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ABSTRACT This paper focuses on real-time object detection systems, analyzing existing Field-
Programmable Gate Arrays (FPGAs) implementations that aim to achieve the best efficiency, performance,
and accuracy at the same time. These three metrics are typically crucial for domains such as autonomous
driving, and robotics. Fortunately, recent advancements in object detection models, particularly based on
Convolutional Neural Networks (CNNs), have significantly improved object detection accuracy and speed.
When thesemodels are combinedwith FPGAs, it is possible to achieve evenmore energy efficiency andmore
easily satisfy real-time constraints. FPGAs can deliver low latency and high throughput by leveraging true
parallelism making them suitable platforms for developing real-time object detection systems. This paper
reviews existing literature on FPGA-based real-time object detection, discussing commonly used algorithms,
acceleration techniques, and optimization strategies. Evaluation metrics and typical datasets for assessing
real-time systems are also examined. We have compared the performance of these implementations by using
pixel throughput as a fair metric across different systems while processing video streams or images. Insights
into state-of-the-art works, comparative analysis, challenges, and future research directions are provided to
guide researchers interested in leveraging FPGA devices for real-time object detection applications.

INDEX TERMS Real-time object detection, FPGA, Convolutional Neural Networks (CNNs), hardware
accelerator.

I. INTRODUCTION

REAL-TIME object detection is a computer vision task
that aims at identifying and localizing objects in images

or video sequences with acceptable inference speed, frame
rate, and accuracy, satisfying the requirement of the appli-
cation of interest. Autonomous driving [1], [2], robotics [3],
[4], and healthcare monitoring [5], [6] are some examples in
which real-time object detection can play a vital role.

Similar to classical real-time theory, we can define hard and
soft constraints for real-time object detection. In hard real-
time scenarios, the system fails if a specific deadline is not
met, whereas in soft real-time situations, missing a deadline
is undesirable but can be tolerated [7].

Achieving high energy efficiency and, at the same time,
performance satisfying hard constraints typically leads to the
use of FPGA platforms [8], [9].

a: The role of Machine Learning
Advancements in machine learning, particularly in deep
learning [10], have led to the development of highly accurate
and optimized object detection algorithms. Contemporary
real-time object detectors commonly leverage Convolutional
Neural Network (CNN) architectures to achieve an acceptable
balance between accuracy and speed.
Recently, Transformer-based object detectors [11], [12]

have gained considerable attention owing to their simplified,
end-to-end architectures and impressive performance. How-
ever, their high computational demands limit their practi-
cal application [13], especially on resource-constrained plat-
forms.

b: The role of FPGAs
FPGAs are widely regarded as suitable platforms for imple-
menting object detection systems as stand-alone target de-
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vices or, in heterogeneous systems, as accelerators alongside
a processor [14]. They have gained remarkable attention for
implementing real-time object detection systems due to their
ability to offer low and deterministic latency, along with high
throughput—critical factors for real-time systems [15].

Moreover, FPGAs can directly receive images from ex-
ternal imaging sources and process them without the need
for processor intervention. This results in improved system
performance and ensures lower and more predictable end-
to-end latency. This is particularly significant as real-world
object detection systems commonly rely on input image data
from one or multiple imaging sources [16], [17].

Furthermore, the introduction of one-stage CNN-based ob-
ject detection models [18], [19] in 2016, characterized by
simpler architectures and higher speed compared to their two-
stage counterparts [20]–[22], has facilitated the development
of real-time systems, particularly on resource-constrained
devices like FPGAs. Over time, with the introduction of
more advanced one-stage object detection models [23], [24],
these architectures have managed to strike a balance between
accuracy and speed. Figure 1 illustrates the increasing contri-
bution of ‘‘real-time’’ systems in the context of implementing
object detection on FPGAs over the last decades. This figure
highlights that the introduction of these detection models has
marked a significant turning point in attention to this topic.

FIGURE 1. Increasing number of publications related to real-time object
detection and FPGA over the years, especially after the introduction of
one-stage object detection models like YOLO [18] and SSD [19], based on
data extracted from Google Scholar.

c: Other related surveys
This review examines implementations of real-time object
detection on FPGAs, while other recent surveys partially ad-
dress the topic as a whole as illustrated in Table 1. The survey
literature is quite large, so we divided the contributions in
three main categories discussed below: i) surveys on general
object detection; ii) surveys on object detection on resource-
constrained platforms; iii) surveys on FPGA-based object de-
tection. In those categories, we discuss below and highlight in
Table 1 the surveys of the last three years (2022, 2023, 2024),

assuming that they already include comprehensively previous
works and we explain how we extended such reviews.

Surveys on General Object Detection
Numerous research works provide reviews of object detec-
tion algorithms, covering traditional and deep learning-based
methods, commonly used datasets, typical performance met-
rics, and more [26], [28], [30], [32], [34]–[39].
The work by Amjoud et al. [26] provides an overview of

the current state of object detection based on deep learning,
covering two-stage anchor-based detectors, one-stage anchor-
based detectors, anchor-free detectors, and transformer-based
detectors. It also evaluates existing models across major ob-
ject detection datasets such as Pascal VOC [40] and MS-
COCO [41].
J. Kaur et al. [32] review key techniques, datasets, and

tools for object detection, with a focus on the advancements
and challenges within the field. It covers various detection
methods, noting how deep neural networks have improved
performance, while challenges like small object detection,
video analysis, and dataset limitations persist. The paper
also explores future directions, such as combining detection
models. They highlighted key research opportunities, such
as designing efficient networks and leveraging multi-source
information to enhance robustness in detection tasks.
The paper by R. Kaur et al. [28] reviews the evolution of

object detection, focusing on deep convolutional neural net-
works and their applications across various fields. It compares
deep learning methods with other object detection techniques
and discusses key frameworks, architectures, datasets, and
evaluation metrics.
Zou et al. [30] provide a comprehensive review of popular

detectors, key technologies, speedup methods, datasets, and
metrics spanning 20 years of object detection history, along
with discussing promising future directions.

Surveys on Object Detection on Resource-Constrained
Platforms
Implementing these algorithms on resource-constrained de-
vices is a practical and interesting topic. Extensive research
has been conducted in this domain, covering various aspects
of this issue [27], [29], [31], [33], [42]–[44]. From these
works, several important design aspects emerge that need
to be taken care of. They include the design of appropriate
algorithms, techniques to simplify architectures, energy ef-
ficiency (e.g., optimizing memory access, a primary source
of power consumption), edge-specific metrics, such as cost,
model size versus resource availability, and common metrics
like accuracy, latency, and throughput.
Huang et al. [31], examine the challenges and advance-

ments in enabling real-time object detection on resource-
constrained edge devices. It explores methods of data pro-
cessing on such devices, the development of efficient deep
learning models, and the importance of input size reduction
in neural networks for edge scenarios. The authors analyze
existing approaches, comparing traditional machine learning
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TABLE 1. Comparison of recent related review studies with the present work, focusing on the main topics discussed.

Year Ref. Main Surveyed Topics (Corresponding to ours) Highlights

Object Detection
(OD) Methods

Real-time
Performance

FPGA Im-
plementation

HW Acceleration/
Optimization Techniques

2024 Ours YES YES YES YES
Focuses mainly on suitable OD models, HW

acceleration methods, and optimization strategies to
achieve real-time performance on FPGAs

2024 Mittal [25] YES YES NO NO
Focuses on the design and evaluation of lightweight
object detection models based on deep learning,

specifically tailored for edge devices

2023 Amjoud et
al. [26] YES NO NO NO Provides an overview of the current state of deep

learning-based OD models

2023 Kamath et
al. [27] YES NO NO NO

Provides a systematic review on deep learning-based
OD on resource-constrained devices, emphasizing

lightweight models

2023 R. Kaur et
al. [28] YES NO NO NO

Reviews the evolution of OD, emphasizing
DNN-based models while discussing key frameworks,

architectures, datasets, and evaluation metrics

2023 Setyanto
et al. [29] YES YES NO NO

Reviews OD methods and simplification strategies
suitable for edge computing, focusing on compression

techniques

2023 Zou et al.
[30] YES YES NO NO Reviews the development of OD with a discussion on

detection speedup helpful for real-time performance

2022 Huang et
al. [31] YES YES NO NO

Discusses CNN-based OD models suitable for
implementation on Raspberry Pi while achieving

real-time performance

2022 J. Kaur et
al. [32] YES YES NO NO

Discusses various OD techniques, applications, and
related tools and datasets, with a focus on existing

challenges

2022 Zaidi et al.
[33] YES YES NO NO Reviews OD methods, focusing on lightweight models

suitable for real-time performance on edge devices

2022 Zeng et al.
[14] YES NO YES YES

Reviews some software and hardware optimization
methods for the implementation of OD models on

FPGAs

methods and deep learning techniques for object position-
ing and classification, and evaluate their suitability for edge
devices like Raspberry Pi. The paper also highlights trade-
offs between computational efficiency, accuracy, and energy
consumption in these contexts.

Zaidi et al. [33] review recent developments in deep
learning for object detection, covering benchmark datasets,
evaluation metrics, and lightweight models for edge devices.
It emphasizes the progress in creating faster, more accurate
detectors to achieve real-time performance suitable for em-
bedded applications.

The work by Kamath et al. [27] explores recent trends in
deep learning-based object detection for resource-constrained
devices. The study identifies key research areas, techniques,
devices, and applications in this domain, based on a system-
atic literature review of 167 studies. It highlights the need for
lightweight models that perform well on constrained devices,
with a focus on the transportation industry.

Setyanto et al. [29] discuss various approaches for de-
ploying object detection on near-edge devices, such as au-

tonomous vehicles. They emphasize the challenges posed by
limited computational resources and the need for efficient
model compression techniques, such as network pruning and
quantization, to maintain accuracy while reducing computa-
tional demand.

Mittal’s review [25] provides an exploration of deep
learning-based lightweight object detection models designed
for edge devices, addressing the increasing need for accu-
rate, efficient, and low-latency detection systems. The study
presents a taxonomy of lightweight detection algorithms,
delves into key backbone architectures, and evaluates their
performance on widely used datasets such as MS COCO
[41] and Pascal VOC [45]. Additionally, it highlights the
challenges and opportunities in the field, outlines real-world
applications, compares state-of-the-art models, and offers in-
sights into optimization strategies to enhance the performance
of object detection models on edge platforms.
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FIGURE 2. Organization of the paper.

Surveys on FPGA-based Object Detection
Despite the proven benefits of FPGAs in developing object
detection systems [15], especially when real-time perfor-
mance is required [46]–[48], relatively little attention has
been devoted to reviewing the related accomplished works.

Zeng et al. [14] partially address this gap by examining and
comparing existing works in this domain. They also provide a
summary of some software and hardware optimization tech-
niques for the implementation of FPGA-based accelerators
for object detection. However, in this survey, there is no em-
phasis on the real-time related aspects, which are connected
more closely and examined in our work, besides analyzing
also more recent works.

d: Our contribution
However, to the best of our knowledge, this work marks
the first dedicated review toward the implementation and
optimization of ‘‘real-time object detection on FPGAs’’. As
illustrated in Figure 1, the contribution of real-time systems in
this field is on the rise, highlighting the growing importance
of focusing on this topic. Our discussion covers appropri-
ate object detection algorithms, acceleration techniques, and
optimization strategies for soft and hard real-time systems.
Furthermore, we conduct a comprehensive examination and
comparison of state-of-the-art works in this domain from
various perspectives. Additionally, we delve into the existing
challenges and propose potential solutions for achieving real-
time object detection on FPGAs.

e: Organization of this survey
As illustrated in Figure 2, the rest of the paper is organized
as follows. Section II provides background information about
object detection, the hard as well as soft real-time concepts.
It also discusses evaluation metrics and datasets commonly
used in assessing real-time object detection systems. Sec-
tion III provides an overview of FPGAs, exploring fundamen-
tal concepts, advantages, and common design approaches.
It further delves into how FPGAs are applied in computer
vision, particularly in object detection, and highlights specific

platforms that enable accelerated processing for these tasks.
Then, Section IV delves into the implementation of real-
time object detection systems using FPGAs, covering com-
mon architectures, acceleration techniques, and optimization
strategies to achieve real-time performance. A review of state-
of-the-art related works and their comparative analysis are
also provided in that section. Section VI addresses existing
challenges in achieving real-time object detection systems
on FPGAs, alongside potential directions for future research.
The paper concludes in section VII.

II. FUNDAMENTALS AND BACKGROUND
A. OBJECT DETECTION OVERVIEW
Object detection is a computer vision task in which one or
several objects in an image or a video frame can be identified
and localized [30]. In other words, object detection algorithms
perform two primary tasks:

• Classification: by assigning a label to every detected
object based on the obtained probability that the object
belongs to a certain category.

• Localization: by providing bounding boxes (bounding
box detection) or highlighting significant landmarks
(landmark detection) indicating the locations of detected
objects within the input image.

