

by the higher GSP and, consequently, by the higher critical point values (Figure 6.12). The timing

values are reported in Table 6.4.

Table 6.2. Bus timings (cycles) for the 128-bit, 256-bit bus case study (128-byte block size).

READ-BLOCKBus-Width
MEMORY CACHE

WRITE INVALIDATE UPDATE-BLOCK

128-bit 32 24 5 18 5
256-bit 24 16 5 10 5

The difference between PSCR and the other protocols becomes lower, since the cost of the read-

block transaction decreases, whereas the cost of the other transactions keeps constant. For this

reason, the protocols based on non-selective invalidation are less penalized than in the previous

situations. In particular, in the case of workloads consisting of parallel applications and a 256-

bit bus width, Berkeley and AMSD approach the PSCR performance. In this case, it is clear that

Dragon does not take advantage of the increased bus width.

6
8

10
12
14
16
18
20
22
24
26
28

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) 64-bit

128-bit

256-bit

6
8

10
12
14
16
18
20
22
24
26
28

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) 64-bit

128-bit

256-bit

6
8

10
12
14
16
18
20
22
24
26
28

P
S

C
R

A
M

S
D

C
om

pe
tit

iv
e

U
pd

at
e

O
nc

e

B
er

ke
le

y

M
E

S
I

D
ra

go
n

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

) 64-bit

128-bit

256-bit

const–30 cvar50–30 mvar50–30

Figure 6.12. The GSP of PSCR against all other protocols, in the critical point (64-bit, 128-bit,
256-bit bus). PSCR continues to have the best performance even if the differences shrink as the bus

width increases.

6.5. INFLUENCE OF THE SCHEDULING POLICY 57

6.5 Influence of the Scheduling Policy

As noticed in Chapter 1, process migration allows the system to have load balancing in multipro-

cessor systems without requiring particular efforts to the programmer. Process migration has two

negative effects of on global performance: i) a peak of misses due to the loading of the working set

of the new process; and ii) the generation of passive shared copies, which happens when a migrated

process is rescheduled in a short time on a different processor.

The scheduling strategies based on cache-affinity [Markatos92], [Squillante93], [Torrellas95],

[Vaswani91] can reduce both effects. In fact, in this case each process is preferably rescheduled

on the same processor on which it was previously executed, so that part of its working set is still

resident in cache.

In this Section, the results of simulations, in which a cache-affinity scheduling strategy is used

along with the PSCR protocol, are discussed. The system performance diagrams (Figure 6.13)

show that, for a low number of processors, Dragon appears to obtain the highest benefits from this

solution, and its performance approaches the PSCR values.

2

4

6

8

10

12

14

16

18

20

22

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2

4

6

8

10

12

14

16

18

20

22

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2

4

6

8

10

12

14

16

18

20

22

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

const–30 cvar50–30 mvar50–30

Figure 6.13. Cache-affinity case study (64-bit bus, 128-byte block size): Global System Power.
PSCR eliminates passive sharing effects even when cache affinity fails.

However, the cache-affinity technique cannot provide good results in all workload conditions. In

particular, it seems to be inefficient when the effects of process migration become more relevant.

Indeed, while the number of cache misses due to context switch remains roughly constant, the

coherence overhead induced by passive shared copies depends on the interval between the instant

in which a process is suspended from execution and its subsequent resumption. The ordinary cache

replacement activity progressively eliminates also possibly passive shared copies, and therefore, if a

process is suspended for a long time interval, the effects of process migration on coherence overhead

are drastically reduced. This time interval statistically decreases when the number of ready-to-run

58 CHAPTER 6. PERFORMANCE EVALUATION

processes is comparable to the number of processors (Figure 6.14). In this case, the probability

that a process could be rescheduled on the same processor where it was previously executed also

decreases, and this is the main reason for the failure of the cache-affinity scheduling strategy and

for the drop in the Dragon performance when the processor number roughly equals half the number

of processes running in the system (Figure 6.13).

In systems where cache-affinity scheduling policy is implemented, the adoption of PSCR proto-

col can provide relevant benefits, because it drastically reduces that passive sharing which is still

present.

In addition, from Figure 6.14, more relevant passive sharing effects are expected in Const–30

workload compared to CVar50–30/MVar50–30, for a given number of processors. This is due to

the smaller mean resumption distance, as already observed. Comparing the behavior of Dragon for

these three workloads in Figure 6.13, the same results are expected since, in the case of Const–

30, this protocol reaches its saturation point for a number of processors lower than in CVar50–

30/MVar50–30. Finally, from Figure 6.13, it can be noticed again the potential of Write-Update

schemes like Dragon, which can achieve better performance than Write-Invalidate, once that passive

shared copies are somehow reduced.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12 14 16 18 20 22 24 26 28M
ea

n
D

is
ta

nc
e

of
 R

es
um

pt
io

n
(m

ill
io

n
of

 r
ef

s)

Number of Processors

UniP
Mix1/Mix2

Figure 6.14. The average value of resumption distance vs. the number of processors for Const–30,
CVar50–30, and MVar50–30, in the case of Cache-Affinity scheduling. The higher values for

CVar50–30 and MVar50–30, compared to Const–30 workload, are due to the higher number of
processes, for a given number of processors.

6.6. THE MULTITHREADED CASE 59

6.6 The Multithreaded Case

From a preliminary study [Giorgi97c] has been found that the use of multiple contexts permits to

achieve a lower bus utilization if there is enough cache associativity. The longer lifetime of cached

blocks produces more passive sharing and thus PSCR can take advantage from this situation.

Moreover, for a given number of processes, the increased number of contexts, produces a higher

number ofvirtual-processors. This situation may be dangerous for the high level scheduler, in a

way similar to what happens in the cache-affinity case. In fact, the difference between the number

of processes and the number of virtual-processors may favor the production of passive copies, and

thus PSCR.

The advantage of PSCR in multithreaded architectures can be explained using the following

graphs. In this case, in order to get results for a 28-processor multiprocessor having 3-context

multithreaded processors a new workload has been generated containing 86 independent sequen-

tial processes instead of 30. The name of this workload is Const–86, and its characteristics are

essentially the same as Const–30, except for the total number of processes.

The simulations has been carried out as in the reference case, for a 64-bit bus-width, a 64-byte

cache block size, a 256-KByte cache size, but for a 2-way cache. As can be observed from the first

graph of Figure 6.15 the results are very close to what obtained for the Const–30 workload.

