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Abstract—The trend to develop increasingly more intelligent
systems leads directly to a considerable demand for more
and more computational power. Programming models that aid
to exploit the application parallelism with current multi-core
systems exist but with limitations. From this perspective, new
execution models are arising to surpass limitations to scale up
the number of processing elements, while dedicated hardware
can help the scheduling of the threads in many-core systems.
This paper depicts a data-flow based execution model that
exposes to the multi-core x86_64 architecture up to millions
of fine-grain threads. We propose to augment the existing
architecture with a hardware thread scheduling unit. The
functionality of this unit is exposed by means of four dedicated
instructions. Results with a pure data-flow application (i.e.,
Recursive Fibonacci) show that the hardware scheduling unit
can load the computing cores (up to 32 in our tests) in a
more efficient way than run-time managed threads generated
by programming models (e.g., OpenMP and Cilk). Further, our
solution shows better scaling and smaller saturation when the
number of workers increases.

Keywords– many-core architecture; data-flow; fine-thread
scheduling; ISA extension; model simulation;

I. INTRODUCTION

The tendency to evolve to more complex intelligent sys-
tems leads directly to an appreciable request for more and
more computational powerful systems. Several applications
rely on massive parallel hardware to better perform (e.g.,
many algorithms in machine learning such as neural net-
works or support vector machines, and signal processing
algorithms). In future many-core systems, the number of
cores will be one or two orders of magnitude larger than
current multi-core systems. This tremendous increment in
the number of cores is allowed by the continuous improve-
ments in silicon manufacturing technology. However, current
multi-threaded real-world applications are not fully capable
to take advantage from the large parallelism exposed by
the hardware. Moreover, major design constraints impose
serious limitations to the ability of integrating more and
more processing units on the same silicon die. Among the
others, the communication and synchronization overhead

becomes quickly predominant. With the aim of surpassing
these limitations, new programming and execution models
have been proposed [1], [29], [37], [38]. Data-flow paradigm
is known to be capable of taking advantage of the full
parallelism offered by the underlying hardware, by lever-
aging an implicit way to eliminate data dependencies and
threads synchronization [5]. Although data-flow is not a new
concept, only recently it has met the appropriate hardware
support maturity. By introducing a hardware assisted thread
scheduling unit, the efficiency and scalability of such sys-
tems can be improved. However, targeting a many-core chip
embedding up to one thousand cores (as expected for future
many-core processors), efficiently scheduling threads among
the computing resources remains a not trivial problem.

This paper defines an abstract many-core system sup-
porting a data-flow execution model, by resembling very
closely the existing architectures (e.g., by adopting existing
architectural blocks). To this end, the paper introduces a
set of additional hardware units to efficiently support the
scheduling and distribution of fine-grain threads. We can
synthetically refer to this set of units as the hardware
thread scheduler. The proposed architecture exposes the
functionality of the hardware thread scheduler by means of
an extension of the x86_64 instruction set architecture (ISA),
called T-Star (T*64). Simulation results show that managing
micro-threads with a specific x86_64 ISA extension provides
better scaling w.r.t. standard programming models such as
OpenMP and Cilk. The rest of the paper is organized as
follows. Section II describes major contributions in the
context of data-flow architectures and scheduling systems.
Section III presents the ISA extensions we introduced to
support data-flow thread scheduling at the hardware level.
Section IV introduces the reference architecture chosen in
this work, while section V presents experiment results.
Section VI concludes the paper.



II. RELATED WORKS

Data-flow principles and their architectural exploitation
have been investigated in several research works. Dennis and
Gao in [13] proposed a first example of the applications of
the data-flow principle to design an high-efficient processor.
Several data-flow projects existed during ’70 and early ’80s
to explore the data-flow paradigm. Projects died out in the
mid ’80s due to the complexity of the hardware, difficulty
of dealing with complex data structures, expensive of mov-
ing and copying data, communication and synchronization
overheads, and programming difficulties. Etsion ets al. [31]
provides an accurate vision of the current state-of-the art
in data-flow programming. The authors designed a pro-
cessing system composed of a standard execution pipeline
augmented with a hardware unit holding information of the
execution data-flow graph. Similarly, Monsoon [14], and
StarT project [15] are other examples of a multi-threaded
architecture employing data-flow principles. The systems
use a custom pipelined processor for supporting data-flow
sequencing and execution of very fine-grained threads.