Nowadays, object detection is widely applied in various
real-world applications, such as video surveillance [49], [50],
autonomous driving [1], [51], and healthcare monitoring [5],
[52] to name a few. Also, object detection forms the founda-
tion for numerous other computer vision tasks, such as object
tracking [53], instance segmentation [54]–[56], and image
captioning [57], [58].
The progress in object detection can be divided into two

major periods: before and after the development of DeepNeu-
ral Networks (DNNs) [30]. Figure 3 depicts a classification of
object detection techniques. This figure also illustrates which
categories of models are more popular for real-time systems
and which are better suited for FPGA implementation based
on algorithm complexity and model size. The study specif-
ically focuses on models that exhibit both characteristics,
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represented by the overlapping green area, which are related
to CNN-based one-stage detectors.

We discuss the works that do not rely on Deep Neural
Networks (here referred to as Non-DNN-based Methods and
those that rely on DNNs (referred to here as DNN-based
Methods).

FIGURE 3. Classification of object detection techniques: Non-DNN-based
and DNN-based detectors, along with instances of models for each
category. It also shows which models may show real-time performance
and which are more suitable for FPGA implementation. The focus of this
study is the overlapping area (green zone.)

In the following, the object detection models listed in
Table 2 are discussed in detail. We provide references to
the original work that introduced the model, along with its
main features, best-achieved performance, and, if available,
references to subsequent FPGA-based implementations. For
detailed descriptions of the performance metrics used in the
table and the following parts, please refer to Section II-C.

The table shows that CNN-based one-stage object detec-
tion models achieve a good balance between accuracy and
speed, making them excellent choices for developing real-
time object detection systems.

On the other hand, the introduction of DETR [11] marks
the beginning of a new era in object detection models in
which Transformers are deployed. These models can capture
global dependencies and contextual understanding in input
images, improving object detection accuracy [93]. However,
their large size and high memory requirements often render
them unsuitable for scenarios such as implementing real-time
object detection systems on resource-constrained devices like
FPGAs [94].

1) Non-DNN-based Detectors
Early works on object detection tasks were performed using
handcrafted features. Viola and Jones introduced the first real-
time detector, called VJ detector, for human faces in the early
2000s [59]. Using sliding windows over the image to find out

whichwindows contain a face and deploying some techniques
to speed up the algorithm, this detector was about 15 times
faster than other detectors at that time with comparable accu-
racy. However, in addition to the long training time, the VJ
detector was limited to performing binary classification.
In 2005, Dalal and Triggs proposed a more accurate de-

tector, which was capable of detecting more object classes,
based on the Histogram of Oriented Gradients (HOG) [95].
HOG serves as a feature descriptor, widely used for extracting
features from input images in computer vision, especially in
object detection applications [95], [96]. Similar to methods
such as Scale-Invariant Feature Transform (SIFT) [97], which
focuses on the structure of objects, HOG counts intensity
gradient orientation occurrences in localized regions of an
image. In contrast to its equivalent descriptors [97], [98],
HOG deals with a uniformly spaced array of cells forming a
dense grid and takes advantage of overlapping local contrast
normalization to enhance detection performance.
An extension of the HOG detector [95] is the Deformable

Part-Based Model (DPM), proposed by Felzenszwalb et al.
[62] in 2008. DPM is one of the well-known non-DNN object
detectors, as it won several Pascal VOC detection challenges
[40]. Following the ‘‘divide and conquer’’ approach, DPM
tries to decompose objects into parts during training and
performs ensemble-based inference on these components. It
means that the problem of detecting an object can be decom-
posed into detecting constituted parts of that object. Later,
several improvements were made by Girshick on the original
DPM detector to enhance the accuracy as well as the speed of
detection [64], [99]–[101].
Efforts have been made to develop object detection sys-

tems on FPGAs using these types of models [60], [61], [63].
However, in addition to offering low speed (up to 11.75 FPS,
to the best of our knowledge), since these detectors rely on
fixed, handcrafted features, they often fail to deliver high
accuracy and robustness, particularly when detecting diverse
objects in complex backgrounds. As a result, they are not
well-suited to achieve real-time performance for FPGA-based
object detection systems.

2) DNN-based Detectors
Object detection has witnessed a remarkable breakthrough
after introducing deep neural networks [102]. The ability to
learn robust and high-level representations of images with-
out any need for handcrafted features (such as SIFT [97]
and HOG [95]), which had limited accuracy of non-DNN-
based object detectors, motivated many researchers to lever-
age DNNs in vision tasks [103].
DNN-based object detectors can be divided into two cat-

egories: CNN-based and Transformer-based detectors [104].
The architectures of CNN-based detectors have progressed
from ‘‘two-stage detectors’’ to ‘‘one-stage detectors’’.
Object detectors incorporate a backbone network as a fea-

ture extractor to derive features from input images. VGG
[105], GoogleNet [106], EfficientNet [107], and DenseNet
[108] are some CNN architectures that can be adopted as
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TABLE 2. A summary of the discussed models from all categories, including Non-DNN-based Detectors (NDD), DNN-based Two-stage Detectors (DTD),
DNN-based One-stage Detectors (DOD), and Transformer-based Detectors (TBD).

Detection
Model Year Detector

Category
Backbone
Network

#Param
(M)

Required
GFLOPs Best Reported Performance Dataset Hardware FPGA Imple-

mentation Highlights

Accuracy Latency
(ms) FPS Size

VJ [59] 2001 NDD N/A N/A N/A
90%

(detection
rate)

N/A 15 384*288 MIT
CPU (Intel
Pentium

III)
Yes [60], [61] Fast, simple, good for face

detection

DPM [62] 2008 NDD N/A N/A N/A 34% AP N/A N/A N/A VOC CPU Yes [63]
Objects are represented as a

collection of parts, Effective for
Complex Objects

R-CNN [64] 2014 DTD AlexNet N/A N/A 58.5%
mAP 47000 N/A 227*227 VOC

GPU
(NVIDIA
Titan Black

)

N/A

Uses CNN to extract features from
regions proposed by region

proposal part, improved accuracy
compared to traditional methods,

multi-stage pipeline, slow

Fast R-CNN
[21] 2015 DTD AlexNet N/A N/A 66.9%

mAP 2000 N/A 1000*600 VOC
GPU

(NVIDIA
K40)

N/A

Faster than R-CNN by using a
shared convolutional layer to
process the entire image.,

multi-stage pipeline

Faster R-CNN
[22] 2015 DTD VGG-16 N/A N/A 69.9%

mAP 200 5 1000*600 VOC
GPU

(NVIDIA
K40)

Yes [65]
Faster than Fast R-CNN by using a
better selective search algorithm,

end-to-end network

YOLO [18] 2016 DOD Modified
GoogleNet N/A 40.19 63.4%

mAP 25 45 448*448 VOC

GPU
(Geforce
GTX Titan

X )

Yes [66]

Introduced the concept of dividing
the image into a grid and
predicting bounding boxes,
real-time performance with

moderate accuracy

SSD [19] 2016 DOD ResNet-
101 N/A N/A 74.3%

mAP N/A 46 300*300 VOC

GPU (
NVIDIA
Titan
X)

Yes [46], [47],
[67]–[69]

Real-time object detector, Utilized
a set of default bounding boxes at
different aspect ratios and scales

DSSD [70] 2017 DOD ResNet-
101 N/A N/A 81.5%

mAP N/A 6.4 513*513 VOC

GPU (
NVIDIA
Titan
X)

N/A

An extension of SSD, Improved
accuracy by adopting a

deconvolution layer to extract
more semantic information,

Slower than SSD

YOLOv2 [71] 2017 DOD DarkNet-
19 193 34.90 76.8%

mAP N/A 67 416*416 VOC

GPU
(Geforce
GTX Titan

X )

Yes [72]–[74]

Detection of a large number of
object categories, Addressed some

limitations of YOLO, such as
localization accuracy and small

object detection

YOLOv2-tiny
[71] 2017 DOD DarkNet-

19 60.5 6.97 57.1%
mAP N/A 207 416*416 VOC

GPU
(Geforce
GTX Titan

X )

Yes [15], [48],
[75]–[77]

Lightweight and faster alternative
to YOLOv2, optimized for
real-time performance on

resource-constrained devices

SqueezeDet
[2] 2017 DOD SqueezeNet 26.8 77.2 80.4%

mAP N/A 32.1 1242*375 KITTI

GPU
(Geforce
GTX Titan

X )

N/A

Designed for efficient object
detection on embedded systems by

reducing model size and
complexity

RetinaNet
[78] 2017 DOD

ResNet-
101-
FPN

N/A N/A 39.1%
mAP 90 5 600*600 COCO GPU(NVIDIA

M40) N/A
Addressed the imbalance between

foreground and background
classes with a focal loss function

CornerNet
[79] 2018 DOD Hourglass N/A N/A 42.2%

mAP 224 N/A 511*511 COCO GPU (Titan
X ) N/A

Detected objects as paired
keypoint locations (top-left and

the bottom-right corners)

YOLOv3 [80] 2018 DOD Darknet-
53 237 65.86 55.3%

mAP 29 35 416*416 COCO

GPU
(Geforce
GTX Titan

X )

Yes [81], [82]
Introduced multi-scale detection
and feature pyramid network to

improve accuracy

YOLOv3-tiny
[80] 2018 DOD Darknet-

53 33.8 5.56 33.1%
mAP 4.5 220 416*416 COCO

GPU
(Geforce
GTX Titan

X )

Yes [83]–[86]

Efficient and faster variant of
YOLOv3, offering a good balance
between speed and accuracy on

embedded devices

CenterNet
[87] 2019 DOD Hourglass N/A N/A 47% mAP 340 N/A 511*511 COCO

GPU
(NVIDIA
Tesla P100)

Yes [88]
Predicting the center point and
regressing to the object size and

orientation

EfficientDet
[89] 2020 DOD EfficientNet 6.6 6.1 39.6% AP 20 50 640*640 COCO GPU (Titan

V) N/A

Utilized a compound scaling
method to efficiently scale the

network, balanced model
efficiency and accuracy.

YOLOv4 [23] 2020 DOD CSPDarknet-
53 64.4 43.5 41.2 %

mAP N/A 96 416*416 COCO GPU(Tesla
V100) Yes [90]

Introduced significant
architectural improvements over

YOLOv3

YOLOv4-tiny
[91] 2020 DOD CSPDarknet-

53 6.1 6.9 21.7 %
mAP N/A 371 416*416 COCO GPU(Tesla

V100) Yes [85]

Optimized for real-time detection
with high speed, providing

improved accuracy over previous
tiny models

DETR [11] 2020 TBD ResNet-
50 41 86 42% mAP N/A 28 800*1200 COCO GPU

(V100) N/A

Transformer encoder-decoder,
streamlining the detection

pipeline, issues with processing
small objects, too large

YOLOv7 [24] 2022 DOD E-ELAN 36.9 51.2 51.2%
mAP N/A 161 640*640 COCO GPU(Tesla

V100) N/A Outperforms all YOLO versions in
speed and detection accuracy

YOLOv7-tiny
[24] 2022 DOD E-ELAN 6.2 13.8 35.2%

mAP N/A 161 416*416 COCO GPU(Tesla
V100) Yes [92]

Enhanced speed and accuracy for
real-time detection, featuring
optimized architecture for edge

devices

RT-DETR
[13] 2023 TBD ResNet-

50 42 136 53.1%
mAP 8.8 108 1024*1024 COCO GPU (T4) N/A

Good speed-accuracy trade-off,
eliminates NMS, Supports flexible
speed tuning without retraining,

still too large
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backbones networks of object detectors. Recently, it has been
proven that in addition to CNNs, Transformers can also be
deployed as backbone networks in object detectors [109],
[110].

2.a: Two-stage Detectors
The Region-based Convolutional Neural Network (RCNN),
introduced by Girshick et al. [20], [64], marked the initial
breakthrough in utilizing DNNs for object detection. Based
on this promising model, a new branch of object detectors
emerged called ‘‘Two-Stage Detectors.’’ As the name implies,
these detectors are made up of two major stages:

1) Region proposal: to propose a set of candidate regions
or bounding boxes likely to contain objects of interest
[111].

2) Classification and refinement: to perform classification
for determining the presence of objects within each pro-
posed region. If any object is detected in this stage, the
corresponding bounding box coordinates are refined for
more accurate localization.

Several two-stage detectors have been proposed [21], [22],
[56], [112], [113], but reviewing them is beyond the scope
of this survey. The existing implementations typically require
more computational resources than one-stage detectors, par-
ticularly for the region proposal task, making them less suit-
able for real-time object detection. Furthermore, considering
their complex architectures with a vast array of parameters,
deploying these detectors on resource-constrained platforms
such as FPGAs is a challenging task [29]. In an attempt to
implement these types of detectors on FPGAs, An et al. [65]
implemented the Faster R-CNN algorithm [22] on an Arria-
10 GX FPGA board. However, the results indicated a high
latency of 153.6 ms, which is typically considered unsuitable
for real-time performance.

2.b: One-stage Detectors
Poor speed and complex architectures of two-stage detectors
motivated researchers to develop detectors capable of per-
forming object classification and localization in one single-
stage, called one-stage detectors. Although they usually suffer
from poor accuracy, especially in detecting small objects,
compared to two-stage detectors [30], one-stage detectors
feature simpler architectures, higher speed, and adaptability
to various scales [29]. These attributes make them suitable
for many real-world vision tasks, especially when it comes to
leveraging resource-constrained devices.

YOLO family: In contrast to two-stage detectors, which
treat object detection as a classification task, Redmon et al.
[18] approached it as a regression problem by proposing the
first version of You Only Look Once (YOLO) architecture in
2016.