2
4
6
8

10
12
14
16
18
20
22
24
26

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2
4
6
8

10
12
14
16
18
20
22
24
26

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

2
4
6
8

10
12
14
16
18
20
22
24
26

2 4 6 8 10 12 14 16 18 20 22 24 26 28

G
lo

ba
l S

ys
te

m
 P

ow
er

 (
G

S
P

)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

m1 m2 m3

Figure 6.15. The GSP of PSCR against all other protocols, for different number of contexts per
processor: m1, m2, m3 stands for 1, 2, 3 contexts per processor respectively (64-bit bus, 128-byte

block, 2-way set associative, 86 process trace). PSCR outperforms all the other protocols.

60 CHAPTER 6. PERFORMANCE EVALUATION

As the number of contexts per processor is increased, however, a lower bus utilization and a

higher Global System Power is achieved (Figures 6.16 and 6.15, respectively)

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

B
us

 U
til

iz
at

io
n

R
at

io
 (

%
)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

B
us

 U
til

iz
at

io
n

R
at

io
 (

%
)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

B
us

 U
til

iz
at

io
n

R
at

io
 (

%
)

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

m1 m2 m3

Figure 6.16. The BUR of PSCR against all other protocols, for different number of contexts per
processor: m1, m2, m3 stands for 1, 2, 3 contexts per processor respectively (64-bit bus, 128-byte

block, 2-way set associative, 86 process trace). PSCR outperforms all the other protocols.

The effectiveness of PSCR as the number of contexts is increased can be better observed in the

Processor/Bus Efficiency graphs. PSCR is a very promising solution for this kind of architecture.

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ro

ce
ss

or
-B

us
 E

ffi
ci

en
cy

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ro

ce
ss

or
-B

us
 E

ffi
ci

en
cy

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ro

ce
ss

or
-B

us
 E

ffi
ci

en
cy

Number of Processors

PSCR
Competitive
Update Once
Berkeley
MESI
AMSD
Dragon

m1 m2 m3

Figure 6.17. The PBE of PSCR against all other protocols, for different number of contexts per
processor: m1, m2, m3 stands for 1, 2, 3 contexts per processor respectively (64-bit bus, 128-byte

block, 2-way set associative, 86 process trace). PSCR outperforms all the other protocols.

6.7. ENHANCING THE PSCR PERFORMANCE: PSCR+ 61

6.7 Enhancing the PSCR Performance: PSCR+

As noticed in Chapter 2, the write-run statistics of a parallel application can be used to decide the

threshold for switching from WU to a WI policy. In this case study, the focus is on how to improve

the performance of PSCR, compared with its basic version, by using a per-block WU or WI policy

based on the mean WRL (Write-Run Length) dynamically experienced by that block.

In this enhanced version of PSCR (named PSCR+), the protocol is supposed to treats those S-

blocks that dynamically have a WRL higher than a given (possibly statically detected) threshold

value WRLTH as they were P-blocks. Table 6.3 shows the new values of GSP obtained in the case

of CVar50–30 workload and 21 processors, when WRLTH assumes different values.

Table 6.3. GSP for the CVar50–30 workload and 21 processors when the S-blocks are treated as
P-blocks as they exhibit a write-run higher than a given thresholdWRLTH .

WRLTH 1 2 3 4 5 REFERENCE CASE STUDY
GSP 1577 1681 1750 1674 1641 1633

62 CHAPTER 6. PERFORMANCE EVALUATION

Chapter 7

Complexity

In the following, the implementation cost and complexity of PSCR is estimated against the other

protocols based on three parameters: i) number of logical states (i.e. bits in the status field of each

block), ii) type of bus transaction, and iii) number of required bus signals. Table 7.1 summarizes

the features of PSCR and the other protocols used for comparison. PSCR also needs additional

hardware and software support that is described in detail below. Details regarding a specific bus

implementation are not considered here.

Table 7.1. Complexity of different coherence protocols.

Protocol PSCR Dragon Berkeley Competitive
Number of states 5 4 4 5+5 (5+20)
Number of bits 3 2 2 4 (5)
Type of bus transactions RB, W, UP RB, W, UP RB, I, UP RB, W, UP
Type of bus signals DI, L1; L2 DI, SH DI, RS/RO DI, SH, EII, EIO

Protocol Update-Once MESI AMSD
Number of states 6 4 7
Number of bits 3 2 3
Type of bus transactions RB, W, UP RB, W, UP RB, I, UP
Type of bus signals DI, SH DI, RWITM DI, SH, M

7.1 Number of Logical States

For all the coherence protocols, the original papers about them have been considered (see Chap-

ter 2). In particular, for the Competitive Snooping protocol, each block has an associated counter,

which is decremented whenever a write transaction involving the block is observed, in order to in-

validate the block when the maximum allowed number of write transactions is reached. The size of

such counter depends on the ratio between read-block transaction and write transaction time costs.

63

64 CHAPTER 7. COMPLEXITY

Table 7.1 presents the minimum and maximum values for the configurations examined in the present

paper. The number of logical states is the sum of three components: states of the counter, states of

the basic WU scheme (in this case the Dragon protocol), plus the invalid state.

7.2 Bus Transactions and Signals

PSCR, MESI, Dragon, Update-Once and Competitive Snooping make use of three different kinds

of bus transaction: read-block (to fetch a missed block), write (to update multiple cached copies),

and update-block (to write back dirty copies when they need to be destroyed for replacement).

Berkeley does not adopt the write transaction, but needs an invalidation transaction to destroy

remote copies in the case of write operation on a shared copy. Two different kinds of bus operation

are employed to fetch a missed block: read-shared (analogous to the Dragon read-block) on read

miss, and read-for-ownership, which invalidates all remote copies, in the case of write miss. A

proper bus signal (RS/RO) makes the distinction between the two kinds of transaction.

AMSD uses both an explicit invalidate transaction as in Berkeley, and a local invalidation mech-

anism of blocks deemed as migratory.

In the case of MESI protocol, a special situation happens when a miss involves a modified remote

copy. Since the shared state is not split in shared-clean and shared-dirty, the memory should be

updated before the transition to shared state of these copies. Cache designers have adopted different

solutions to manage this situation. In the present work this solution is implemented: on a read miss,

the remote cache aborts the bus transaction, then it writes back the copy to the main memory, and

allows the originating cache to retry the bus transaction. Both copies will become shared. On a

write miss, the cache starts a ”Read With Intent To Modify” bus operation by means of RWITM

line. The remote cache writes back the copy to the memory and invalidates the local copy. The

originating cache saves the copy in Modified state and performs the write locally.