More recently, other research works applied data-flow
principles to modern multi-threaded multi-core architectures.
These works progressively departed from the original data-
flow model, with the aim of overcoming scalability limita-
tions. Scheduled Data-Flow (SDF) architecture [16] and De-
coupled Threaded Architecure (DTA) [17] decouple mem-
ory access and computations within fine-grain non-blocking
threads. Properly scheduling in a distributed fashion the
execution of these threads, they are able to outperform
conventional superscalar architectures. Moreover, authors in
[18], [19], exploited scheduled data-flow execution model
on multi-threaded off-the-shelf heterogeneous processor, in
contrast of the adoption of custom cores as in SDF system.

With respect to the previous works, we propose a hard-
ware support for scheduled data-flow execution model, rely-
ing on standard off-the-shelf processing cores, with a small
extension to the instruction set architecture. The underlying
hardware support results in a small area cost, compared
to other previous solutions, since in the proposed model,
there is no need for data-flow graph storage. Similar to the
DDM [1] architecture, our proposed one uses a hardware
support for efficiently schedules the execution of threads.
The codelet model [23], [24] has been recently proposed as
an execution model targeting future exascale machine. The
codelet model is similar to the one we propose. The main
difference between the two models are that our scheduler
is fully responsible for the scheduling operations, and that
in our data-flow model the synchronization counter (the
counter associated to the number of required inputs by each
data-flow thread) is automatically decremented every time
producer threads execute a write operation on the frame
memory of consumer threads.

III. EXECUTION MODEL AND SYSTEM OVERVIEW

The data-flow paradigm [30], [16], [17], [20], [21],
[37], [38], [40] allows applications to simply express data
dependencies and synchronization among threads, mainly
resorting to an explicit producer-consumer model. In our
data-flow execution model the threads are organized in such
a way they perform input-output operations respectively at
the beginning and the end of their execution. Moreover,
threads can be executed if and only if all the input data
have been produced by other threads. We call this threads
Data-Flow Threads (DF-Threads).

In our model, the execution of a DF-Thread is enabled by
two conditions: (i) all the needed input data are available,
(ii) the system scheduler assigns the thread to a specific
computing unit. With the aim of enabling the thread exe-
cution, a counter is associated to each thread. The counter
is initialized to the number of required input data, and is
updated every time a producer thread generates a new input
data for the consumer thread. Considering standard off-the-
shelf computing cores, this mechanism becomes effective if
there is a way to control the thread execution at the level of
instructions. With the aim of allowing the application code
to interact with dedicated scheduling units and to control
thread execution (i.e., thread creation, thread removal, etc.),
we introduce an extension to the instruction set architecture.

Due to the large availability and adoption of x86_64
architectures in several context (e.g., high-performance com-
puting, general purpose desktop systems, etc.), we aug-
mented x86_64 cores with dedicated hardware units for
accelerating the scheduling and distribution of DF-Threads.
These hardware units are completely aware of the above
described data-flow execution model.

A. Hardware thread scheduling support

The proposed architecture is based on designs presented
in other works ([7], [37], [38]). A multi-core x86_64 sys-
tem is modified by augmenting the functionalities of the
cores with the integration of a dedicated scheduling unit
(local scheduler – LS). In order to ease the distribution
of the threads among the cores, a remote scheduler (RS)
is implemented. All these hardware units are responsible
for allocating internal system resources during the lifetime
of the threads. DF-Threads are possibly managed locally
by each LS. The LS is in charge of managing input data
counters for each DF-Thread that is created. In case not
sufficient resources are locally available, the LS can com-
municate with the RS, requiring to move the thread on
a different core. The RS selects a different core, trying
to balance the whole system load. Similarly, every time a
DF-Thread needs to write in the memory region associated
to a consumer thread residing in a different core, the LS
unit exchanges information with the RS unit. Programs can
interact with the LS and RS using dedicate instructions. For
this purpose, we created an Instruction Set Extension (ISE)



called T*64 [8], [16], [7], [41]. T*64 extension consists of
four instructions for generating/stopping DF-Threads, and
operating on input/output data.