In YOLO, the entire image is passed through a CNN, where
objects are classified and localized directly. Initially, input
images are divided into several cells, each responsible for
predicting multiple bounding boxes along with their corre-
sponding confidence scores. Every bounding box is defined

by its coordinates, (x, y) representing the center of the box and
(w, h) denoting its width and height, respectively. For each
bounding box, YOLO predicts class probabilities for every
category of objects. In addition, the confidence score indi-
cates how confident the model is that a bounding box contains
an object of interest. Then, during the post-processing, redun-
dant and low-confidence bounding boxes are removed, keep-
ing only the most confident and non-overlapping predictions.
YOLO provides a set of bounding boxes, each containing a
class label and a confidence score, as output.
Li et al. [66] showed the feasibility of deploying YOLO

on FPGAs for developing real-time object detection systems.
They achieved about 44x inference speedup on a ZYNQ7035
compared to an Intel Core i5-6200U CPU, demonstrating
promising results for real-time performance.
While it can detect multiple objects at a high speed, making

it suitable for real-time vision applications, YOLO suffers
from poor localization accuracy, especially for small objects
[71]. So far, many different versions and variants of YOLO
have been developed, each improving performance and effi-
ciency. Among all, YOLOv2 [71], YOLOv3 [80], YOLOv4
[23], and YOLOv7 [24] are briefly discussed in the follow-
ing. Although several diverse and newer versions of YOLO
have been introduced at the time of writing this paper [114],
[115], it was not feasible to review all of them due to the
extensive volume of content. Therefore, we have restricted
our discussion to the versions introduced by the main YOLO
research group that have been considered for implementation
on FPGAs thus far.
Unlike its predecessor, which utilized GoogleNet [106]

as its backbone network, YOLOv2 adopts a less complex
and lighter architecture called DarkNet-19, with 19 convolu-
tional and 5 max-pooling layers [116]. Leveraging the Batch
Normalization technique [117], which accelerates the opti-
mization process, and anchor idea1 [22], the generalization
capability was improved in this version. These enhancements
made the model more powerful in predicting objects of vary-
ing scales and shapes. Overall, YOLOv2 significantly en-
hanced the performance of YOLO, achieving advancements
in speed (by at least 30%), accuracy (approximately 22% on
the Pascal VOC dataset [40]), flexibility, and its capability to
handle a wider range of object categories [71].
Numerous successful efforts have deployed YOLOv2

on FPGAs to develop real-time object detection systems
[15], [48], [72]–[77] , demonstrating its significant capabil-
ity in this area. For instance, Nakahara et al. [72] deployed
a simplified YOLOv2 model on a ZCU102 FPGA board,
achieving a throughput of 35.71 FPS, a promising processing
speed in various fields such as video surveillance. Other
recent works are reviewed in this study.
To further improve detection accuracy and speed, YOLOv3

[80] adopts Darknet-53 [118], a deeper (53 convolutional
layers) and more complex architecture than Darknet-19 [71],

1Anchor boxes are predefined boxes with various aspect ratios and scales.
They are utilized to align the predicted bounding boxeswith the actual objects
present in the image.
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[116]. Also, unlike YOLOv2 [71], in which all anchor boxes
have the same size, YOLOv3 uses anchor boxes in different
scales and aspect ratios. Overall, YOLOv3 shows better de-
tection accuracy, especially for small objects, compared to its
ancestors.

LikeYOLOv2, YOLOv3 is also popular in developing real-
time object detection systems using FPGAs [81]–[85]. Wang
et al. [81], demonstrated that deploying this model on FPGAs
could lead to higher throughput by 6.5x and lower energy
consumption by 5x compared to running the same model on
a GeForce GTX1080 GPU. In another effort, Yu et al. [83]
showed that a tiny YOLOv3 model could be deployed to
develop object detection systems with low latency, a crucial
parameter for achieving real-time performance, even on low-
end FPGAs.

In YOLOv4 [23], many techniques are integrated to im-
prove both accuracy and speed. By combining some meth-
ods, such as Weighted-Residual-Connections (WRC), Cross-
Stage-Partial-connections (CSP), and Cross mini-Batch Nor-
malization (CmBN), YOLOv4 achieve improved results in
detection accuracy (up to 43.5% mAP on MS COCO [41]) at
a speed of 30 frames per second (FPS) and higher on a GPU-
based platform (see Table 2). UsingWRC, it becomes feasible
to amplify the influence of crucial features acquired from
preceding layers onto the current layer. This enhancement
results in improved performance compared to using simple
residual connections. CSP aims to lower computational com-
plexity by splitting the feature map of the base layer into two
sections and thenmerging them after further computations are
executed on only one branch. CmBN, a variation of standard
Batch Normalization [117], normalizes the model’s activa-
tions based on the assumption that each batch consists of four
mini-batches. This method gathers statistics only between
mini-batches within a single batch, making YOLOv4 more
efficient in both training and testing.

YOLOv4 is a practical choice for real-time FPGA-based
object detection systems [85], [90], thanks to its efficient
design and optimal balance between accuracy and speed. This
study offers an in-depth analysis of the results obtained from
recent advancements in this field.

YOLOv7 [24] outperforms all previous YOLO versions
in speed and detection accuracy. The remarkable results are
attained through optimizing model architecture, employing
advanced training strategies, and utilizing efficient feature
extraction techniques. These innovations enhance accuracy
without significantly increasing inference costs. Addition-
ally, this model can use parameters and computation more
effectively by leveraging some proposed techniques such as
compound scaling. The introduced compound scaling aims to
allow developers to customize key model attributes, such as
width, depth, and resolution, based on the desired application
requirements and the characteristics of the target computing
device while maintaining the initial model properties.

YOLOv7 is another viable option for developing real-time
object detection systems on FPGAs [92], offering state-of-
the-art accuracy, an optimized design for faster inference,

and advanced techniques like compound model scaling that
ensure compatibility with FPGA resource constraints.
SSD: Early YOLO models suffered from poor accuracy

compared to two-stage detectors. The Single Shot Multibox
Detector (SSD), proposed by Liu et al. [19], was the first
one-stage detector that achieved accuracy comparable to two-
stage detectors while operating at real-time speeds on GPUs.
The backbone network in SSD is based on VGG-16 [105]

with a few customizations. In particular, some fully connected
layers are replaced with convolutional ones, and more multi-
scale convolutional layers are added at the end of the network
to improve detection performance.
In SSD, the predictions are made based on features ex-

tracted at different convolutional layers. This strategy helps
the model detect objects of different scales and sizes more
efficiently since every layer can provide different semantic
information. In addition, a fast Non-Maximum Suppression
(NMS) technique [119] is deployed at every stage to remove
redundant bounding boxes. This leads to reduced computa-
tion compared to using NMS only at the final stage. (NMS
works by selecting the bounding box with the highest confi-
dence score and suppressing all other boxes with significant
overlap, ensuring only the most accurate detections are re-
tained.)
SSD’s lightweight architecture, single-stage detection

pipeline enabling fast inference, scalability across various
input resolutions, and compatibility with FPGA-friendly op-
timizations such as quantization and pruning make it a widely
adoptedmodel for FPGA-based real-time object detection. As
discussed later in this study, the favorable results achieved
in recent works [46], [47], [67]–[69], strongly support its
popularity in this domain.
Later, Deconvolutional SSD (DSSD) [70] was introduced

to improve the accuracy of SSD in detecting small objects
by adopting a deconvolution layer 2 to extract more semantic
information. However, this improved accuracy comes at the
cost of slower inference speed than SSD.
CenterNet: One problem with keypoint-based detectors

is that they generate many incorrect object bounding boxes,
mainly because they do not examine the cropped regions
[87]. Duan et al. [87] proposed a new keypoint-based object
detection named CenterNet to address this issue.
In this detector, a third keypoint, i.e., the center of each

object, is also predicted, leading to detection accuracy im-
provement up to 4.9% on the MS COCO dataset [41]. In
addition, two customized pooling layers are introduced to
provide more precise and recognizable information about the
top-left and bottom-right corners, as well as the center of each
object.
solovyev et al. [88] achieved promising results (about

19 FPS) by deploying CenterNet on a Cyclone V FPGA,
demonstrating the potential of this model towards developing
real-time object detection on FPGAs.

2Unlike convolution layers, where the input image is downsized through
convolution with a kernel, deconvolution layers perform the reverse process.
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In the following, other one-stage detectors listed in Table 2
are briefly discussed. While these models demonstrate po-
tential for deployment in real-time object detection systems
based on their characteristics and performance, as summa-
rized in the table, to the best of our knowledge, no FPGA
implementations of them have been reported in recent pub-
lications.

SqueezeDet: SqueezeDet [2] is a lightweight, fully
CNN-based object detector proposed by the developer of
SqueezeNet DNN architecture [120] in 2017. Initially de-
signed for autonomous vehicles, SqueezeDet aimed to
achieve reasonable accuracy at real-time speed on resource-
constrained devices.

In addition, this model addresses some other concerns re-
lated to such devices, such asmodel size and power efficiency.
It also adopted SqueezeNet as its backbone network, with
the architecture consisting of a single forward-pass neural
network, making it an effectively lightweight and fast single-
stage detector

RetinaNet: Recognizing the significant class imbalance as
a primary factor leading to lower accuracy in one-stage detec-
tors compared to two-stage ones, Lin et al. [78] introduced a
new loss function, named ‘‘Focal Loss’’, to tackle this issue.
Focal Loss can address the class imbalance bottleneck by
reducing the loss contribution from well-classified examples,
enabling the model to prioritize and focus on difficult-to-
classify instances.

Based on the proposed loss function, they introduced
Retina-Net which concentrates more on misclassified exam-
ples during the training phase, resulting in a remarkable ac-
curacy improvement. In addition, this model takes advantage
of ResNet [121] (ResNet-50 and ResNet-101) followed by
a Feature Pyramid Network (FPN) [122] as its backbone
network. Deploying FPN helps Retina-Net detect objects of
different scales and dimensions more accurately (40.8% AP
on COCO [41]).

CornerNet: The main idea of CornerNet [79] is finding
two corners of each object, as keypoints, instead of dealing
with anchor boxes to perform object detection. A single CNN
is utilized to predict two separate heatmaps and one embed-
ding vector for each predicted corner, covering both the top-
left and bottom-right corners. Heatmaps are binarymasks that
indicate the locations of a class’s corners, and embeddings are
numerical vectors that group the corners associated with each
object.

Law and Deng [79] also introduced a novel pooling layer,
called Corner Pooling, to enable the proposed model to lo-
calize cornersmore accurately. Compared to its contemporary
one-stage detectors, CornerNet shows a competitive accuracy
of 42.2% AP on the MS COCO dataset [41].
EfficientDet: In 2020, Tan et al. [89] introduced several

optimization methods to improve the efficiency of existing
object detectors. These methods include a novel FPN, called
Weighted Bi-directional Feature Pyramid Network (BiFPN),
and a compound scaling method. While BiFPN effectively
enables the model to perform multi-scale feature fusion, the

compound scaling method can simultaneously and consis-
tently scale the depth, width, and resolution of different parts
of the model. By deploying EfficientNet [107] as the back-
bone network and integrating these optimization techniques,
EfficientDet [89] was introduced.
This model can achieve remarkable accuracy (55.1% AP

onMSCOCO [41]) with significantly fewer parameters (up to
9x fewer) and reduced computation (up to 42x fewer FLOPs)
compared to previous state-of-the-art object detectors. These
advancements make EfficientDet an appealing choice for
resource-constrained platforms.
Overall, CNN-based one-stage object detectors, particu-

larly the YOLO family and SSD models, play a crucial role
in real-time object detection on FPGAs due to their effi-
cient architectures and high-speed processing. Unlike two-
stage detectors that separate object proposal and classification
stages, one-stage detectors integrate these tasks, enabling
faster inference times—a key requirement for real-time ap-
plications. The combination of their streamlined architectures
and FPGA capabilities results in high throughput, low latency,
and energy-efficient designs, making them highly attractive
for real-time object detection systems. Deploying these mod-
els on FPGAs supports applications like autonomous vehi-
cles, robotics, and surveillance systems, where speed and
accuracy are paramount.

2.c: Transformer-based detectors
In addition to the above-mentioned deep learning-based ob-
jection models, i.e., CNN-based one-stage and two-stage
detectors, Transformer-based object detectors have recently
attracted remarkable attention in the computer vision field,
especially for object detection tasks [123]. However, despite
demonstrating excellent performance results, as shown in
Table 2, transformer-based object detectors are not well-
suited for FPGA implementations due to their high compu-
tational complexity and memory demands. To the best of
our knowledge, no FPGA-based real-time object detection
implementations of these models have been reported.
From an architectural perspective, these detectors can be

considered a subset of one-stage detectors. However, due
to the distinct model structure, we review this category of
detectors separately.
Transformers are a type of deep-learning model origi-

nally proposed for performing sequence-to-sequence tasks in
Natural Language Processing (NLP) [124]. They are taking
advantage of the self-attention mechanism, enabling them to
identify and weigh the significance of different parts of the
input data. As a result, Transformers can discover long-term
dependencies and complex patterns within a sequence.
The recent achievements of transformers in NLP have

prompted researchers to investigate their capabilities in the
field of computer vision as well [125]. In this context, some
studies have explored the integration of Transformers with
CNN-based architectures [11], [126], whereas some endeav-
ors have focused on constructing the entiremodel solely using
Transformers and without incorporating any CNN network
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for feature extracting [110], [127], [128]. In the following,
some of these efforts are briefly reviewed.

