An Educational Environment

for Designing and Performance Tuning of
Embedded Systems

Roberto Giorgi and Cosimo Antonio Prete

Dipartimento di Ingegneria della Informazione
Universita di Pisa, Via Diotisalvi 2, [-56126, Italy

I. INTRODUCTION

EACHING how to design and tune an embedded sys-
tem is a not-easy task, since the student has to learn
the many trade-offs that lead to the final system project.

A typical design path starts from the definition of the
hardware/software requirements needed to implement the
specified function through the embedded system [1]. After
that, the designer usually has a prototype program and
a prototype hardware configuration that has to be tuned
in order to meet product requirements concerning power
consumption, cost or speed. The tuning of the system relies
on a good knowledge about the memory hierarchy behavior
and the program locality effects on that hierarchy.

For example, low power consumption and low cost re-
quirements suggest the adoption of an off-chip slow mem-
ory, so that designers often turn to on-chip cache memories
to both provide high processing power and allow using large
slow main memory. In this case, the designer may wonder
if a cache memory is necessary, and if so how to choose an
optimal configuration both in performance and cost.

Existing tools to accomplish this task are often too com-
plex, or do not stress the basic steps in the design path.
These steps should also be learned during first training ses-
sions of students. All these reasons motivated us to develop
a new tool (Csim2) which could combine the different needs
of student and the actual designer.

II. THE CSIM2 ENVIRONMENT

This environment allows the student to learn about the
concepts of system architecture, performance tuning, pro-
gram locality, and cache structure, while analyzing the be-
havior of the program that has to be tied with the embed-
ded system.

The student is actively involved in making authentic
choices that affect the target system, such as changing the
architecture parameters and analyzing the immediate re-
sponse of that system to the user actions; otherwise, elab-
orate graphics and simulations may result not effective.

As a design tool, Csim2 permits: i) to design an embed-
ded application within a proper software development envi-
ronment; ii) to explore different strategies for the memory
hierarchy, including different level of caching, split caches,
write-buffering, by means of a graphical design tool; iii) to
carry out the performance evaluation, in order to choose

the system configuration which can guarantee the best per-
formance for the target application. Focusing on these sim-
ple crucial steps of system design, we foster the student
attitude to select appropriate memory hierarchy and tune
the influencing parameters of an embedded system.

Second level optimizations include the investigation of
more sophisticated techniques like selective cacheing to
cache only particular memory areas, cache locking to leave
some data in cache thus avoiding replacement, scratch
memory which is a small on-chip memory for allocating
frequently used data, code mapping for reducing conflict
cache-misses. All these techniques are supported by ade-
quate tools that help the designer to select the best strat-
egy for the application code and data [2]. Etherogeneous
multicore architecture is also permitted, thus allowing the
designer to try combinations of processors and DSPs.

To help the students, Csim2 has a very friendly point-
and-click graphical interface, by which the teacher can eas-
ily show and discuss, using practical examples, the basic
concepts of cache architecture and behavior (Figure 1).

3 WinChARM CanfigurationEditor: [IGURAZ CFG] - FIGURAZ

Eile Edit Tools Zoom Options Help

Olle] & & lwmlss] gl a|e|==E{nlela

[]
{ Internal Bus

[%]

4 | sl
I [Magnify 1002 7
Fig. 1. Embedded system configuration example. The system in-

cludes an ARM core, an internal I/O device, a cache memory, a
bus adapter, and an external RAM and an external I/O device.
The configuration is produced by means of the configuration ed-
itor of the environment.

The system design and tuning procedure can be orga-
nized in the following four phases, as shown in Figure 2.

SPECIFICATION

PROGRAM SYSTEM

DEVELOPMENT CONFIGURATION

CONFIGURATION

ANALYSIS

PROGRAM
BEHAVIOR

PERFORMANCE

ANALYSIS ANALYSIS

Fig. 2. Structure of a Csim2 session.

In the Program Development phase, the user builds an
application, debugs it and records the program behavior in
a file (program trace). Applications can be executed and
debugged on a dedicated ARM instruction set simulator or
loaded in an ARM CPU-based board for a native evalua-
tion. Once that the application has been developed, the
user can generate the trace file by simply pointing-and-
clicking while the program is running in emulator mode.