PSCR adopts the same bus transactions as Dragon, and it also needs a bus signal (L1) to allow

slave cache to have a different behavior during a read-block transaction.

As for the bus signals, all protocols need at least the Data Intervention (DI) bus signal. The DI

signal is used by a slave cache to substitute for main memory during a read-block transaction when

it holds a dirty copy (to guarantee coherence) or a private clean copy (to improve efficiency). When

this signal is raised by a remote cache, the cache read-block transaction is used, which is usually

faster because of the lower cache latency compared with memory latency.

In the present evaluation MESI protocol is supposed to the DI line to abort a transaction, and the

RWITM line to signal the ”Read With Intent To Modify” Read-Block transaction.

Dragon, Competitive Snooping, Update-Once, AMSD and PSCR use the SH signal, during a bus

7.3. ADDITIONAL HARDWARE AND SOFTWARE SUPPORT FOR PSCR 65

transaction, to notify that a cache holds a copy of the pertinent block, which therefore has to be

considered shared. As seen above, in PSCR protocol this function is accomplished by theL2 line,

which is also used to signal data transfer of dirty P-blocks fetched by a remote processor.

The migratory detection mechanism of AMSD needs to signal that the copy is migratory during

the bus transaction used to respond to read misses, write misses, and invalidation requests. An

additional line (M) is necessary for signaling the migratory condition.

Finally, Competitive Snooping needs two signals (EII, Enable-to-Invalidate-In, and EIO, Enable-

to-Invalidate-Out), used to implement the distributed arbitration scheme to elect a cache in which to

decrement the counter of write transactions [Karlin86].

As shown in Table 7.1, the complexity of PSCR is comparable to that of the other coherence

protocols examined in the present paper. In fact, the number of logical states is one more than

MESI, Dragon, and Berkeley, and fewer states than AMSD, Competitive Snooping, and Update-

Once. PSCR has the same number of bus transactions of all other examined protocols. Finally, it

has the same number of additional bus signals as AMSD, one more than Dragon, Berkeley, MESI,

and Update-Once, and one less than Competitive Snooping.

7.3 Additional Hardware and Software Support for PSCR

As introduced in Section 3.2 the used approach is both hardware and software based. In the

simplest implementation, the extra hardware consists of an extra bit (P-bit) for each page descriptor

in TLB and a signal of the processor-cache bus. As for the software, the compiler is supposed to

be able to organize data in such a way that the kernel or the run time support could mark the pages

containing private data. This is normally accomplished by compiler and kernel in order to manage

the virtual memory. Thus, the only additional support required is the extra wire between processor

and cache. In particular, no additional complexity is required to manage dynamically allocated

memory, since the allocation function usually needs to specify if the data should be private or

shared. In the case of multithreading programming environments, in which all data are placed in

a shared space, an additional effort from the compiler could be helpful. First, data allocated into

the private stack are easily detectable. The situation changes for private data allocated in the shared

space, or when shared data exhibit long write-runs. In this case, as observed in Section 6.7, marking

those data as private data would improve the global performance. This can be done by means of

a compiler tool that could detect which variables might profitably be treated as private [Xia96b].

The technique can be profiling based, data-flow based [Aho86], or relying on static analysis as

successfully used by Stenstr¨om et al. [Skeppstedt94], and Mowry at al. [Mowry98].

66 CHAPTER 7. COMPLEXITY

7.4 Low Level Optimizations of PSCR

In this presentation of PSCR, it has been supposed that some low-level optimizations could be

integrated with the basic hardware. In particular, in case of write transactions operating on SD

copy, memory updating can be avoided (Figure 3.1). A bus signal can be used to disable memory

during this operation, for example the previously described DI signal. This optimization can be

useful in a couple of cases: to reduce the number of transactions involving the shared memory, or in

implementations that do not employ a memory write buffer. It can be noticed thatL1 andL2 signals

are used in distinct temporal intervals.L1 specifies the type of memory block, slave units answer

by means ofL2. Thus,L1 andL2 can be implemented by using a single multiplexed line.

Chapter 8

Conclusions

The behavior of the PSCR protocol as a function of cache organization, memory latency, bus width,

scheduling policy, and number of thread-contexts has been analyzed.

The proposed protocol has been compared against six solutions based on completely differ-

ent handling policies concerning shared copies: exclusive write-update (Dragon), exclusive write-

invalidate (Berkeley and MESI), or dynamically switching between the two (Update-Once, Compet-

itive Snooping) or using an adaptive detection of migratory copies (AMSD). It has been showed that

the proposed protocol represents a good solution for a shared-memory shared-bus multiprocessor in

all the cases under consideration.

The improvement is particularly useful in many different cases: i) when read cost is higher than

write cost, as is the case for high memory latency, in current systems; ii) when the block size is

increased; iii) when the number of thread-contexts is increased.

Multiprocessors represent a significant percentage of recent architectural solutions for worksta-

tions. These machines are rarely used to speed-up a single parallel application, rather they are

employed as servers to achieve a higher throughput by running multiple processes simultaneously.

These machines typically use an Unix-like multitasking operating system. In the next future multi-

threaded architectures will be adopted along with support for multiple processors on a single chip.

Based on these considerations, three distinct workload models to evaluate the performance of the

proposed protocol have been used: the first workload only includes Unix commands and single-

process applications, whereas the others also include parallel applications with different sharing

pattern (coarse/medium grain).

In the target system of this analysis, load balancing is obtained by allowing process migration,

which distributes the computation workload among the available processing units. This migration

determines the generation of passive shared copies, which induce a relevant amount of coherence

67

68 CHAPTER 8. CONCLUSIONS

overhead. It has been showed that this protocol eliminates this overhead by operating directly during

the read-block transaction consequent to a miss condition and without any significant effect on the

hardware complexity. On the other hand, WI protocols do not succeed in eliminating this overhead.

Once passive sharing is eliminated, WU protocols continue to be a viable strategy compared to

WI ones. The selective invalidation mechanism adequately combined with its basic write-update

mechanism allows PSCR to gain the benefits of an updating in bus-based architectures. I am not

aware of other approaches that explicitly eliminate the overhead due to private data accesses.

The proposed solution can also be successfully employed in systems including a cache-affinity

scheduler, which, as many authors have stated, not always succeeds in eliminating process migration

and its effects in all workload conditions. PSCR performance can be further enhanced by using

compilation techniques that recognize long write runs on shared data.