void main ( )
{
    int add, mul, c;
    int a = 4;
    int b = 4;
    add = a + b;
    mul = a * b;
    c = mul/add;
} 

main : movq         $4       %R8
            movq         $4       %R9
            movq         $1       %RAX
            cmpq         $1       %RAX
            Tschedule $add,  $3           %R10
            Tschedule $mul,  $3           %R11
            Tschedule $div,   $2           %R12
            Twrite        %R8,   %R10     $2
            Twrite        %R9,   %R10     $3
            Twrite        %R12, %R10     $4
            Twrite        %R8,   %R11     $2
            Twrite        %R9,   %R11     $3
            Twrite        %R12, %R11     $4
            Tdestroy          

add :   Tread         $2       %R8
            Tread         $3       %R9
            Tread         $4       %R10
            movq         %R8    %R11
            addq          %R9    %R11    
            Twrite        %R11,  %R10      $2
            Tdestroy          

mul :   Tread         $2       %R8
            Tread         $3       %R9
            Tread         $4       %R10
            movq         %R8    %RAX
            mulq          %R9    
            movq         %RAX  %R11
            Twrite        %R11,  %R10     $3
            Tdestroy          

div :    Tread         $2        %R8
            Tread         $3       %R9
            movq         $4       %RDX
            movq         %R9   %RAX
            divq           %R8    %R11    
            movq         %RAX %R10
            Tdestroy          

main

tschedule (add, 3) tschedule (mul, 3) tschedule (div, 2)

twrite (mem_add | 2, a)
twrite (mem_add | 3, b)
twrite (mem_add | 4, mem_div)

twrite (mem_mul | 2, a)
twrite (mem_mul | 3, b)
twrite (mem_mul | 4, mem_div)

a = tread (mem_add | 2)
b = tread (mem_add | 3)
mem_div = tread (mem_add | 4)

add

twrite (mem_div | 2, a + b)

0 0 0

a = tread (mem_add | 2)
b = tread (mem_add | 3)
mem_div = tread (mem_add | 4)

3 3

mul

twrite (mem_div | 3, a * b)

add = tread (mem_div | 2)
mul = tread (mem_div | 3)

div
c = mul / add
tdestroy

1
1

Figure 1. An example of execution of a data-flow application. The code
snippet in the top box is used to generate four data-flow threads (DF-
Threads – middle box). Resorting to the T*64 instructions, these four DF-
Threads are dynamically scheduled by the LS/RS units as depicted in the
box below.

B. Instruction Set Extension support for data-flow execution
As described in the previous section, we resort to an

Instruction Set Architecture extension (ISE – Instruction
Set Extension) [5] to allow programs directly interact with
the hardware units introduced for accelerating DF-Thread
scheduling operations. This ISE is composed of four main
instructions. We overloaded the semantic of a side-effects
free instruction. The advantage of using this mechanism
is the absence of visible architecturally side-effects in the
cores.

More specifically, managing the execution of DF-threads
requires an effective mechanism to create/destroy the threads
and allow them to read and write input/output data: these
four operations are the core of our T*64 ISA extension.
T*64 instructions are decoded locally by the computing
core in the decode stage, and forwarded to the LS unit
for the execution. Standard x86_64 instructions and T*64
instructions maintain separate execution paths within each
core, allowing to maximize the instruction level parallelism
exploitation. The four T*64 instructions are described in the
following:

• TSchedule: this instruction allows to create a new DF-
Thread by allocating the internal LS/RS resources (e.g.,
storage space for managing the input data counter).
The instruction returns a pointer to the memory region
used to store input data for the thread. Whenever a
DF-Thread issues this instruction, it also specifies both
the pointer to the thread code and the initial value of
the input data counter. When this counter is reduced
to zero, the scheduling unit changes the state of the
DF-Thread from waiting to ready.

• TDestroy: the DF-Thread that issues this instruction is
going to finish so all the resources associated to it are
released.

• TWrite: this instruction allows DF-Threads to produce
output data for other consumer DF-Threads, by writing
at proper locations in the memory region associated to
these threads. The producer DF-Thread specifies both
a pointer to this memory region, and an offset. The
scheduling unit in charge of managing the consumer
DF-Thread decrements the corresponding input data
counter.

• TRead: this instruction is executed by a DF-Thread to
read input data. In order to read a specific data, the
consumer thread specifies an offset within the memory
region associated to it.