DETR: In 2020, Carion et al. [11] proposed the first end-
to-end object detection model that leverages Transformers,
named DEtection TRansformer (DETR). They introduced a
novel approach for object detection, treating it as a direct
set prediction task. Also, the proposed method simplifies
detection by eliminating the need for hand-designed parts
such as non-maximum suppression or anchor generation.

DETR utilizes a transformer encoder-decoder architecture.
By reasoning about object relations and global image context,
DETR outputs the final set of predictions in parallel using a
fixed small set of learned object queries.

It achieves accuracy and runtime performance compara-
ble to Faster RCNN [129] on the MS COCO dataset [41].
However, the practical application of DETRs is constrained
by their high computational cost [13]. DETRs also show
poor performance in detecting small objects [130]. Numerous
modifications have been introduced thus far to tackle the
challenges associated with DETR. [12], [131], [132].

RT-DETR: In 2023, Zhao et al. tried to reduce the com-
putation complexity of DETR [11] to make it suitable for
real-time object detection [13]. Based on those efforts, they
proposed the first real-time end-to-end object detector, called
Real-Time DEtection TRansformer (RT-DETR).

They improved the encoder part of DETR to be able to
process multi-scale features. In addition, an Intersection over
Union (IoU)-aware query selection component was proposed
to enhance the initialization of object query.

RT-DETR outperforms other real-time detectors and end-
to-end detectors of comparable size, excelling in both speed
and accuracy (up to 54.3% AP on COCO [41]) and 108
FPS) to achieve state-of-the-art performance. Furthermore,
the proposed detector allows for adaptable adjustment of
inference speed by utilizing different decoder layers without
any need for retraining. This feature is extremely useful for
the practical implementation of real-time object detection
systems.

2.d: Object Detectors based on Vision Transformers
ViT: Prior to the introduction of Vision Transformer (ViT) by
Dosovitskiy et al. [110] in 2020, attention mechanisms were
primarily utilized for vision tasks in conjunction with CNNs.
In computer vision, ‘‘attention’’ refers to examining the re-
lationships between pairs of input image tokens or patches.
This mechanism allows the model to prioritize relevant input
features, aiding in capturingmore informative representations
of the input image.

Although some researchers tried to replace convolutional
architectures with Transformers [127], [128], those models
were not efficient enough for deploying on existing hard-
ware accelerators. That was mainly because of utilizing cus-
tomized attention patterns. However, ViT demonstrated that a
pure Transformer could effectively perform image processing
by treating it as sequences of patches without relying on
CNNs [110]. The straightforward and scalable approach in

ViT proves remarkably effective, particularly when combined
with pre-training on extensive datasets.
As a result, Vision Transformer not only meets but often

surpasses the performance of state-of-the-art CNNs [110].
This breakthrough opened the door to more widespread ex-
ploration of Transformer-based models for various computer
vision tasks.
In an effort, for instance, developing a Transformer-based

object detector by combining ViT and DETR [11] showed
promising results [133].
Swin Transformer: Swin Transformer [109], introduced

by Liu et al. in 2021, is a vision Transformer, basically
designed as a backbone network for computer vision tasks. To
address the challenges of applying Transformers to computer
vision tasks—such as the varied scale of visual entities and
higher image resolutions compared to texts—the authors in-
troduced a hierarchical Transformer using Shifted windows.
Swin Transformer enhances efficiency by confining self-

attention to non-overlapping local windows while enabling
cross-window connections. Its hierarchical design approach
accommodates various scales and maintains linear computa-
tional complexity relative to image size. Swin Transformer
demonstrates its versatility across image classification, se-
mantic segmentation, and object detection tasks, achieving
state-of-the-art performance on the MS COCO dataset. [41].
The results show the potential of Transformer-based mod-

els as effective vision backbones, especially with the hierar-
chical design and the shifted window approach, which also
benefits all-MLP (multi-layer perceptron) architectures.

B. SOFT AND HARD REAL-TIME CONSTRAINTS
Real-time systems are those in which the accuracy of perfor-
mance is determined by both the logical results of computa-
tion and the timeliness of producing those results [134], [135].
Today, they play a key role in many applications, such as
robotics, manufacturing, healthcare, and autonomous driving
systems.
Real-time systems ensure that tasks are executed within

a precise and predictable time frame, making these systems
safe, predictable, and reliable [7]. The predictability of real-
time systems can be measured by evaluating the existing
latency and its variation between iterations, also known as
jitter [7].
Another important feature of real-time systems is their

ability to manage real-time and non-real-time tasks to prevent
system failure [136]. For example, in a self-driving system
equipped with an object detection system, the system must be
able to prioritize sending a warning signal to the central con-
trol system when detecting an obstacle rather than displaying
it on the screen.
Real-time systems can be classified into two main cate-

gories as follows:

• Soft real-time systems: They are characterized by possi-
ble performance degradation rather than complete fail-
ure when response time constraints are not met [137].

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3544515

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Hozhabr and Giorgi: A Survey on Real-Time Object Detection on FPGAs

• Hard real-time systems: These are systems in which
failure is inevitable if response-time constraints are not
met.

More precisely, in hard real-time systems, missing a dead-
line may have dangerous consequences, such as human in-
jury, equipment damage, or even death [136]. This makes it
crucial to ensure deterministic and predictable behavior. In
autonomous vehicles, for instance, timely processing of input
data is crucial for collision avoidance and safe navigation.
These systems must process data from various sensors and
analyze received images in real time to detect pedestrians,
other vehicles, and obstacles in the path. This example high-
lights the significance of a hard real-time system for executing
object detection, which is crucial for ensuring the safety of
both passengers and pedestrians.

Designing real-time systems across different domains in-
volves addressing various considerations [138]–[141]. As
highlighted earlier, contemporary approaches heavily rely on
CNN models in the context of real-time object detection
systems, which is our focus in this study. A crucial challenge
in implementing these systems, particularly on embedded
platforms, is achieving a delicate trade-off between accuracy
and speed to satisfy real-time requirements [13], [142], [143].

To that end, a range of techniques can be employed, includ-
ing algorithmic and hardware implementation strategies, such
as quantization and model pruning [27], [144], [145]. These
approaches aim to optimize computational efficiency while
preserving adequate accuracy for timely and reliable object
detection. These methods are investigated in more detail in
this study.

C. EVALUATION METRICS AND DATASETS
1) Common Datasets
Datasets are crucial in developing object detection models,
including training and evaluation phases. During the training
process, models learn to recognize patterns and features as-
sociated with different objects based on many example data
provided by a dataset. Utilizing a diverse, extensive, and well-
structured dataset for training can significantly improve the
model’s capability to detect unseen objects during inference
[38].

Datasets are also used to evaluate the performance of an
object detection model and compare it with others [103].

Below, we briefly discuss the commonly used datasets in
the field of object detection. Table 3 summarizes the key
characteristics of these datasets.

a: ImageNet
ImageNet [102] is a large-scale dataset commonly used in
object classification and detection models. It has also been
considered the main benchmark in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [146] for object
detection and image classification. It contains over 14 million
images annotated in one of two ways: image-level or object-
level. The former indicates whether or not an object class

exists in the image, while the latter provides a bounding box
and class label for every object instance in the image.

b: MS COCO
Microsoft Common Objects in Context (MS COCO) dataset,
introduced in 2014 by Lin et al. [41], is a large visual dataset
widely used in computer vision tasks, such as object detec-
tion and image segmentation. It contains 2.5 million labeled
instances in 328K images of 91 different object categories, in-
cluding everyday objects and humans. It is primarily prepared
for the detection and segmentation of objects that appear
in their natural surroundings, containing more classes and
instances compared to PASCAL VOC [45]. After years, this
dataset remains one of the most popular choices in the field of
computer vision, with its usage continuing to grow. In 2023
alone, it was referenced in over 2200 articles [147].

c: Pascal VOC
The Pascal Visual Object Classes (VOC) dataset [40], [45]
is widely used in object detection, semantic segmentation,
and image classification tasks. Two more popular versions
of this dataset are VOC 2007 [40] and VOC 2012 [45].
The former contains 20 object classes, including persons,
animals, vehicles, and some indoor stuff, in 9,963 imageswith
24,640 annotated objects. The latter’s number of categories
has remained unchanged, while it contains more data: over
11K images with 27,450 Region of Interest (ROI) annotated
objects.

2) Performance Metrics for Real-time Object Detection

Various parameters, including accuracy, processing through-
put, model complexity, and inference time, can be employed
to measure the efficiency and performance of object detection
models and systems. Table 4 shows some commonly used
metrics for evaluating object detection models. Considering
this study’s primary focus, this section only discusses metrics
that are more relevant to assessing real-time object detection
systems, particularly those that are more important when
FPGA implementation is concerned. To better understand
other useful metrics in this context, such as Intersection over
Union (IoU) and Average Precision (AP), it may be helpful to
review Appendix A.
One popular evaluation metric in the context of object de-

tection is mean Average Precision (mAP). Several object de-
tection algorithms, including Faster R-CNN [22] and YOLO
[18], employ mAP for assessing their models. It serves as a
standard metric in various benchmark challenges like Pascal
VOC [40], [45]. mAP evaluates detection accuracy across
multiple classes and indicates the average of AP (see Ap-
pendix A) across all classes. Equation 1 shows how mAP is
obtained for N classes of objects, where the APk is the AP of
class k .

mAP :=
1

N

N∑
k=1

(APk) (1)
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TABLE 3. A summary of the commonly-used datasets in the context of object detection

Dataset # of
classes

# of
images

# of annotated
objects Examples of object types Tasks

ImageNet
[102] 20K 14M 1M (with Bbox)

animals, everyday objects, natural
scenes, plants, people, food,

abstract concepts

image classification, object
detection

MS COCO
[41] 91 328K 2.5M animals, person, everyday objects,

vehicles, food, sport equipment
object detection, image

segmentation

Pascal VOC 07
[40] 20 9963 26640 person, animals, vehicles, and

indoor objects
object detection, semantic

segmentation, image classification

Pascal VOC 12
[45] 20 11K 27450 person, animals, vehicles, and

indoor objects
object detection, semantic

segmentation, image classification

TABLE 4. A summary of commonly used metrics for evaluating object
detection models.

Metric Measure of

Intersection over Union
(IoU) Localization accuracy

mean Average Precision
(mAP)

Detection (localization and
classification) accuracy

Frames Per Second
(FPS) Processing throughput

Number of required FLoating-
point OPerations
(FLOPs)

Computational complexity

Number of trainable parame-
ters

Computational complexity
and memory footprint

Latency Inference time

Another key metric for evaluating object detection systems
is the number of frames the model can process, which is,
in fact, a measure of the speed and efficiency [148]. This
factor, called frame rate, is measured as Frames Per Second
(FPS) and is directly related to the term ‘‘real-time’’ in real-
time object detection systems. When discussing ‘‘real-time’’
object detection models, it is crucial to first provide a clear
and precise definition of what they are.

According to the discussion provided in section II-B, the
word ‘‘real-time’’ has a specific definition and does not mean
simply being ‘‘fast’’. However, an inaccurate definition of
real-time object detection systems and models is sometimes
used. This definition may focus only on speed or processing
throughput and consider meeting a certain frame rate (e.g., 30
FPS) sufficient to classify a system as real-time. However, it
should be evaluated according to specific criteria depending
on the requirements of the application. For example, a system
that detects objects at 30 FPS for a self-driving car traveling
at speeds of 110 km/h or higher cannot meet the criteria for
a hard real-time system. This is because, at such a speed,
the distance to objects changes by approximately 1 meter

(for stationary objects) in each frame interval. Therefore,
although speed, or processing throughput, is an important
factor in assessing object detection systems, it should not be
considered the only criterion for categorizing a system as real-
time or non-real-time.
Although the frame ratemetric can provide valuable insight

into real-time object detection system performance, it alone
may not offer a complete picture, particularly when com-
paring systems that process images of varying resolutions.
To address this limitation, we introduce pixel throughput,
as defined in Equation 2, to evaluate the performance while
processing video streams or images. Pixel throughput is cal-
culated as the product of the achieved frame rate (FPS) and
the number of pixels per frame, capturing both the temporal
and spatial aspects of system performance.

⟨Pixel Throughput⟩ = ⟨Frame Rate⟩×⟨Pixel Per Frame⟩
(2)

This metric, measured in Mega Pixels Per Second (MPPS),
allows for a more fair comparison between works that evalu-
ate implementations that use different image sizes.
There are some other key parameters that can be used

to evaluate object detection systems, which are particularly
important when it comes to achieving real-time performance
on resource-constrained devices. They include computational
complexity, number of parameters, and latency [148]–[150].
The computational complexity of an object detection

model can be represented by the number of FLoating-point
OPerations (FLOPs) required for inference. Although higher
FLOPs can result in higher accuracy, it directly affects the
number of required computational resources and the model’s
speed [148].
The number of trainable parameters of a model can also

show the model’s complexity as well as memory footprint
[148]. Memory footprint means how much memory we need
to store all the parameters of a model. This metric can directly
affect the power consumption and processing performance of
the system. In fact, when the model parameters exceed the
capacity of available on-chip memory of the target device, re-
sorting to off-chip memory becomes unavoidable, a common
scenario in real-world object detection systems. As the rate
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of memory access increases, system speed decreases while
power consumption rises. [149].