Acknowledgments

First of all, I wish to thank Professor Antonio Prete, who has been my principal advisor during the

three-year period of my Research Doctorate. His suggestions and experience helped improve very

considerably my way to attach problems in order to go directly to the their core, and my way to

present research results in order to be effective. I thank Professor Dan Siewiorek of Carnegie Mel-

lon University for the initial material used to validate the simulation environment. I’m particularly

grateful to Gianpaolo Prina and Luigi Ricciardi for a contribution to the multiprocessor simulation

design, the useful discussions about the strategy to limit passive sharing problem and preliminary

evaluation of the coherence protocol. My colleague and friend Pierfrancesco Foglia contributed

significantly to the validation of the performance evaluation methodology, and to the review of the

past multithreaded architectures. Thanks to Steve Herrod at Stanford University for providing and

helping with TangoLite. The discussions with Professor Veljko Milutinovi´c and Professor Per Sten-

ström put me into the right lane in order to present myself to the international scientific community.

I wish to thank Professor Ali Hurson, who has been very important in encouraging me in keeping

on my research.

69

70 CHAPTER 8. CONCLUSIONS

Bibliography

[Adve91] S. V. Adve, M. D. Hill, and M. Vernon, “Comparison of Hardware and Software Cache Coherence
Schemes,”Proc. of the 18th Int’l Symp. on Computer Architecture, pp. 298–308, May 1991.

[Adve96] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models: A Tutorial,”IEEE Com-
puter, Dec. 1996.

[Agarwal90] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz, “April: a processor architecture for multipro-
cessing,”Proc. 17th. Int’l Symp. Computer Architecture, pp. 104–114, May 1990.

[Agarwal91] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B. H. Lim, G. Maa,
D. Nussbaum, M. Parkin, and D. Yeung, “The MIT Alawife Machine: a Large-Shared Distributed-
Memory Multiprocessor,” Mit/lcs/tm-454.b, MIT Laboratory for Computer Science, June 1991.

[Agarwal92] A. Agarwal, “Performance Tradeoffs in Multithreaded Processors,”IEEE Trans. Parallel and Dis-
tributed Systems, vol. 3, no. 5, pp. 525–539, Sept. 1992.

[Agarwal93] A. Agarwal, J. Kubiatowicz, D. Kranz, B. H. Lim, D. Yeung, G. D’Souza, and M. Parkin, “Sparcle:
an evolutionary processor design for large-scale multiprocessors,”IEEE Micro, vol. 13, no. 3, pp. 48–
61, June 1993.

[Agarwal95] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-J. Lim,
K. Mackenzie, and D. Yeung, “The MIT Alewife Machine: Architecture and Performance,”Proc.
22th Int‘l Symp. on Computer Architecture, pp. 2–13, 1995.

[Aho86] A. Aho, R. Sethi, and J. Ullman,Compilers: Principles, Techniques, and Tools, Addison-Wesley,
1986.

[Alverson90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith, “The Tera Com-
puter System,”1990 Int‘l Conf. on Supercomputing, June 11-15 1990.

[Alverson92] G. A. Alverson, R. Alverson, D. Callahan, and B. Koblenz, “Exploiting Heterogeneous Parallelism
on a Multi-threaded Multiprocessor,”Conf. proceedings / 1992 Int‘l Conf. on Supercomputing, July
19–23, 1992, Washington, DC, Int‘l Conf. ON SUPERCOMPUTING 1992; 6th, New York, NY
10036, USA, pp. 188–197, 1992.

[Anderson94] C. Anderson and J.-L. Baer, “Design and Evaluation of a Subblock Cache Coherence Protocol for
Bus-Based Multiprocessors,” Tech. Rep. TR-94-05-02, Department of Computer Science and Engi-
neering, University of Washington, May 1994.

[Anderson96] C. Anderson and A. R. Karlin, “Two Adaptive Hybrid Cache Coherency Protocols,”Proc. Second
Int‘l Symp. on High-Performance Computer Architecture, pp. 303–313, Feb. 1996.

[Archibald86] J. K. Archibald and J. L. Baer, “Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model,”ACM Trans. on Comp. Systems, vol. 4, pp. 273–298, Apr. 1986.

[Archibald87] J. K. Archibald,The Cache Coherence Problem in Shared-Memory Multiprocessor, PhD thesis,
University of Washington, Mar. 1987.

[Archibald88] J. K. Archibald, “A Cache Coherence Approach For Large Multiprocessor Systems,”Proc. Int‘l
Conf. on Supercomputing, pp. 337–345, July 1988.

[Berg95] S. Berg, M. Philipose, F. Pighin, and R. Schimkat, “Contrasting Hardware and Software Solutions to
False Sharing on Bus-Based Shared Memory Multiprocessors,” Tech. Rep., Department of Computer
Science and Engineering, University of Washington, Mar. 1995.

[Bitar86] P. Bitar and A. M. Despain, “Multiprocessor Cache Synchronization — Issues, Innovations, Evolu-
tion,” Proc. 13th Int‘l Symp. on Computer Architecture, Tokyo, Japan, pp. 424–433, June 1986.

71

72 BIBLIOGRAPHY

[Boothe93] R. F. Boothe,Evaluation of Multithreading and Caching in Large Shared Memory Parallel Comput-
ers, Also tech report ucb-csd-93-766, University of California, Berkeley - Department of Computer
Science, July 1993.

[Brorsson94] M. Brorsson and P. Stenstr¨om, “Modeling Accesses to Migratory and Producer-Consumer Char-
acterized Data in a Shared Memory Multiprocessor,”Proc. 6th Symp. on Parallel and Distributed
Processing, pp. 612–619, Oct. 1994.

[Carter95] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Techniques for reducing consistency-related com-
munication in distributed shared-memory systems,”ACM Trans. Computer Systems, pp. 205–243, 8
1995.

[Censier78] L. M. Censier and P. Feautrier, “A New Solution to the Coherence Problems in Multicache Systems,”
IEEE Trans. Computers, vol. 27, no. 12, pp. 1112–1118, Dec. 1978.

[Chen93] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu, “The effect of code expanding optimizations
on instruction cache design,”IEEE Trans. Computers, vol. 42, no. 9, pp. 1045–1057, Sept. 1993.

[Chen96] Y. Y. Chen, J. K. Peir, and C. T. King, “Performance of shared cache on multithreaded architec-
tures,”Proc. Fourth Euromicro Workshop on Parallel and Distributed Processing - PDP ‘96. Braga,
Portugal, pp. 541–8, Jan. 1996.