Figure 1 shows an example of the DF-Thread scheduling
process. In the top box, a code snippet written in C language
is depicted. This piece of code is parallelized, and four
corresponding DF-Threads are generated. The box in the
middle of the figure provides an expanded view of each
DF-Thread. Several methods have been proposed to auto-
matically extract fine-grain threads starting from a high-level
description given in an imperative language. Finally, below
this box there is a representation of the dynamic scheduling
process applied by the LS units and the RS unit of the
proposed architecture.

IV. SIMULATION METHODOLOGY

The experiments focus on analyzing the T*64 execution
model using the COTSon simulation infrastructure [10].
COTSon uses SimNow [11] to perform behavioral simula-
tion of the target system (i.e., functional simulation), while
it implements timing models for all the components in the



TABLE I
MAIN ARCHITECTURAL PARAMETERS USED IN THE SIMULATION

FRAMEWORK.

Parameter Description
Cores X86-64, out-of-order

Clock Frequency 1.0 GHz
L1 Cache Private 32Kbytes I + 32Kbytes D, 2 way s.a., 3

cycle latency
L2 Cache 512 Kbytes, 4 ways s.a., 5 cycles latency

Block Size 64 bytes
Main Memory 1 GByte, 16 cycles latency

Bus MOESI protocol
L1 TLB 32 entries. for both I-TLB and D-TLB
L2 TLB 512 entries (unified TLB)

target system. The architecture considered for this study is a
single-node multi-core system. The architecture considered
for this study is a single-node multi-core system. Architec-
tural details of the simulated system are reported in table
I.Standard x86_64 cores are configured to have separated
instructions and data Translation Lookaside Buffer (i_TLB
and d_TLB respectively) which both connect to a second
level TLB (L2-TLB). Besides TLBs, the standard cores
have separated first level instruction and data caches (i.e.,
L1-IC and L1-DC) which both connect to a second level
cache (L2). Finally, L2-TLB and L2 cache are connected
to a coherent bus implementing the MOESI protocol. This
bus also provides the access to the memory controller of
a DRAM. The clock frequency of the x86_64 cores is 1.0
GHz. In order to correctly simulate the proposed execution
model, we implemented a dedicated behavioral and timing
model for the local schedulers and for the remote scheduler
unit. Finally, latencies of the memory components have been
obtained with Cacti 6.0 tool [36]. For the simulations, we
consider a system implemented using 32nm technology.

The simulation of the T*64 ISA in the x86-64 guest
system is performed at cycle accurate level. We do not
neglected any event or bus transaction. Deep analysis were
performed to collect bus latency and the cache utilization
for our T*64 execution model. For T*64 instructions, we
measured the latencies occurring between the decoding of
the instruction at the level of the LS unit till the completion
of the operations (e.g., write operation in a specific memory
location, etc.).

V. EXPERIMENTAL RESULTS

The simulation of data-flow benchmarks such as Re-
cursive Fibonacci allows us to evaluate the benefit of
adopting a hardware scheduling component w.r.t. software-
based or mixed software-hardware based approaches for
distributing and scheduling fine-grain threads. Pure data-
flow applications following the exposed execution model
exhibit an interesting feature: they are able to generate a
high number of threads during the application lifetime. Thus,
they represent a starting point for evaluating the proposed
execution model and scheduling hardware support.

Our results show that the choice of deploying a hardware
scheduler is most effective when the number of running
threads increases. The following analysis focuses on a
single-node multi-core system (i.e., 32 cores). This choice al-
lowed us to identify potential bottlenecks with small system
configuration. An efficient solution for the single-node case
can be further extended to multiple nodes in future works
(essentially by extending the current scheduler in order to
make RS units, that are distributed among various nodes, to
communicate each other). According to our estimations the
area overhead is equal to 3.8%, making the solution feasible
for future many-core systems.