Generally speaking, latency refers to the duration it takes
for a system to generate output after input is received [149].
It quantifies the delay in the response of a digital system.
Typically measured in milliseconds (ms) [13], [48], A greater
latency value indicates a slower system performance. Like-
wise, in an object detection system, latency indicates the
time required for the model to analyze an image and provide
information about the identified objects. Especially in real-
time object detection systems, it is a crucial metric in system
evaluation and a critical parameter for improvement if needed
[48], [149].

III. FPGA BASICS AND APPLICATIONS IN OBJECT
DETECTION
A. FPGA OVERVIEW

1) Basics

Field-Programmable Gate Arrays (FPGAs) are popular de-
vices for implementing digital hardware circuits [151]. Ad-
vances in process technology have significantly boosted the
logic capacity of FPGAs, making them more attractive for
larger and more computationally intensive designs [152].

An FPGA consists of a set of programmable logic blocks,
memory blocks, and specialized arithmetic units such as Dig-
ital Signal Processing (DSP) blocks. These components are
interconnected by programmable interconnects, allowing for
the development of highly flexible digital circuits. In addition,
programmable input/output (I/O) blocks facilitate external
connectivity [151]. Figure 4 shows the basic architecture of
an FPGA.

FIGURE 4. An overview of basic FPGA architecture, including
programmable logic blocks, Block RAMs (BRAMs), DSP blocks,
input/output blocks (I/O), and programmable interconnects (shown by
black lines). (Figure adapted from [153]).

Some key factors in selecting an FPGA device as a target
device for a specific application typically include the num-
ber of available I/O blocks and programmable logic blocks,
the number and capabilities of fixed-function logic blocks
(such as multipliers), and the total size of on-chip mem-
ory resources. Programmable logic blocks, which form the
fundamental building blocks of FPGAs, directly impact the
design’s flexibility. Although there is no rigid standard for the
architecture of these blocks, they typically include Flip-Flops
(FFs), Look-Up Tables (LUTs), arithmetic carry logic, and
multiplexers. LUTs are small, programmable memory blocks
that can store truth tables of logic functions.
Another key factor in choosing FPGAs for a specific appli-

cation is the available memory resources. There are two main
types of on-chip memory within an FPGA device:

• Distributed RAM: In addition to forming various logic
functions, LUTs can store data sets and act as ‘‘dis-
tributed’’ memory cells throughout the FPGA, as their
name suggests. A k-input LUT can store 2k bits.

• Block RAM (BRAM): BRAMs are built by dedicated
SRAM memory blocks. They are typically used to store
large amounts of data inside an FPGA. Additionally,
supplementary peripheral circuitry enhances BRAM’s
reconfigurability for diverse applications and facilitates
its connection to the programmable routing within the
FPGA.

2) Why FPGAs?
The hardware reconfigurability of FPGAs, combined with
their capacity for optimization based on specific needs, makes
them suitable for a wide range of applications, including
digital signal processing [154], medical imaging [155], and
communication encoding [156].
Thanks to their reprogrammable and versatile characteris-

tics, FPGAs enable developers to customize and adapt sys-
tems to meet specific application requirements [157]. Also,
unlike processors, which typically support one or multiple
predefined data types, FPGAs offer the flexibility to accom-
modate various custom data types with different sizes within a
single design. This capability allows FPGAdesigners to adopt
mixed-precision designs tailored to the specific requirements
of the target application.
Moreover, FPGAs provide true parallelism, making them

well-suited for implementing sophisticated and compute-
intensive algorithms while achieving satisfactory latency and
throughput [158]. In addition, regarding power efficiency,
FPGAs are considered appropriate platforms for achieving
high performance per watt [159], [160].
Furthermore, FPGAs can simultaneously receive input data

from diverse and multiple sources, each potentially working
with different data types and communication standards [161].
It is an important feature, particularly in numerous real-world
applications like real-time object detection, where connectiv-
ity with other sensors and cameras is often necessary [162].
An essential aspect to consider is the comparison of

FPGAs with other hardware platforms. Table 5 provides
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a comprehensive comparison of FPGAs with Application-
Specific Integrated Circuits (ASICs), Graphics Processing
Units (GPUs), and Central Processing Units (CPUs) across
various criteria. In summary, FPGAs can offer strong parallel
processing capabilities, flexibility, and low latency, making
them suitable for, e.g., inference phases of CNN-based object
detection but with higher initial costs. ASICs, on the other
hand, excel in performance, energy efficiency, and latency
but lack flexibility and have high development costs, making
them ideal only for mass production and specific tasks. GPUs
are effective for parallel processing and training phases of AI
but consumemore power and exhibit longer latency. CPUs are
versatile, cost-effective for general-purpose tasks, and have a
mature development ecosystem but are generally less efficient
for parallel processing and AI training compared to GPUs and
ASICs.

3) FPGA Design Approaches
The operation of all FPGA blocks and the configuration of
the programmable interconnects are typically managed by a
so-called ‘‘bitstream’’, which is provided to internal dedicated
(SRAM) cells [163]. This operation is done either once at boot
time or even during the run time (partial reconfiguration).

The following outlines three primary FPGA design ap-
proaches, allowing developers to select one or a combination
of them to realize their designs:

1) Hardware Description Language (HDL) design: In
this approach, designers describe the intended func-
tionality using an HDL, such as Verilog or VHDL.
Then, the HDL design is compiled through an intri-
cate Computer-Aided Design (CAD) flow, generating a
‘‘bitstream’’ file [163]. This bitstream file, also referred
to as the configuration file, is used to program the
FPGA.

2) High-level design: High-level languages like C/C++,
OpenCL, and SyCL can also be employed for FPGA
design. In this approach, the high-level design can be
translated into its corresponding HDL using available
tools such as Vivado HLS [164], HLS compiler [165],
and HDL Coder [166].

3) Model-based design (MBD): This approach can be con-
sidered a form of high-level design. Instead of using
programming languages, high-level models or blocks
are employed to design and simulate the systems to
be implemented. In this approach, once the system’s
behavior is verified, the design is translated into HDL
code. Some of the most commonly used tools in MBD
include Simulink [166], LabVIEW [167], and Model
Composer [168].

Adopting each of these approaches can depend on various
factors, including the designer’s preference and the target
application. For example, software engineers who are more
accustomed to high-level languages might prefer the sec-
ond approach. Additionally, for some applications, such as
aerospace and automotive, due to the availability of ready-

made models and the ease of behavioral simulation of devel-
oping systems, adopting MBD is very popular [169].
Each of these approaches has its own advantages and disad-

vantages, which are beyond the scope of this study. However,
it is noteworthy that in all cases, having in-depth knowledge
of hardware implementation is essential for designing an
optimal system.
Additionally, helpful tools, frameworks, hardware li-

braries, and reusable reconfigurable components (‘‘IP
Cores’’) are continuously being introduced to facilitate the de-
sign of FPGA-based systems in various fields. One example
of a very commonly used IP core for developing FPGA-based
object detection systems is the Deep Learning Processor Unit
(DPU) [170]. This programmable engine enables designers to
implement many object detection models on FPGAs without
requiring low-level design. In this regard, designers can use
tools, such as the Vitis AI tool to select, prepare, optimize,
and evaluate a detection model and compile the instructions
used in the deployed DPU.

B. APPLICATIONS OF FPGAS IN COMPUTER
VISION-OBJECT DETECTION
Computer Vision (CV) tasks typically involve techniques for
capturing, processing, interpreting, and comprehending dig-
ital images or videos [171]. One of the most demanding CV
tasks in this field, which is also our focus in this work, is
Object Detection (OD).
A typical solution is to use efficient designs like FPGA-

based systems to achieve real-time performance and meet
latency constraints. In the following, we analyze the archi-
tecture of such systems.
In such systems, input data is received using one or more

imaging sensors [172]. These sensors can be categorized into
two types based on how their output is generated: frame-
based and event-based [173]. The former can generate out-
put, i.e., images, at specific intervals or frame rates, while
in the latter, each pixel can independently respond to local
alterations in light intensity that exceeds a given threshold
[173]. Although the predominant focus in OD research relies
on frame-based sensors, there is increasing attention to the
development of algorithms for event-based computer vision
[174] [173] [175]. Depending on the desired application, OD
algorithms extract useful and meaningful information from
the received image(s) to enable the system to make decisions
or just to visualize the manipulated input data.
Figure 5 illustrates a typical and abstract block diagram of

a computer vision system, where raw visual data is captured
from cameras or sensors in the Data Acquisition unit. The
data is then pre-processed and prepared (in the Data Pre-
processing unit) for the next module, i.e., Feature Extraction
unit. Data normalization, data enhancement, and color space
conversion are some tasks that may be executed during data
pre-processing [176], [177]. Depending on the application of
interest, relevant patterns and features are then extracted to be
analyzed and processed by the main OD algorithm in the next
module, i.e., Data Processing and Analysis unit. The results
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can be interpreted and used in the subsequent unit to make
a decision or trigger an appropriate action (Decision Making
and Control). For instance, if an object is identified, it might
trigger a robotic arm to pick it up. Finally, the results should
be prepared to be transmitted to another system or utilized
locally (Output Preparation unit).

FIGURE 5. Typical structure of a computer vision system.

FPGAs or other co-processors can be integrated into the
workflow shown in Figure 5 to accelerate the processing,
resulting in an arrangement similar to Figure 6.

FIGURE 6. An example of FPGA co-processing architecture: images are
captured by the CPU, and FPGA is used to accelerate the task. In
comparison with the typical structure of a CV system shown in Figure 5,
here, two tasks, i.e., the tasks performed in blocks 3 and 4, are done on
the FPGA side. The white blocks represent the tasks run in the software.
The green blocks indicate hardware units implemented on FPGA, and the
light yellow blocks denote hardware units within the system.

Object detection includes a broad range of applications and
tasks, such as image classification, medical image analysis,
and facial recognition, to name a few [178]–[180]. As dis-
cussed in section II-A, deep-learning approaches, specifically
using deep Convolutional Neural Networks, are increasingly
used for accomplishing these tasks. However, they require
high computational complexity and power consumption [31].
With all these in mind, as FPGAs can offer high performance
and determinism as well as low latency systems, they are one
of the popular platforms frequently adopted in OD systems
[181], [182]. In addition, since FPGAs offer true parallelism,
they are suitable for the implementation of inherently parallel,
sophisticated, and compute-intensive algorithms in a way that
the required latency and throughput needed in many OD tasks
like real-time object detection are satisfied [183]–[185].

Depending on the type of deployed OD algorithm, the
system specifications, and the intended application require-
ments, three main use cases for FPGAs in OD systems may
be considered.

1) In the first use case, FPGAs can work as accelerators
or co-processors alongside the main processor [181],
[186], as shown in figure 6. In this case, some parts of an
OD system capable of being accelerated or optimized
on hardware, specifically the feature extraction and the
processing modules, can be offloaded to an FPGA to
make the system more efficient. The input data/image
is considered to be acquired through the CPU in this
use case. Therefore, this architecture is commonly used
when devices like ‘‘GigEVision feed the system’’ [187]
and USB3 cameras as their acquisition logic can opti-
mally be executed in CPUs [186], [188]. The data can
be exchanged between the FPGA and the host memory
via Direct Memory Access (DMA).

2) In the second scenario, similar to the first one, the
FPGA and CPU collaborate as a co-designed, het-
erogeneous OD system. However, in this case, the
acquisition logic is implemented on the FPGA side.
This architecture is particularly adopted in OD systems
equippedwith cameras, such as ‘‘MIPI cameras’’ [189],
for which acquisition logic is easily implemented on
FPGAs [190]. In this scenario, the data pre-processing
unit is typically implemented in the FPGA, resulting
in reduced data transfer and improved overall perfor-
mance [190].

3) Another use case is an OD system based only on an
FPGA [86]. In a more complex scenario, a cluster of
FPGAs can be considered. This architecture is more
suitable for applications in which communication with
connected devices through FPGAs is easier, and hard-
ware implementation of the entire system units can
result in better or at least similar to their software
counterparts, providing a system with low latency and
significantly high performance, in term of both power
and throughput [86].

C. FPGA PLATFORMS FOR ACCELERATING OBJECT
DETECTION
Although there are several FPGA suppliers worldwide, the
FPGA market is dominated by AMD (formerly Xilinx) and
Intel (formerly Altera) [185]. These two companies provide a
broad range of FPGA devices for applications ranging from
aerospace to data centers [195], [196].
Over the past decade, following significant breakthroughs

in AI and its applications across various fields, such as object
detection, there has been a growing trend to enhance the per-
formance of AI-based systems using hardware accelerators.
In response, FPGA manufacturing companies have intro-

duced a wide range of FPGA devices to facilitate the design
and deployment of FPGA-based AI systems [195], [196].
Table 6 lists commonly used FPGA boards in recent works for
the implementation of real-time object detection models, de-
tailing their available resources. They continuously introduce
high-performance FPGAs enhanced with AI capabilities and
tools tailored for this new era. Key characteristics of these
FPGA devices include better performance per watt, higher
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TABLE 6. A list of some FPGA boards used in recent works for implementing Real-time object detection models, sorted by number of LUTs/ALMs.