[Cheong88] H. Cheong and A. V. Veidenbaum, “A Cache Coherence Scheme with Fast Selective Invalidation,”
Proc. 15th Int‘l Symp. on Computer Architecture, Honolulu, Hawaii, pp. 299–307, May–June 1988.

[Cheriton91] D. R. Cheriton and H. A. Goosen, “Paradigm: A Highly Scalable Shared-Memory Multicomputer
Architecture,”IEEE Computer, vol. 24, no. 2, pp. 33–64, Feb. 1991.

[Cox93] A. L. Cox and R. J. Fowler, “Adaptive Cache Coherency for Detecting Migratory Shared Data,”Proc.
20th Int‘l Symp. on Computer Architecture, San Diego, California, pp. 98–108, May 1993.

[Culler91] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek, “Fine-grain Parallelism
with Minimal Hardware Support: A Compiler-Controlled Threaded Abstract Machine,”Proceed-
ings of the 4th International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 164–175, Apr. 1991.

[Culler98] D. Culler, J. O. Singh, and A. Gupta,Parallel Computer Architecture: A Hardware/Software Ap-
proach, Morgan Kaufmann, 1998.

[Dec93] DECChip 21064 - A RISC Microprocessor Preliminary Data Sheet, DEC - Digital Equipment Cor-
poration, Maynard, MA, 1993.

[Diep95] T. A. Diep,A Visualization-based Microarchitecture Workbench, PhD thesis, Carnegie Mellon Uni-
versity, Aug. 1995.

[Dubois88] M. Dubois, C. Scheurich, and F. A. Briggs, “Synchronization, Coherence, and Event Ordering in
Multiprocessors,”IEEE Computer, vol. 21, no. 2, pp. 9–22, Feb. 1988.

[Dubois91] M. Dubois and J.-C. Wang, “Shared Block Contention in a Cache Coherence Protocol,”IEEE Trans.
Computers, vol. 40, no. 5, pp. 640–644, May 1991.

[Dubois91b] M. Dubois, J. C. Wang, L. A. Barroso, K. Lee, and Y.-S. Chen, “Delayed Consistency and its Effect
on the Miss Rate of Parallel Programs,”Proc. 4th Conf. on Supercomputing, Alburquerque, NM,
USA, pp. 197–207, Nov. 1991.

[Dubois93] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenstr¨om, “The Detection and Elimi-
nation of Useless Misses in Multiprocessors,”20th Int‘l Symp. on Computer Architecture, May 1993.

[Eggers88] S. J. Eggers and R. H. Katz, “A Characterization of Sharing in Parallel Programs and Its Application
to Coherency Protocol Evaluation,”Proc. 15th Int‘l Symp. on Computer Architecture, Honolulu,
Hawaii, pp. 373–382, May 1988.

[Eggers89] S. J. Eggers, “Simulation Analysis of Data Sharing in Shared Memory Multiprocessors,” Phd thesis
ucb/csd 89/501, Univ. of California, Berkeley, Apr. 1989.

[Eggers89b] S. J. Eggers and R. H. Katz, “Evaluating the Performance of Four Snooping Cache Coherency Pro-
tocols,”Proc. 16th Int‘l Symp. on Computer Architecture, Jerusalem, Israel, pp. 2–15, May 1989.

[Eggers90] S. J. Eggers, D. Keppel, E. J. Koldinger, and H. M. Levy, “Techniques for Efficient Inline Tracing
on a Shared-Memory Multiprocessor,”Proc. 1990 ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pp. 37–47, May 1990.

[Eggers91] S. J. Eggers, “Simplicity versus Accuracy in a Model of Cache Coherency Overhead,”IEEE Trans.
Computers, vol. 40, no. 8, pp. 893–906, Aug. 1991.

[Eggers97] S. J. Eggers, J. Emer, H. M. Levy, J. L. Lo, R. Stamm, and D. M. Tullsen, “Simultaneous Multi-
threading: A Platform for Next-Generation Processors,” Tech. Rep., TR-97-04-02, 4 1997.

BIBLIOGRAPHY 73

[Fiske95] J. A. S. Fiske, “Thread Scheduling Mechanisms for Multiple-Context Parallel Processors,” Tech.
Rep. AITR-1545, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT),
Cambridge, Massachusetts, June 1995.

[Flynn95] M. J. Flynn,Computer Architecture, Pipelined and Parallel Processor Design, Jones and Bartlett
Publishers, 1995.

[Frank84] S. J. Frank, “Tightly coupled multiprocessor system speeds memory access times,”Electronics,
vol. 57, no. 1, pp. 164–169, Jan. 1984.

[Gee93] J. G. Gee and A. J. Smith, “Absolute and Comparative Performance of Cache Consistency Algo-
rithms,” Tech. Rep. UCB//CSD-93-753, EECS Computer Science Division, University of California,
Berkeley, 1993.

[Gharachorloo90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy, “Memory Consis-
tency and event ordering in scalable shared-memory multiprocessors,”Proceedings 17th Int‘l Symp.
on Computer Architecture, pp. 15–26, May 1990.

[Giorgi96] R. Giorgi, C. Prete, G. Prina, and L. Ricciardi, “A Hybrid Approach to Trace Generation for Per-
formance Evaluation of Shared-Bus Multiprocessors,”Proc. 22nd EuroMicro Int’l. Conf., Prague,
pp. 207–214, Sept. 1996.

[Giorgi97c] R. Giorgi, P. Foglia, and C. Prete, “Bus Utilization Analysis of Multithreaded Shared-Bus Multipro-
cessors,”Proc. of 9th Int’l Conf. on Parallel and Distributed Computing and Systems, Washington,
D.C., pp. 24–29, Oct. 1997.

[Giorgi97e] R. Giorgi, C. Prete, G. Prina, and L. Ricciardi, “Trace Factory: Generating Workloads for Trace-
Driven Simulation of Shared-Bus Multiprocessors,”IEEE Concurrency, vol. 5, no. 4, pp. 54–68,
Oct. 1997.

[Goldschmidt93] S. R. Goldschmidt and J. L. Hennessy, “The Accuracy of Trace-Driven Simulations of Multiproces-
sors,”Proc. ACM Sigmetrics Conf. on Measurement and Modeling of Computer Systems, pp. 146–
157, May 1993.