In the System Configuration phase, the user defines the
system architecture and the features of each component.
The user first draws the schematic of the system architec-
ture at functional level. The system may include the fol-
lowing components: an ARM core, cache memory that can
be combined in different levels or in split instruction/data
architecture, a system bus, memory banks, and a number of
I/0O devices (Figure 1). For each component, the designer
has to specify the timing and the other custom parameters.

The Program Behavior Analysis phase allows the student
to perform two types of program analysis. The first one
uses traditional program statistics such as the percentages
of data/code, read/write accesses. The second one regards
program locality. An accurate knowledge of locality fea-
tures plays a crucial role in understanding cache concepts.
The locality graphs include: the number of unique blocks,
the locality surface [3], and the spatial locality (Figure 3).

Spatial locality = Median Filter =

Options

‘Temporal Locality(stride=0)

Locality Surface [*f———w,,,,‘

Striding

1048576 gistance:
1706407

Sequentiality
Temporal locality AR e = N E

Fig. 3. The locality surface for median filter program. From this sur-
face, the designer can derive information about locality features
like sequentiality, striding, temporality, and loops.

The Performance Analysis phase allows the student to
plan, perform a single simulation or a performance evalu-
ation experiment, and analyze the results. An experiment
is defined by: i) the trace file; ii) the system configuration;
and iii) the varying parameters (one or two). The results
consist of: global system performance (execution time, lost
time in waiting, and word transfer ratio); cache behavior
(miss, code miss, data miss, read miss, data read miss and
data write miss ratios and cumulative cold misses); and bus
traffic (occupation rate, number of read-block operations,
number of write operations for write-through cache mod-
els and number of update-block operations for copy-back
cache models).

= Median Filter ==
Options
0.6% Miss
'\ mdirect
ke 2 way

0.6 ;3 way
j way
05

WANEN

0.3

0.7

0.2

0.1

0.0

1 4 16
2 8 32

Cache size (Kbytes)

Fig. 4. Miss percentage for median filter program. For this program,
a 2-Kbyte 2-way set associative cache is recommended since it
supplies the best balance between cost and performance.

As an example of output statistics, figure 4 shows the
miss percentage of the median filter program as a function
of the cache size and degree of associativity. We notice
that a 2-way set associative cache is a convenient config-
uration for 1-KByte and 2-KByte caches and also that a
4-way cache produces quite the same result. For a 4-Kbyte
or grater cache size a direct-access cache can be adopted
without any miss rate degradation. At a more detailed
level of analysis, the student is called to search, for a given
cache structure, the cache and block sizes which can pro-
vide the best results in terms of global performance. Again
a new graph can be produced (like the one in Figure 5) to
find the best value for the cache block size.

III. AN EXAMPLE OF PERFORMANCE TUNING

In the design of embedded systems, a key point is the op-
timization of each component, which needs to meet, as bet-
ter as possible, the specific application for which the whole
system is designed. We are going to present an example
of design training path, and we will show how Csim2 can
help a student to find out the optimal cache and system
configuration for a specific application. We consider the
cjpeg program, a jpeg image compression/decompression
tool which is frequently used in commercial embedded sys-
tems.

First, the student should wonder the following question:
for a 20 MHz ARM running an application using the cjpeg
program, is it necessary to add a cache memory in order
to achieve the required performance? We suppose that the
product requires that the image compression be completed
in less than 400ms. First, the student traces the execution
of the cjpeg program while compressing an image. The
source image is a 101-KByte bitmap consisting of 227x149
pixels. Since performance may vary with the program in-
put, the student has to choose the input leading to worst
case performance.

Then, the student defines the system configuration in-
cluding a 20 MHz ARM core, a system bus, a 1-MByte
memory DRAM bank, a 128-KByte memory PROM bank,
and a memory-mapped graphical I/O device. The student
also specifies the timing of each component. In order to
obtain a low cost and a low power-consumption solution, a
slow system bus and slow memory devices are selected.