A. Performance evaluation of T*64

Experiments have been performed on a single-node sys-
tem configured with 1, 4, 8, 16, and 32 cores (for the kernel
implementation with OpenMP and Cilk we set the number
of worker threads equal to the number of cores). The results
of the execution of the Recursive Fibonacci kernel with input
value n = 35 are shown in figure 2. The execution time is
normalized to the sequential execution time and compared
with that of OpenMP [12] and Cilk [2]. The reference value
is given by the time for the sequential execution. For the
data-flow version of the kernel we considered two possible
implementations: in T*64 default implementation each T*64
instruction takes several cycles to complete (i.e., 5, 1, 4, and
2 cycles respectively for the TSchedule, TRead, TWrite and
TDestroy), while for the T*64 optimistic it is assumed that
they complete in one cycle. The optimistic implementation
relies on the assumption that the hardware units devoted
to the execution of T*64 instructions are able to efficiently
exploit the ILP.
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Figure 2. Normalized execution time for the Recursive Fibonacci kernel
with input n = 35. Bars in the graph shows the relative execution time for
different parallel implementations of the kernel: OpenMP, Cilk, and T*64.

The first important observation is that speed up for all
solutions is similar till the number of workers arrives to
sixteen. But, when the number of workers is increased to
32 the data-flow scheme presents better scaling. There is



space for design exploration between T*64 default and T*64
optimistic when the number of cores becomes higher than
32 (as in the case of multi-node configurations). In fact, our
execution model is build in such a way it can dynamically
spawn and distribute threads among all the available cores.
Thus, it is possible to say that if more cores are integrated
in the architecture, the scaling can be greatly improved. We
also observed that with the configuration we considered, the
bus interconnection is able to handle all requests without
saturation.

Figure 3. L1-DC miss-rate for the execution of recursive Fibonacci with
input n = 35. The bars show the average miss-rate in the first level data
cache when read and write operations are considered. The plot allows to
compare the impact of different programming/execution models on L1 data
cache.

As the reader can see, the OpenMP execution scales, but
there is a saturation when the number of threads becomes
higher than 16. Cilk execution model exhibits a scale up
improvement when the number of workers is relatively high
(>16), but there is still a saturation when number of threads
equals 32. On the contrary, the proposed execution model
exhibits a clear improvement when the number of cores
increases, e.g., 32 cores or more (thus the number of threads
that can be in the running state at the same time). We have
also to consider that for the selected kernel application the
memory regions associated to each DF-Thread are bigger
than the actual used size. In fact, we managed memory
regions with a minimum size of 512 bytes (64 values,
each represented on 64 bit) while the benchmark generates
no more than 2 input values for each thread. From this
perspective, we can considered the default execution as an
upper limit. We can also claim that the behavior of the
default execution is similar to some well known multi-
threading execution models such OpenMP and Cilk, but
it has better performance in multi-cores systems when the
number of cores is higher than 16.

Finally, figure 3 shows the impact of our execution model
in terms of cache misses on the first level of the cache
memory hierarchy. Since the data-flow paradigm is based
on the explicit movement of input data between producer

and consumer threads, we analyzed the impact on the L1
data cache (L1-DC). The results refer to the comparison
of Recursive Fibonacci with input n = 35, implemented
with our execution model, OpenMP and Cilk. As the reader
can see, these results are promising since we obtained a
lower cache miss-rate (for the optimistic execution). The
main reasons are because the amount of data exchanged
among DF-Threads is small enough to fit in the lower level
of the cache hierarchy (L1-DC), and also because we have
thousand of ready threads that are preemptively loaded in
the higher cache levels.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a data-flow based execution model and
its hardware support is presented. The paper depicts the
execution model based on current x86_64 cores with some
extra hardware infrastructure. We showed that the x86_64
architecture with a data-flow ISA extension (T*64 in this
work) has advantages against OpenMP and Cilk for multi-
core systems, when the number of cores is relatively high
(>16). In these case scenarios our data-flow model exhibits
a clear better scaling. Simulations indicated that T*64 is
able to scale better than the current state-of-the-art program-
ming/execution models (e.g., OpenMP and Cilk).

At the beginning of the paper we showed that T*64 relies
on the execution of fine-grain threads and that the thread
scheduler units can manage a huge number of these threads
(referred to DF-Threads in the paper).

These results help to investigate more future architecture
optimizations and design exploration. We observed that
T*64 ISA extension and its related data-flow execution
model have a lot of potential in dynamically spawning and
distributing threads. Our future works are focusing on multi-
node configuration characterization, and the exploration of
the presented execution model for improving energy save
and reliability.
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