[Goldschmidt93b] S. R. Goldschmidt,Simulation of Multiprocesors, Speed and Accuracy, doctoral dissertation, Stan-
ford University, Stanford, Calif., June 1993.

[Goodman83] J. R. Goodman, “Using Cache Memory to Reduce Processor-Memory Traffic,”Proc. 10th Int‘l Symp.
on Computer Architecture, Stockholm, Sweden, pp. 124–131, June 1983.

[Grahn96] H. Grahn and P. Stenstr¨om, “Evaluation of a Competitive-Update Cache Coherence Protocol with
Migratory Data Detection,”Journal of Parallel and Distributed Computing, vol. 39, no. 2, pp. 168–
180, Dec. 1996.

[Gruenewald96] W. Gruenewald and T. Ungerer, “A multithreaded processor designed for distributed shared memory
systems,”Proc. 22nd EuroMicro Int’l. Conf., Prague, pp. 592–599, Sept. 1996.

[Gupta91] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber, “Comparative Evaluation
of Latency Tolerating Techniques,”Proc. 18th Int‘l Symp. on Computer Architecture, pp. 254–263,
May 1991.

[Gupta92] A. Gupta and W.-D. Weber, “Cache Invalidation Patterns in Shared-Memory Multiprocessors,”IEEE
Trans. Computers, vol. 41, no. 7, pp. 794–810, July 1992.

[Halstead88] J. R. H. Halstead and T. Fujita, “MASA: A Multithreaded processor architecture for parallel symbolic
computing,”Proc. of the 15th Int’l Symp. on Computer Architecture, pp. 443–451, May 1988.

[Hennessy96] J. Hennessy and D. A. Petterson,Computer Architecture a Quantitative Approach, 2nd edition, Mor-
gan Kaufmann, 1996.

[Hirata92] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase, and T. Nishizawa,
“An elementary processor architecture with simultaneous instruction issuing from multiple threads,”
Proc. 19th Int‘l Symp. on Computer Architecture, Gold Coast, Australia, pp. 136–145, May 1992.

[Hollyday92] M. A. Hollyday and C. S. Ellis, “Accuracy of Memory Reference Traces of Parallel Computations in
Trace-Driven Simulations,”IEEE Trans. Parallel and Distributed Systems, vol. 3, no. 1, pp. 97–109,
Jan. 1992.

[Hwang93] K. Hwang,Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-
Hill, 1993.

[Iannucci94] R. A. Iannucci, G. R. Gao, R. H. Halstead, and B. J. Smith, eds.,Multithreaded computer architec-
ture: a summary of the state of the art, Kluwer Academic, 1994.

[Intel91] i860 XP Microprocessor Data Book, Intel Corporation, Santa Clara, CA, 1991.

74 BIBLIOGRAPHY

[Jeremiassen95] T. E. Jeremiassen and S. J. Eggers, “Reducing False Sharing on Shared Memory Multiprocessors
through Compile Time Data Transformations,”ACM SIGPLAN Notices, vol. 30, no. 8, pp. 179–188,
Aug. 1995.

[Kadiyala95] M. Kadiyala and L. N. Bhuyan, “A Dynamic Cache Sub-block Design to Reduce False Sharing,”
Tech. Rep. TR95-010, Texas A&M University, 1995.

[Karlin86] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator, “Competitive Snoopy Caching,”Proc. 27th
Symp. on Foundations of Computer Science, pp. 244–254, Oct. 1986.

[Katz85] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon, “Implementing a cache
consistency protocol,”Proc. 12th Int‘l Symp. on Computer Architecture, pp. 276–283, June 1985.

[Lebeck95b] A. R. Lebeck and D. A. Wood, “Dynamic Self-Invalidation: Reducing Coherence Overhead in
Shared-Memory Multiprocessors,”Proc. 22nd Int‘l Symp. on Computer Architecture, New York,
pp. 48–59, June 22–24 1995.

[Lee90] J. Lee and U. Ramachandran, “Synchronization with Multiprocessor Caches,”Proc. 17th Int‘l Symp.
on Computer Architecture, Seattle, WA, pp. 27–39, June 1990.

[Lee94] G. Lee, B. Quattlebaum, and L. Kinney, “Protocol Mapping for a Bus-Based COMA Multiproces-
sor,” Tech. Rep. DICE #4, Dept. of Electrical Engineering, University of Minnesota, Mar. 1994.

[Lo97] J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen, “Converting Thread-Level Parallelism
into Instruction-Level Parallelism via Simultaneous Multithreading,”Trans. Computer Systems, 8
1997.

[Magnusson95] P. S. Magnusson and B. Werner, “Efficient Memory Simulation in SimICS,”28th Simulation Symp.,
Phoenix, April 1995.

[Mankovic87] T. E. Mankovic, V. Popescu, and H. Sullivan, “CHoPP principles of operations,”Proc. of 2nd Int’l
Supercomputer Conf., pp. 2–10, May 1987.

[Markatos92] E. P. Markatos and T. J. LeBlanc, “Load Balancing vs. Locality Management In Shared-Memory
Multiprocessors,”Proc. 1992 Int‘l Conf. on Parallel Processing. Volume 1: Architecture, Ann Arbor,
MI, pp. 258–267, Aug. 1992.

[Matsumoto93] T. Matsumoto and K. Hiraki, “Dynamic Switching of Coherent Cache Protocols and Its Effects on
Doacross Loops,”1993 ACM Int‘l Conf. on Supercomputing, Tokyo, pp. 328–337, July 1993.

[McCreight84] E. M. McCreight, “The Dragon computer system: an early overview,”NATO Advanced Study Insti-
tute on Microarchitecture of VLSI Computer, Urbino, Italy, July 1984.

[Miksch96] A. Miksch and W. Damm, “MSparc: A multithreaded Sparc,”Lecture Notes in Computer Science,
vol. 1123, pp. 461–469, 1996.

[Miller95] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadan, and T. Newhall, “The Paradyn Parallel Performance Measurement Tool,”IEEE
Computer, pp. 37–46, Nov. 1995.

[Milutinovic98] V. Milutinovi ć, Surviving the Design of Microprocessor and Multimicroprocessor Systems: Les-
son Learned, IEEE Computer Society Press, los Alamitos, California, USA, (in preparation),
http://galeb.etf.bg.ac.yu/ vm/books.html/newbookalpha.zip, 1998.

[Mips92] MIPS R4000 Microprocessor User’s Manual, Mips Technologies, Mountain View, CA, 1992.