With the system configuration just examined, a simula-
tion shows that, without cache memory, the system cannot
meet the execution time requirement. The addition of a
cache memory proves to be necessary, therefore, to meet
the time requirement. In this case the execution time falls
below 700ms (Figure 5).

The student can now execute a parametric simulation
in order to search the optimal cache configuration. Figure
5 shows also the miss ratio and the execution time versus
block size (from 8 to 64 Bytes) and cache size (from 2 to
32 KBytes) for two cache configurations. The first cache
is a simple write-through, direct access cache without a
write buffer; the second one is a more complex copy-back,
two-way set associative cache with a two-entry write buffer.
The cache uses the LRU technique as replacement policy.

The designer can observe that, in both configurations,
execution time and miss ratio exhibit different values and
behaviors. In this way the student can select the configu-
ration that best meets cost-effectiveness and performance
requirements (execution time < 400ms). For example, an
optimal choice is a 8-KByte, write-through, direct access
cache with 32-Byte block size without a write buffer.

Now, the student can also answer the question: for the
selected cache configuration, which is the cheapest main
memory meeting the time requirement? The designer can
thus execute simulations having the RAM bank access time
as parameter. The simulation permits to find out that the
memory bank delay can be increased by no more than 30ns
with respect to the values specified in the configuration (not
shown here).

Of course, if the student uses the same design path for
a different embedded application, he/she may find out a
different cache and system configuration.

Csim2 was designed at our University [4]. The full ver-
sion is part of a toolkit (JumpStart) distributed by VLSI
Technology, Inc., for the design of ARM-based applications.
(ARM [5], is a 32-bit microprocessor designed by ARM Ltd.
and largely used in embedded products. It uses RISC tech-
nology and a fully-static design approach to obtain both
high performance and very low power consumption.)

= Direct access | v| - Direct access ‘ v| -
Options
Miss S ExecutionTime
12 — 70
10 ——5hte | || 600 ——5hte
——pte ——2bte
8 X—g 500 —X—e4bte
400
6
300
49 200 1
2 W || 100
0 0

2 4 8 16 32 2 4 8 16 32
Cache size (kbytes) Cache size (Kbytes)

‘le

—| Two-way set associative | v| + |[Two-way set associative

Options

ExecutionTime
——8i
bte
400 —D—2hte
—X—eabte

300
200 %3

100

ms
500

) 0 " " :
32 2 4 8 16 32
Cache size (Kbytes)

4 8 16
Cache size (kbytes)

Fig. 5. Miss ratio and time execution for cjpeg program. The
graphs permits to decide whether the cache memory is necessary
and to find out the optimal system configuration meeting the
requirements.

We believe that this educational environment based on a
trace-driven system simulator can help students in the de-
sign activity of cache memory to be employed in embedded
systems. The growing demand for embedded products re-
quires highly sophisticated computing functions. Designers
must select the most efficient cache/system configuration in
order to resolve complex — even conflicting — requirements
for low-power /high-speed and component cost. This makes
accurate and reliable system/cache memory simulation and
performance analysis crucial.

REFERENCES

[1] D.D. Gajski and F. Vahid, “Specification and design of embedded
software-hardware systems,” IEEFE Design & Test of Computers,
vol. 12, no. 1, Spring 1995.

[2] S.Lorenzini, G. Luculli, and C. A. Prete, “A fast procedure place-
ment algorithm for optimal cache use,” in Proc. MELECON’98,
Tel Aviv, Israel, May 1998, pp. 1279-1284.

[3] K. Grimsrud, J.Archibald, R. Frost, and B. Nelson, “Locality as
a visualization tool,” IEEE Trans. Computers, vol. 45, no. 11,
pp. 1319-1326, Nov. 1996.

[4] Cosimo Antonio Prete, Marco Graziano, and Francesco Lazzarini,
“The ChARM tool for tuning embedded systems: Selecting and
tuning system configurations to meet cost, performance, and
power consumption requirements,” IEEE Micro, vol. 17, no. 4,
pp. 67-76, July/Aug. 1997.

[6] D. Jaggar, “Arm architecture and systems,”
9-11, July 1997.

IEEE Micro, pp.