Board FPGA Part Number of Available Resources Reference

LUTs/ALMsa FFs DSPs Memory Blocks (Size)

ZC702 ZYNQ XC7Z020-1CLG484 53,200 106,400 220 140 (36Kb) [90], [191]

Pynq-Z1 ZYNQ XC7Z020-1CLG400C 53,200 106,400 220 140 (36Kb) [192]

Ultra96 Zynq UltraScale+ MPSoC ZU3EG A484 70,560 141,120 360 216 (36Kb) [69], [193]

ZC706 ZYNQ XC7Z045 FFG900 - 2 SoC 218,600 437,200 900 545 (36Kb) [47], [48], [68]

ZCU104 Zynq UltraScale+ MPSoC ZU7EV 230,400 460,800 1,728 312 (36Kb) [194]

KU040 XCKU040-1FBVA676 242,400 484,800 1,920 600 (36Kb) [85]

ZCU102 Zynq UltraScale+ XCZU9EG-2FFVB1156 274,080 548,160 2,520 912 (36Kb) [82]

VC707 Virtex 7 XC7VX485T-2FFG1761C 303,600 607,200 2,800 2,060 (36Kb) [15]

Arria-10 Arria 10 GX1150 427,200 1,708,800 1,518 2,713 (20Kb) [46], [73], [74], [76]

DE10-PRO Stratix 10 GX2800 933,120 3,732,480 5,760 11,721 (20Kb) [67]

a For Arria 10 and Stratix 10 FPGA parts, the number of Adaptive Logic Modules (ALMs) is reported. Each ALM block has an eight-input adaptable
LUT, two adders, and four FFs.

memory bandwidth to alleviate bottlenecks inmemory-bound
AI-based object detection models, and dedicated units for
executing compute-bound AI models more efficiently [170],
[195], [196].

In addition, these FPGA manufacturers offer various tools
and frameworks to bridge the gap between AI model develop-
ment and FPGA design flow. By utilizing these frameworks,
designers can seamlessly develop object detection models
using popular libraries like TensorFlow and PyTorch, evaluate
the preliminary models, optimize them for the target FPGA
device, and compile the final models for integration into the
FPGA design [195], [196].

IV. FPGA-BASED DESIGNS
This section begins by examining two primary hardware
architectures—single computation engine and streaming ar-
chitectures—commonly considered for FPGA-based object
detection systems. It then explores various acceleration tech-
niques, categorized into model-related and implementation-
related approaches, that can enhance performance across key
metrics, including throughput, accuracy, and power consump-
tion.

Following this, the section assesses the impact of each
acceleration technique on system performance, particularly
within real-time object detection contexts.

A. FPGA ARCHITECTURE DESIGN APPROACHES
The hardware architectures employed in FPGA-based object
detection systems can be categorized into two main types,
mirroring the classification outlined in [197]: single compu-
tation engine and streaming architecture (see Table 7).

1) Single Computation Engine Architecture
The single computation engine design approach, also known
as the one-size-fits-all, prioritizes flexibility over customiza-

tion [197]. It takes advantage of a single computation engine,
often in the form of a systolic array of Processing Elements
(PEs) [202], to perform all layers of an object detection
system sequentially [47], [197].
Figure 7 shows an example of adopting a single compu-

tation engine accelerator in which one operation unit is con-
figured and deployed for performing all layers one after the
other in time (not in space). The data is transferred between
the FPGA and host memory via the DMA unit. There is also
a ‘‘control unit’’ on the FPGA side, responsible for managing
all executions. This unit receives instructions from the host
side, where the central operational controller exists.
Single computation engine-based architectures temporally

share common computation resources across different layers
[48]. In such a scenario, the unit is time-shared, but we save
resources compared to a pipelined design [198].
The computation engine is configurable to accommodate

the specific characteristics of each layer. This adaptive ap-
proach reduces resource utilization and enables the imple-
mentation of any model, provided it utilizes layers supported
by the engine [199], [200].
This structure offers the advantage of easy adaptation to

various object detection models [144]. Nevertheless, this
flexibility comes at the cost of reduced efficiency and varying
and inconsistent performancewhen employing differentmod-
els [203]. In a related experiment, Guo et al. [199] imple-
mented YOLO [18] and Face Alignment models on Angel-
Eye, a CNN accelerator featuring a single computation engine
architecture, using Zynq XC7Z045. Compared to the baseline
results on NVIDIA TK1 GPU, while the YOLO implemen-
tation using Angel-Eye showed a 41.37% improvement in
frame rate (FPS), this for Face Alignment was 82.24%. In
terms of throughput (GOPS), the improvement was 70.46%
for YOLO compared to 463% for Face Alignment, indicating
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TABLE 7. A summary of two FPGA architecture design approaches for implementing object detection models.

Architecture Type Highlights Related
Works

Single computation
engine

Uses one single computation block to perform all parts of the model,
prioritizes flexibility over customization, uses time-shared computation
resources, adaptable to various object detection models, less efficient,
bottleneck in memory bandwidth (Figure 7)

[47], [68],
[73], [198]–
[200]

Streaming
Uses specialized blocks tailored for each part of the model, can take
advantage of pipeline design, less adaptable to different models, faster,
more resource consumer (Figure 8)

[15], [48],
[90], [201]

that the performance gains can vary significantly across dif-
ferent models when utilizing such an accelerator architecture.

Furthermore, in this architecture, a controller, which is
usually software-based, is required for hardware control and
operation scheduling [197], which consequently reduces sys-
tem efficiency [204].

FIGURE 7. Example of an FPGA accelerator structure with a single
computation engine architecture. In this approach, common computation
resources are temporarily shared across different layers. A
software-based controller is also deployed to control and schedule the
operations. (CONV=CONVOLUTION, NONLIN= NON LINear layer,
POOL=POOLing layer) (Figure adapted from [197]).

2) Streaming Architecture
On the other hand, streaming architectures are typically
formed with a unique hardware block for each part of the
targeted object detection model [15], [48], developing the
architecture in space (rather than in time) (Figure 8).

Each computational block is optimized individually to ex-
ploit the inherent parallelism within its corresponding layer
[197]. As depicted in Figure 8, in this design approach,
once fetched from memory, image data passes sequentially
through all dedicated hardware units for full processing until

the final result is obtained and written back to memory. A
pipelined architecture, where heterogeneous computational
blocks are interconnected, can facilitate this data flow. This
configuration enables the simultaneous execution of different
layers, significantly enhancing overall system performance
[15], [201].
However, it is crucial to design the PE for maintaining uni-

form processing times across individual layers to avoid idle
states [144]. In this architecture, individual PEs are tailored
and fine-tuned for each layer, creating an optimized structure
specific to a particular object detection model. However, this
specialization makes it less adaptable than a single computa-
tion engine architecture. Additionally, transitioning it to a new
FPGA device can be challenging or even unfeasible due to
the difficulty in customizing the implemented structure, espe-
cially when altering its size [197] [144]. Although pipelined
accelerators can offer faster processing speeds due to reduced
memory transfers, they incur higher hardware costs than one-
size-fits-all configurable engines. This is because all individ-
ual layers must be simultaneously mapped in the hardware,
making it less versatile and more resource-intensive [200].

FIGURE 8. Example of an FPGA accelerator structure with a streaming
architecture. Each block is individually designed and optimized to perform
the required calculations of each layer. (Figure adapted from [197])

3) More Discussion
As mentioned, both architectures rely on PEs as their fun-
damental building blocks to execute computational tasks,
primarily consisting of Multiply-ACcumulator (MAC) units
[205]. In scenarios where the results of various input channels
of a CNN need to be accumulated without multiplication,
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costly multipliers remain unused. To improve resource uti-
lization efficiency, particularly in streaming architectures, a
specialized Convolutional PE (Conv-PE) could be employed
[144]. The Conv-PE comprises a few multipliers based on
the kernel size, succeeded by an adder tree to sum the inter-
mediate results obtained from each input channel, typically
followed by a non-linearity unit [206], [207]. Moreover, us-
ing Conv-PEs reduces latency by requiring fewer pipelined
stages, helping object detection systems satisfy real-time con-
straints.

On the other hand, in a one-size-fits-all architecture, fre-
quently reading or writing parameters and intermediate cal-
culation results to external memory creates a bottleneck in
memory access and bandwidth. This results in reduced system
performance and increased power consumption. In real-time
systems, in particular, to compensate for it, additional buffers
can be utilized to store weights and input data on available
on-chip memory [208].

B. HARDWARE ACCELERATION TECHNIQUES FOR
FPGA-BASED OBJECT DETECTION
In the context of real-time object detection, given their heavy
reliance on CNN-based models, as discussed in section II-A,
there is significant interest in designing and deploying suit-
able hardware accelerators to enhance system performance.

Generally speaking, an accelerator refers to a specialized
hardware component designed to execute a specific set of
tasks more efficiently in terms of performance and energy
consumption compared to a general-purpose processor or
CPU [144], [209]. The development of floating point co-
processors was one of the first attempts to adopt accelerators
[210]. Since then, designers are increasingly taking advantage
of hardware accelerators to enhance digital systems’ power
efficiency and performance. However, they have gained more
attention in recent years, mostly due to AI breakthroughs,
especially in DNNs [149].

Demands for powerful hardware accelerators have in-
creased as AI-based applications have becomemore prevalent
in various fields. Enhancing energy efficiency, improving
performance, and addressing model complexity of modern
AI models are the most important reasons why developing
accelerators is being paid remarkable attention in this era [39],
[144]. Recent trends to solve more challenging tasks more
accurately in different fields, such as computer vision and
natural languages, through AI-based applications, have made
researchers introduce more complex and larger models year
by year. Consequently, such models cannot be exclusively run
on general-purpose processors, as they lack the computational
power necessary for both training and inference within rea-
sonable time frames. It becomes a more important issue when
developing real-time applications.

Furthermore, as AI models continue to grow in size, the
need for increased memory access and data movement also
rises. Memory access is notably more energy-intensive com-
pared to arithmetic computations [149], [233]. Considering
the limited capacity of on-chip storage in general-purpose

processors and the need for external memory access, energy
efficiency is the most important reason for developing hard-
ware accelerators. In addition to incorporating specialized
hardware features to accelerate intensive computations, AI
accelerators can be designed to reduce memory access and
provide larger on-chip caches for improved performance.
FPGAs are highly regarded as suitable platforms for accel-

erating object detection because they can perform parallel and
pipelined computations efficiently while maintaining high
energy efficiency. Moreover, FPGAs’ architectural flexibility
and reconfigurability enable the implementation of custom
logic units tailored to specific tasks in different object de-
tection models. This flexibility can also make it possible
to apply various optimization techniques, both at the hard-
ware and software levels, aimed at improving system perfor-
mance through architectural enhancements and object detec-
tion model simplifications. Therefore, FPGAs have emerged
as the optimal hardware platform, offering both speed and
energy efficiency for implementing complex object detection
models and accelerating them at the edge.
This section delves into some commonly adopted tech-

niques for designing FPGA-based hardware accelerators. Ta-
ble 8 shows the methods discussed in the following two
subsections, divided into two main categories: Model-related
and Implementation-related techniques. The former includes
the methods adopted to prepare and optimize object detection
models for FPGA implementation, while the latter explains
techniques applicable during hardware architecture design
and FPGA implementation. It is crucial to note that accuracy
and execution time are two pivotal parameters in real-time
systems, particularly in hard real-time scenarios [51]. There-
fore, achieving a balance between these factors is of utmost
importance.

1) Model-related Techniques for Hardware Acceleration
Some typical techniques that can be used to make the imple-
mentation feasible in hardware or allow for more efficient
execution of the target application are discussed in detail
below, namely: a) Pruning; b) Quantization; c) Distillation;
d) Hardware-aware Neural Architecture Search.

a: Pruning
Pruning is typically performed in software before deploying
the model on hardware. However, performance can be further
enhanced if the pruning process accounts for the capabilities
and custom hardware features of the target FPGA, as high-
lighted in some of the works discussed below.
Pruning is defined as identifying and eliminating neurons,

kernels, weights, and channels that have minimal or negligi-
ble impact on the final accuracy of an AI model to reduce net-
work complexity [234]. It offers several advantages, includ-
ing reducing computational load and required memory and
improving accuracy per parameter and per operation [150],
[211]. To compensate for the possible effect of this on the
accuracy, the pruned model, also known as a sparse network
[234], needs to be retrained [235]. To avoid slow convergence
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TABLE 8. Commonly used Hardware Acceleration Techniques for FPGA-based Object Detection.

1. Model-related Techniques for Hardware
Acceleration

FPGA-related
references

2. Implementation-related Techniques for
Hardware Acceleration

FPGA-related
references

a. Pruning [47], [73], [211]–[214] a. Data Reuse [68], [69], [82], [193],
[215], [216]

b. Quantization [15], [47], [48], [69],
[73], [77], [82], [193] b. Mathematical-based Optimization [68], [217]–[220]

c. Knowledge Distillation [221]–[224] c. Systolic Arrays [82], [225], [226]

d. Hardware-aware Neural
Architecture Search

[77], [192], [227]–
[229] d. Code Modification [15], [47], [69], [73],

[90], [92]

e. Roofline-based Optimization [47], [73], [211], [219],
[230], [231]

f. Pipelining [15], [47], [48], [74],
[82], [83], [232]

during the retraining of a sparse network, pruning should be
conducted incrementally, with each group of layers pruned in
a separate stage [234].