[Mogul91] J. C. Mogul and A. Borg, “The effect of context switches on cache performance,”Proc. 4th Int‘l
Conf. on Architectural Support for Programming Languages and Operating Systems, Santa Clara,
CA, USA, pp. 75–84, Apr. 1991.

[Mowry98] T. C. Mowry, C. Chan, and A. Lo, “Comparative Evaluation of Latency Tolerance Techniques for
Software Distributed Shared Memory,”Fourth Int‘l Symp. on High-Performance Computer Archi-
tecture (HPCA-4), Feb. 1998.

[Muller96] H. L. Muller, P. W. A. Stallard, and D. H. D. Warren, “Multitasking and Multithreading on a Mul-
tiprocessor with Virtual Shared Memory,”Proc. 2nd Int‘l Symp. on High-Performance Computer
Architecture, San Jose, California, pp. 212–221, Feb. 1996.

[Nilsson94] H. Nilsson and P. Stenstr¨om, “An Adaptive Update-Based Cache Coherence Protocol for Reduction
of Miss Rate and Traffic,”Parallel Architectures and Languages Europe, pp. 363–374, July 1994.

[Noakes93] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The J-machine multicomputer: An architectural
evaluation,”Proceedings of the 20th Int’l Symp. on Computer Architecture, pp. 224–235, May 1993.

[Pancake95] C. M. Pancake, M. L. Simmons, and J. C. Yan, “Performance Evaluation Tools for Parallel and
Distributed Systems,”IEEE Computer, pp. 16–19, Nov. 1995.

BIBLIOGRAPHY 75

[Pancake95b] C. M. Pancake, M. L. Simmons, and J. C. Yan, “Performance Evaluation Tools for Parallel and
Distributed Systems,”IEEE Parallel and Distributed Technology, pp. 14–20, Winter 1995.

[Papadopulos91] G. M. Papadopulos and K. R. Traub, “Multithreading: A revisionist view of dataflow architectures,”
Proc. of the 18th Int’l Symp. on Computer Architecture, pp. 342–351, May 1991.

[Papamarcos84] M. Papamarcos and J. Patel, “A low overhead coherence solution for multiprocessors with private
cache memories,”Proc. 11th Int. Symp. Computer Architecture, pp. 348–354, June 1984.

[Perl96] S. E. Perl and R. L. Sites, “Studies of Windows NT performance using dynamic execution traces,”
Operating System Review, vol. 30, pp. 169–83, 1996.

[Prete90] C. A. Prete, “A new solution of coherence protocol for tightly coupled multiprocessor systems,”
Microprocessing and Microprogramming, vol. 30, no. 1-5, pp. 207–214, 1990.

[Prete91] C. A. Prete, “RST Cache Memory Design for a Tightly Coupled Multiprocessor System,”IEEE
Micro, vol. 11, no. 2, pp. 16–19, 40–52, Apr. 1991.

[Prete95] C. A. Prete, G. Prina, and L. Ricciardi, “A Trace-Driven Simulator for Performance Evaluation of
Cache-Based Multiprocessor System,”IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 9,
pp. 915–929, Sept. 1995.

[Prete95b] C. A. Prete, G. Prina, and L. Ricciardi, “A Selective Invalidation Strategy for Cache Coherence,”
IEICE Trans. Information and Systems, vol. E78-D, no. 10, pp. 1316–1320, Oct. 1995.

[Prete97] C. A. Prete, G. Prina, R. Giorgi, and L. Ricciardi, “Some Considerations About Passive Sharing in
Shared-Memory Multiprocessors,”IEEE TCCA Newsletter, pp. 34–40, Mar. 1997.

[Ramachandran96] U. Ramachandran and J. Lee, “Cache-Based Synchronization in Shared Memory Multiprocessors,”
Journal of Parallel and Distributed Computing, vol. 32, no. 1, pp. 11–27, Jan. 1996.

[Rosenblum95] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete Computer System Simulation:
The SimOS Approach,”IEEE Parallel and Distributed Technology, pp. 34–43, December 1995.

[Rudolph84] L. Rudolph and Z. Segall, “Dynamic decentralized cache schemes for MIMD parallel processors,”
Proc. of the 11th Int. Symp. on Computer Architecture, pp. 340–347, June 1984.

[Sigmund96] U. Sigmund and T. Ungerer, “Evaluating a multithreaded superscalar microprocessor versus a mul-
tiprocessor chip,”Lecture Notes in Computer Science, vol. 1123, pp. 797–800, 1996.

[Silc98] J. Silc, B. Robic, and T. Ungerer, “Asynchrony in parallel computing: From dataflow to multithread-
ing,” Parallel and Distributed Computing Practices, Vol. 1, No. 1, pp. 3–30, Mar. 1998.

[Singh92] J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford Parallel Applications for Shared-
Memory,” Computer Architecture News, vol. 20, no. 1, pp. 5–44, Mar. 1992.

[Sites88] R. L. Sites and A. Agarwal, “Multiprocessor Cache Analysis Using ATUM,”Proc. 15th Int‘l Symp.
on Computer Architecture, Honolulu, Hawaii, pp. 186–195, May 1988.

[Skeppstedt94] J. Skeppstedt and P. Stenstr¨om, “Simple Compiler Algorithms to Reduce Ownership Overhead in
Cache Coherence Protocols,”Proc. Sixth Int‘l Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, (ASPLOS-VI), October 1994.

[Skeppstedt95] J. Skeppstedt and P. Stenstr¨om, “A Compiler Algorithm that Reduces Read Latency in Ownership-
Cache Coherence Protocols,”Proc. of the Int’l Conf. on Parallel Architectures and Compilation
Techniques, June 1995.

[Smith81] R. J. Smith, “Architecture and Application of the HEP Multiprocessor Computer System,”SPIE,
vol. 298, pp. 241–248, 1981.

[Squillante93] M. S. Squillante and D. E. Lazowska, “Using processor-cache affinity information in shared-memory
multiprocessor scheduling,”IEEE Trans. Parallel Distributed Systems, vol. 4, no. 2, pp. 131–143,
Feb. 1993.

[Srbljic97] S. Srbljic, Z. G. Vranesic, M. Stumm, and L. Budin, “Analytical Prediction of Performance for Cache
Coherence Protocols,”IEEE Trans. Computers, vol. 46, no. 11, pp. 1155–73, Nov. 1997.

[Stenstrom90] P. Stenstr¨om, “A Survey of Cache Coherence Protocols for Multiprocessors,”IEEE Computer,
vol. 23, no. 6, p. 12, June 1990.