Pruning methods can be broadly classified into two cate-
gories [236]: unstructured pruning and structured pruning.
Figure 9 illustrates the distinction between these approaches
in a fully connected layer.

In unstructured pruning [237]–[239], weights with low sen-
sitivity are selectively removed throughout the network. This
method allows for aggressive pruning, removing a signifi-
cant portion of neural network parameters with insignificance
accuracy loss. Wang et al. (2020) [73] apply unstructured
pruning to YOLOv2 [71], demonstrating its effectiveness
in enabling real-time object detection on FPGAs. Detailed
results are provided in Sections V-A and V-B. However,
unstructured pruning leads to sparse matrix operations, which
are challenging to accelerate and are often memory-bound
[240].

Structured pruning [198], [241], [242], on the other hand,
involves removing a group of parameters, such as the entire
kernel. This approach alters the input and output shapes of
layers and weight matrices, allowing for dense matrix oper-
ations to continue. However, aggressive structured pruning
often results in considerable accuracy degradation. Achieving
state-of-the-art performance during training and inference
with high levels of pruning remains an open challenge [243].

Pruning may result in data sparsity and inefficient load
balancing,mainly because the target device characteristics are
not considered. To address these issues, Ramhorst et al. [212]
introduce an FPGA resource-aware structured pruning algo-
rithm capable of capturing, during training, the underlying
mapping of network weights to computational and memory
resources.

To enhance inference speed, Plochaet et al. [213] propose
a pruning method suitable for FPGA-based AI accelerators in
which the hardware constraints are considered.

Sui et al. [214] concentrate on row pruning to introduce
a hardware-friendly pruning technique. They eliminate all

FIGURE 9. Example of applying structured and unstructured pruning on a
fully connected layer. Removed (pruned) neurons and weights are shown
by white circles and dotted lines, respectively.

rows except one for each convolution kernel and skip all zero
calculations during FPGA deployment.
When developing real-time object detection systems on

FPGAs, pruning can be adopted to enhance throughput,
reduce latency, optimize resource utilization, and improve
power efficiency, albeit with a potential trade-off in accuracy
[47], [73] (cf. Section V-A).

b: Quantization
Data quantization is another commonly employed method to
decrease the size of CNN-based object detectionmodels. This
approach involves replacing conventional 32-bit floating-
point weights and activation data with simpler representa-
tions, such as lower-bit floating-point or fixed-point numbers.
Therefore, to achieve this objective, FPGAs give the de-

signer the maximum flexibility for choosing an arbitrary
number for bits in the arithmetic operations and data repre-
sentation.
Quantization can be deployed in both training and in-

ference phases. However, despite its great achievements in
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training [244], [245], the majority of recent research on quan-
tization has primarily concentrated on inference [236]. Often
combined with pruning, quantization plays a crucial role in
achieving an efficient hardware implementation. It reduces
the required memory capacity and bandwidth while simplify-
ing arithmetic operations. Quantization can be applied to both
weights and activations. However, adjusting the bit width of
weights generally has a smaller impact on accuracy compared
to modifying the bit width of activations [205].

Data quantization can be applied uniformly [246], [247] or
non-uniformly [248]–[251]. In the former, quantization levels
are uniformly spaced, whereas in the latter, they do not nec-
essarily need to be uniformly spaced. Uniform quantization
is more popular due to its simplicity and efficient mapping to
hardware [236]. For instance, in a successful effort to develop
FPGA-based real-time object detection, Nguyen et al. [15]
shows the effectiveness of adopting uniform quantization for
activations. This approach enhances the design’s speed and
power efficiency by eliminating the need for external memory
access. Detailed results are provided in SectionsV-A andV-B.

However, the dynamic range of data across various layers
in a CNN tends to be large. Consequently, using uniform
quantization with a fixed-point data format for all layers may
result in significant performance degradation [199].

On the other hand, non-uniform quantization offers the
potential for higher accuracy within a fixed bit-width frame-
work. This is because it allows for more effective capture of
distributions, emphasizing crucial value regions and identify-
ing optimal dynamic ranges [236].

One possible and hardware-efficient approach is using
mixed-precision quantization, in which different bit precision
is considered for each layer of CNNbased on the sensitivity of
that layer to quantization. This can address the accuracy loss
problem in object detection systems, which commonly hap-
pens in low-precision quantization, particularly below 8-bit
[252], [253]. There exist successful examples of adopting this
approach in developing efficient real-time object detection
systems on FPGAs [77], [82] (cf. Section V-A). However,
finding an optimum solution to decide on the best precision
of each layer is an open challenge [236].

FIGURE 10. Illustration of Quantization-Aware Training (QAT) (Left) and
Post-Training Quantization (PTQ) (Right) procedures. In QAT, a pre-trained
model is quantized and then fine-tuned. In PTQ, a pre-trained model is
calibrated using calibration data to do quantization based on the
calibration result. (Figure adapted from [236].)

Data quantization can lead to a drop in model accuracy,
which is not acceptable in some applications, such as hard
real-time object detection systems. To mitigate this issue, the
model parameters should be tuned or adjusted when applying

quantization. In this regard, Quantization Aware Training
(QAT) and Post-Training Quantization (PTQ) are two main
approaches commonly used to achieve a more accurate and
efficient quantization [236]. A pre-trained model undergoes
quantization in the former, followed by fine-tuning using
training data. This process adjusts parameters and aims to re-
cover any accuracy degradation caused by quantization [236].
However, the retraining procedure can be time-consuming,
especially when it comes to low-precision quantization. In
PTQ, on the other hand, there is no need to model retrain-
ing. A pre-trained model is calibrated using calibration data,
which is typically a small subset of training data. This cal-
ibration process computes the clipping ranges and scaling
factors. Clipping ranges define the upper and lower bounds
within which input data are constrained while scaling factors
adjust the dynamic range of real-valued input data to adapt
them to the desired output range. Subsequently, the model is
quantized based on the calibration results [254]. Even though
the process of obtaining the desired model is faster in the
PTQ approach, this often results in lower accuracy compared
to QAT [236], which may not be desirable in hard real-time
applications, like object detection, where accuracy is critical.
Figure 10 shows the overall procedure taken in QAT and PTQ.
In implementing object detection models on FPGAs, quan-

tization is employed in various forms with different levels of
precision, especially when real-time performance is required
[15], [47], [48], [77], [193] (cf. Sections V-A and V-B). Like
Pruning, the primary goals of deploying this technique in
such systems are improving throughput, latency, resource
utilization, and power efficiency, with possible consequences
in accuracy drop.

c: Knowledge Distillation

Knowledge distillation is the process of transferring knowl-
edge from a large and complex model or ensemble of models
to a single smaller model, which can be feasibly deployed
under real-world constraints.
The deployment of large object detection models poses

a significant challenge, particularly for edge devices like
FPGAs, which have restricted memory and computational
resources. To address this challenge, a model compression
method was initially proposed [221] to transfer knowledge
from a large model into a smaller model without sacrificing
performance. This process of training a small model from
a larger one was formalized as a ‘‘Knowledge distillation’’
framework by Hinton et al. [222].
In knowledge distillation, as depicted in Figure 11, a small

‘‘student’’ model is trained to emulate a large ‘‘teacher’’
model. By leveraging the knowledge from the teacher, the
student model aims to improve its accuracy.
Based on the discussions thus far, simplified models ob-

tained through pruning and quantization techniques can be
considered student models. By deploying knowledge distilla-
tion, we can bridge the accuracy gap between the simplified
and original models, bringing them closer in performance.
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FIGURE 11. An illustration of performing knowledge distillation with a
teacher-student framework. (Figure adapted from [255].)

In [223], for instance, a distillation technique tailored for
quantized models was proposed, based on which quantized
student networks attain accuracy levels comparable to their
full-precision teacher model counterparts, with lower infer-
ence time.

In the context of real-time FPGA-based object detection,
knowledge distillation is deployed to enhance the system’s
accuracy, especially after applying model compression tech-
niques such as pruning and quantization [224] (cf. Sec-
tions V-A).

d: Hardware-aware Neural Architecture Search
When considering resource-constrained platforms like FP-
GAs for developing DNN-based systems, optimizing the
DNN model to be streamlined and compact is crucial. This
optimization should encompass reducing the number of pa-
rameters and computations while maintaining acceptable ac-
curacy. However, achieving an efficient network tailored to
the characteristics of the target hardware is a challenging and
time-consuming endeavor [256].

Hardware-aware Network Architecture Search Hardware-
aware NAS or (HW-NAS) seeks to automate the process of
discovering themost optimal architectures and configurations
of a DNN, tailored specifically for a given hardware platform
[227]. This process aims to strike a balance between accu-
racy and performance, ensuring acceptable tradeoffs [227].
Furthermore, through the consideration of the distinctive at-
tributes of the target device and the implementation of multi-
objective optimization algorithms, HW-NAS can generate
hardware architectures that are inherently more compatible
with the target system and more efficient in terms of perfor-
mance and resource utilization [228].

HW-NAS has notably influenced image classification and
object detection tasks by consistently achieving state-of-the-
art results [228]. Using reinforcement learning [257], Jiang et
al. [229] introduced an FPGA-aware NAS technique, called
FNAS, tailored to identify architectures that can meet spec-
ified inference latency requirements. By employing a per-
formance abstraction model, it can estimate neural network
latency without the need for extensive training. FNAS effec-
tively eliminates networks that do not align with the con-
straints in the search space, boosting search efficiency by a
remarkable factor of 11.13×.

HW-NAS can effectively optimize all critical metrics of
FPGA-based object detection systems, including throughput,
accuracy, latency, resource utilization, and power efficiency.
By leveraging the flexibility of FPGA designs alongside the
efficiency of HW-NAS, the optimization process for object
detectionmodels becomes significantlymore streamlined and
impactful. This synergy enables the development of low-
latency models, which are essential for achieving real-time
performance [192] (cf. Section V-A).

2) Implementation-related Techniques for Hardware
Acceleration
a: Data Reuse
An object detection model often requires access to a large
amount of data, usually stored in external memory when the
target platform is a resource-constrained device. Particularly
with complex and large state-of-the-art object detection mod-
els, this strong dependency on access to external memory
and data movement can lead to a bottleneck for performance,
energy, and computation efficiency [149], [258].
It is possible to reduce memory access by reusing pre-

fetched or intermediate data, such as feature maps, weights,
and convolution internal results, multiple times [258]. This
can be achieved by leveraging the available on-chipmemories
of the target device or optimizing the algorithms. Also, con-
volution operations can be accelerated by maximizing data
reuse [259]. This method involves utilizing pixels computed
simultaneously at the same spatial position across various
Output Feature Maps (OFMs). As a result, all pixels from
Input Feature Maps (IFMs) and kernel data are accessed
only once and stored in an on-chip BRAM of the FPGA (cf.
Section III-A1) until they are reused.
By efficiently employing loop transformation and BRAM-

based on-chip buffers to leverage data locality, Beric et al.
[260] demonstrated that it is possible to achieve an 11×
speedup compared to the standard implementation on similar
FPGA resources while also being more energy-efficient due
to reduced memory access.
Data reuse methods can be categorized into temporal and

spatial reuse [149], both of which are critical for optimizing
FPGA-based real-time object detection systems. In temporal
reuse, one group of data is utilized multiple times by a sin-
gle computational unit, allowing on-chip buffers to store a
small set of required data, which minimizes memory access
latency and power consumption. In spatial reuse, one set
of data is simultaneously employed by different processing
units, enabling parallelism and improving throughput without
requiring additional buffering. These techniques are essential
for maximizing the efficiency of FPGA implementations in
real-time object detection applications. There are plenty of
works in the context of FPGA-based real-time object detec-
tion adopting data reuse to achieve higher performance in
terms of throughput and latency along with gaining more
power efficiency [15], [82], [193] (cf. Section V-A).
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b: Mathematical-based Optimization
To enhance performance by reducing computational com-
plexity or memory access, various computation or transfor-
mation techniques can be employed, such as the Winograd
transform [261], Fast Fourier Transform (FFT) [262].

Since its initial application in accelerating convolution ex-
ecution in 2016 [263], the Winograd technique has garnered
considerable attention in CNN implementations. Regarding
FPGA-based implementation, there have been significant re-
search achievements in neural network optimization based on
the Winograd algorithm [217]–[220].

Winograd aims to reduce the number of multiplications
using some pre-calculated values, considering the fact that
the trainable parameters of a CNN model will remain fixed
after training. In fact, it transforms overlapping kernels into
non-overlapping ones to reduce the computation complexity
of CNNs [261], [263]. As an example, Equation 3 shows
that when convolving an input feature map In and a kernel
Wn, both of size 1 × 3, the traditional approach requires 6
multiplications and 4 summations.[

I0 I1 I2
I1 I2 I3

]W0

W1

W2

 =

[
O0

O1

]
(3)

However, adopting the Winograd approach, the number of
multiplication and summation will be 4 and 12, respectively,
as shown in equations (4) and (5).