[Stenstrom93] P. Stenstr¨om, M. Brorsson, and L. Sandberg, “An Adaptive Cache Coherence Protocol Optimized
for Migratory Sharing,”20th Int‘l Symp. on Computer Architecture, pp. 109–118, May 1993.

[Stenstrom97b] P. Stenstr¨om, E. Hagersten, D. J. Lilja, M. Martonosi, and M. Venugopal, “Trends in Shared Memory
Multiprocessing,”IEEE Computer, Vol. 30, No. 12, pp. 44–50, 12 1997.

[Stunkel91] C. B. Stunkel, B. Janssens, and W. K. Fuchs, “Address Tracing for Parallel Machines,”IEEE Com-
puter, vol. 24, no. 1, pp. 31–45, Jan. 1991.

76 BIBLIOGRAPHY

[Stunkel92] C. B. Stunkel, B. Janssens, and W. K. Fuchs, “Address Tracing of Parallel Systems via TRAPEDS,”
Microprocessors and Microsystems, vol. 16, no. 5, pp. 249–261, 1992.

[Sweazey86] P. Sweazey and A. J. Smith, “A Class of Compatible Cache Consistency Protocols and Their Support
by the IEEE Futurebus,”13th Int‘l Symp. on Computer Architecture, pp. 414–423, June 1986.

[Takahashi96] M. Takahashi, H. Takano, E. Kaneko, and S. Suzuki, “A Shared-bus Control Mechanism and a Cache
Coherency Protocol for High-Performance On-Chip Multiprocessor,”Proc. of the Second IEEE Int‘l
Symp. on High-Performance Computer Architecture, Feb. 1996.

[Thacker88] C. Thacker, L. Stewart, and E. Satterthwaite, “Firefly: a multiprocessor workstation,”IEEE Trans.
Computers, vol. 37, no. 8, pp. 909–920, Aug. 1988.

[Thistle88] M. Thistle and B. J. Smith, “A processor architecture for Horizon,”Proc. of Supercomputing’88,
pp. 35–41, Nov. 1996.

[Tomasevic92] M. Tomaˇsević and V. Milutinović, “A Simulation Study of Snoopy Cache Coherence Protocols,”
Proc. of the 25th Hawaii Int’l Conf. on System Sciences (HICSS-25), vol. I, pp. 427–436, Jan. 1992.

[Tomasevic93] M. Tomaˇsević and V. Milutinović, The cache coherence problem in shared-memory multiprocessors
– Hardware solutions, IEEE Computer Society Press, Los Alamitos, CA, Apr. 1993.

[Tomasevic94] M. Tomaˇsević and V. Milutinović, “Hardware Approaches to Cache Coherence in Shared-Memory
Multiprocessors,”IEEE Micro, vol. 14, no. 5 and 6, pp. 52–59 and 61–66, Oct. and Dec. 1994.

[Tomasevic96] M. Tomaˇsević and V. Milutinović, “The word-invalidate cache coherence protocol,”Microprocessors
and Microsystems, vol. 20, pp. 3–16, Mar. 1996.

[Torrellas90] J. Torrellas, M. S. Lam, and J. L. Hennessy, “Share Data Placement Optimizations to Reduce Mul-
tiprocessor Cache Miss Rates,”Proc. 1990 Int‘l Conf. on Parallel Processing. Volume 2: Software,
Urbana-Champaign, IL, pp. 266–270, Aug. 1990.

[Torrellas95] J. Torrellas, A. Tucker, and A. Gupta, “Evaluating the Performance of Cache-Affinity Scheduling
in Shared-Memory Multiprocessors,”Journal of Parallel and Distributed Computing, vol. 24, no. 2,
pp. 139–151, Feb. 1995.

[Tullsen95] D. M. Tullsen, S. Eggers, and H. M. Levy, “Simultaneous Multithreading: Maximizing On-Chip
Parallelism,”Proc. 22th Int‘l Symp. on Computer Architecture, pp. 392–403, June 1995.

[Uhlig97] R. A. Uhlig and T. N. Mudge, “Trace-Driven memory simulation: a survey,”ACM Computing Sur-
veys, pp. 128–170, June 1997.

[Vashaw93] B. Vashaw, “Address Trace Collection and Trace Driven Simulation of Bus Based, Shared Memory
Multiprocessors,” Tech. rep. CMUCDS-93-4, Carnegie Mellon University, Pittsburgh, PA, March
1993.

[Vaswani91] R. Vaswani and J. Zahorjan, “The implications of cache affinity on processor scheduling for multi-
programmed, shared memory multiprocessors,”Proc. 13th ACM Symp. on Operating Systems Prin-
ciples, pp. 26–40, Oct. 1991.

[Veenstra92] J. E. Veenstra and R. J. Fowler, “A Performance Evaluation of Optimal Hybrid Cache Coherency
Protocols,”Proc. Fifth Int‘l Conf. on Architectural Support for Programming Languages and Oper-
ating Systems, Boston, Massachusetts, pp. 149–160, Oct. 1992.

[Veenstra94] J. E. Veenstra and R. J. Fowler, “MINT: A Front End for Efficient Simulation of Shared-Memory
Multiprocessors,”Proc., 2nd Int’l. Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), Durham, NC, pp. 201–207, Jan. 1994.

[Veenstra94b] J. E. Veenstra and R. J. Fowler, “The Prospects for On-Line Hybrid Coherency Protocols on
Bus-Based Multiprocessors,” Tech. Rep. TR 490, Computer Science Department, University of
Rochester, Mar. 1994.

[Vernon88] M. K. Vernon, E. D. Lazowska, and J. Zahorjan, “An Accurate and Efficient Performance Analysis
Technique for Multiprocessor Snooping Cache-Consistency Protocols,”Proc. 15th Int‘l Symp. on
Computer Architecture, Honolulu, Hawaii, pp. 308–317, May–June 1988.

[Xia96b] C. Xia and J. Torrellas, “Improving the Performance of the Data Memory Hierarchy for Multipro-
cessor Operating Systems,”Proc. of the Second Int‘l Symp. on High-Performance Computer Archi-
tecture, pp. 85–94, Feb. 1996.

[Yan96] J. C. Yan and S. R. Surraki, “Analyzing parallel program performance using normalized perfor-
mances indices and trace transformation techniques,”Parallel Computing, vol. 22, pp. 1215–37,
Nov. 1996.