M1 = (I0 − I2)W0

M2 = (I1 + I2)
W0 +W1 +W2

2

M3 = (I2 − I1)
W0 −W1 +W2

2
M4 = (I1 − I3)W2

(4)

The key insight in these calculations is that since the
weights are fixed, the summations of those weights in Equa-
tion 4 can be pre-computed, so we can avoid 4 additions.
Additionally, division by 2 only requires a shifter rather than
any arithmetic logic.[

O0

O1

]
=

[
M1 +M2 +M3

M2 −M3 −M4

]
(5)

Therefore, the actual number of multiplications and adders
required to implement the convolution in equation (4) are 4
and 8, respectively. This shows that employing this method
reduces the number of multipliers from 6 to 4 for the same
calculation compared to the traditional method. It is important
to note that the hardware implementation of multiplication
is typically more resource-intensive than that of summation,
which justifies the increase in the number of required adders
from 4 in Equation 3 to 8 for the implementation of Equa-
tion 4. Furthermore, in FPGAs, addition can be performed
faster than multiplication [258].

However, the Winograd method limits the reuse of the
weights because the pre-computed weight sets in Equation 4

are just used once while moving the convolution window.
This issue can be partially addressed by adopting appro-
priate considerations during the design, such as integration
of the pooling with convolution, to leverage the benefits of
the Winograd method in reducing energy consumption and
increasing throughput [144].

Cai et al. [68] demonstrate the effectiveness of employing
this technique to develop an efficient FPGA-based object
detection system, optimizing both speed and energy con-
sumption. Further details about this effort are provided in
Section V-A.

Another possible acceleration technique to perform con-
volution operations is using FFT [149], [262]. This method is
similar to the Winograd transform and can reduce the number
of required multipliers. The principle behind this approach is
that convolution in the time domain can be transformed into
multiplication in the frequency domain. Initially, we compute
the FFT of both the weight and input. Subsequently, we obtain
the output by taking the inverse FFT of their element-wise
multiplication in the frequency space. As a result, there is
a possible reduction in the number of multiplications for
each input channel, strengthened from the order of RSPQ to
PQlog2(PQ), whereP×Q represents the output size andR×S
signifies the filter size [149].

However, the advantages of this approach diminish with
larger kernel sizes [205]. Additionally, combining FFT with
sparsity, which often yields higher benefits, can be challeng-
ing [149]. Given that modern CNNs predominantly utilize
small kernel sizes, FFT has declined in significance inmodern
hardware accelerators [144].

c: Systolic Arrays
First introduced byKung and Leiserson [202], systolic arrays
are parallel computing architectures comprising a network
of Processing Elements (PEs) organized in a regular grid,
typically with a two-dimensional structure. In these arrays,
data flows rhythmically between neighboring PEs, enabling
efficient and synchronized computations. Some of the key
features of the systolic array design include regularity, recon-
figurability, and scalability [264].

When data is fetched from memory, it is sequentially
passed from one PE to another, enhancing data reuse while
minimizing memory access—a key advantage for power-
efficient, real-time systems. Furthermore, systolic arrays
demonstrate exceptional adaptability to a variety of DNN-
based models and are capable of achieving high levels of
parallelism and clock frequencies [208]. These attributes
make them an ideal choice for developing real-time object
detection systems.

Considering its advantages, such as scalability and flexibil-
ity, systolic array architectures have been adopted to imple-
ment different computations on FPGAs [225], [226]. Figure
12 represents an example of using systolic array-based archi-
tectures for performingmatrixmultiplication. The regular and
predictable architectures of systolic arrays make them highly
suitable for hardware implementation. In addition, conven-
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tional approaches to data spatial reuse in FPGA computation
units often encounter challenges such as significant fan-out
and difficulty in meeting timing constraints. On the other
hand, each PE in a systolic array architecture can seamlessly
transmit result data to its neighboring PEs. These localized
connections between PEs effectively diminish the neces-
sity for transmitting extensive data over extended distances,
thereby enhancing system performance and reducing latency.

FIGURE 12. An example of adopting a systolic array to perform matrix
multiplications in CNNs. (Figure adapted from [265])

d: Code Modification
To maximize hardware usability by optimizing object detec-
tion models on the operator level, some hardware-specific
code transformation techniques can be deployed. These tech-
niques include loop optimization and operator fusion.

Loop optimization techniques, such as loop unrolling and
loop tiling, can improve resource utilization efficiency and
data reusability. This results in lower latency and increased
energy efficiency by reducing the frequency of off-chip mem-
ory accesses. [264]. Given that matrix multiplication serves
as a main computational component within CNN-based ob-
ject detection models, it can be conceptualized as nested
loops. Therefore, loop modification techniques are frequently
employed in hardware accelerators to optimize performance
[211], [266]–[268].

when designing real-time object detection systems on FP-
GAs, techniques such as loop reordering, loop unrolling, and
loop pipelining can be employed to accelerate execution.
Additionally, loop tiling is often utilized to optimize memory
allocation, improving overall system efficiency and perfor-
mance [144], [269].

Loop reordering aims to minimize redundant memory ac-
cesses and maximize the utilization of on-chip memory. It

involves rearranging the sequence of uncoupled multiplica-
tion and additional operations within the convolution process
to optimize efficiency [269], [270]. Loop unrolling is a tech-
nique where multiple copies of the loop body are created to
allow some or all iterations to execute in parallel, improving
data access and throughput. This technique can be deployed
to optimize hardware utilization, reducing computation time
effectively and maximizing data reuse by fully leveraging
internal memory [266], [267]. Loop pipelining is a technique
that allows the overlap of iterations in a loop by starting
a new iteration before the previous one completes, enhanc-
ing execution efficiency and throughput. However, whether
pipelining is feasible depends on the hardware accelerator’s
architecture (cf. Section IV-A). The concept of loop tiling,
or loop blocking, involves dividing the loop’s iteration space
into smaller blocks to enhance memory hierarchy efficiency
[269]. By doing so, the loop’s data fits within the cache
until it is reused, thus reducing cache misses and enhancing
performance significantly.

In the context of the FPGA-based real-time object detec-
tion, adopting these techniques is popular (cf. Section V-A).
Nguyen et al. [15] use loop reordering and tiling to optimize
the data path of the deployed streaming architecture. To en-
hance data reuse, thereby optimizing memory access, Babu
et al. [90] deploy loop tiling. Additionally, they leverage
loop pipelining to enhance system throughput. For a different
purpose, Fan et al. [47] employ loop unrolling and loop
reordering to tackle the issue arising from the distinct kernel
sizes of depth-wise and point-wise convolutions. This differ-
ence makes it difficult to directly utilize processing elements
(PEs) designed for depth-wise convolution with point-wise
convolution.

The operator fusion technique, also known as kernel or
layer fusion technique, aims to reduce data exchanges be-
tween computation units and external memory by finding data
dependencies between different parts of an object detection
model [271], [272]. This process begins by partitioning the
model into groups of operators to be fused. Within each
group, intermediate feature maps are promptly accessible to
subsequent units or layers that need the data. However, if
none of the computation units in a group require the data at
that time, it is transferred to external memory. It will then
be reloaded into on-chip memory when another computation
unit needs it. In designing FPGA-based object detection sys-
tems in particular, employing the operator fusion technique
can offer significant advantages in improving the perfor-
mance of the system and reducing memory access overhead
[73], [76], [92]. For example, in their proposed FPGA design
for real-time object detection based on YOLOv2 [71], Xu
et al. [76] merge different components of the model, includ-
ing convolution, batch normalization, and activation function
units, to minimize memory access. This approach enables
them to achieve a high throughput of up to 71 FPS for the
system (see Section V-B for further details).
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e: Roofline-based Optimization
When deploying an object detection model on a particular
platform, such as an FPGA device, the achievable perfor-
mance of the model is influenced by the compatibility be-
tween the model and the target platform [258]. In this regard,
performance bottleneck analysis is a critical task that can be
conducted using various methods [219], [230]. Among these
methods, the ‘‘Roofline Model’’ [273] stands out as partic-
ularly popular. The Roofline model is a visual performance
model that enables the estimation of the gap between the
actual performance (in terms of computational performance
(FLOPS) and memory bandwidth (Bytes/s)) of a compute
kernel compared to the peak theoretical performance of the
underlying system.

A more detailed discussion on the Roofline Model is pre-
sented in AppendixB.

In recent years, the Roofline model has been deployed
to optimize the CNN implementations on FPGAs in various
works [211], [231]. Some of these efforts have focused on
using this technique combined with the High-Level Synthesis
(HLS) design approach [274]–[276]. Calore et al. [277] op-
timized the neural network compiler through pipeline design
and utilized the Roofline model to investigate the trade-off
between memory and computational throughput, aiming to
enhance FPGA performance. In particular, to implement real-
time object detection models on FPGAs, many works have
adopted this technique to find possible performance bottle-
necks and optimize the design [47], [278] (cf. Section V-A).

f: Pipelining
In designing FPGA accelerators for CNN-based object detec-
tion, pipelining is advantageous when two adjacent convolu-
tional iterations can be performed without data dependency
[15], [47], [48], [232]. This allows the next convolutional
operation to commence before the current one is fully com-
pleted, enhancing computational power.

Generally speaking, pipelining is a design technique aim-
ing to enhance the maximum clock frequency and throughput
of synchronous digital systems. This technique involves in-
serting registers or memory elements into the dataflow path
to break down a large operation into several smaller ones
[258]. In that way, each small operation requires less time,
reducing the path length that a signal must traverse within
a clock cycle and thereby enhancing the working frequency.
Furthermore, smaller operations can be executed in parallel,
leading to improved data throughput [258].

Pipelining proves particularly beneficial when processing
a stream of data. In a pipelined circuit, various stages of the
pipeline can handle different input stream data simultane-
ously within the same clock cycle. This concurrent processing
enhances data processing throughput significantly [279], at
the cost of more resource utilization and higher latency (cf.
Section IV-C).

As a result, pipelining has become an indispensable op-
eration in the design of most computational engines in the
context of FPGA-based real-time object detection systems

[14], [15], [74], [83], [258]. For example, Nguyen et al. [15]
propose an FPGA-based streaming architecture tailored for
real-time object detection showing high throughput up to
1877GOPS,where all convolutional layers are fully pipelined
(cf. Section V-A).

C. IMPACT AND TRADE-OFFS OF ACCELERATION
TECHNIQUES IN FPGA-BASED OBJECT DETECTION
It is crucial to understand the potential effects of each tech-
nique, reviewed in Section IV-B, on system performance
and efficiency when developing a real-time object detection
system using FPGAs. This insight allows designers to select
the most appropriate set of techniques, taking into account the
requirements of the desired system and application, as well as
the limitations and capabilities of the target FPGA device.

FIGURE 13. Possible impact of model-related (top) and
implementation-related (bottom) acceleration techniques on key metrics
in FPGA-based object detection systems, focusing on throughput and
accuracy. The corresponding section where each technique is discussed in
this work is also indicated.

Figure 13 highlights the possible impacts of different accel-
eration techniques on FPGA-based object detection systems,
focusing on key metrics including throughput, accuracy, la-
tency, resource utilization, and power efficiency. Each tech-
nique can have a positive effect (indicated by green arrows),
a negative effect (indicated by red arrows), or a neutral effect
(indicated by an equal sign).
Regarding model-related techniques, pruning effectively

increases throughput, reduces latency, improves resource uti-
lization, and enhances power efficiency, although it may lead
to a decrease in accuracy. Quantization shows similar bene-
fits, improving throughput, latency, resource utilization, and
power efficiency, with a potential drop in accuracy. Knowl-
edge distillation, on the other hand, offers improvements in
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accuracy, making it a suitable compensator for previous tech-
niques. Finally, HardWare-aware Neural Architecture Search
(HW-NAS) can be employed to optimize all key metrics,
leading to enhancements in throughput, accuracy, latency,
resource utilization, and power efficiency. This positionsHW-
NAS as the most comprehensive acceleration technique for
FPGA-based object detection systems, albeit with the caveat
of its complex and time-consuming implementation process.

In the context of implementation-related techniques, data
reuse enhances throughput and reduces latency by reusing
intermediate results to avoid redundant computations. This
technique tends to increase resource utilization due to higher
memory requirements but improves power efficiency, with
no impact on accuracy. Mathematical-based optimization
methods can significantly improve throughput and power
efficiency by simplifying calculations. However, these ap-
proaches might compromise accuracy because of approx-
imations, although they can optimize resource utilization.
Using systolic arrays can improve throughput and power
efficiency by enabling parallel processing with a consistent
data flow. While accuracy is maintained, this method may re-
quire more resources due to the dedicated hardware involved.
Code modification, including techniques like loop unrolling,
boosts throughput and power efficiency without affecting
accuracy but may increase resource utilization and, in some
cases, latency. Roofline-based optimization strikes a balance
between computational load and memory access to enhance
throughput, with no impact on accuracy but potentially higher
resource demands and trade-offs in power efficiency. Pipelin-
ing improves throughput by allowing concurrent execution
of multiple stages, thereby improving throughput. Although
it does not affect accuracy, the additional hardware require-
ments for pipelining can lead to increased resource utilization
and latency, with minimal effect on power efficiency.

It is important to note that these effects and results are not
definitive and may vary with different implementations and
deployments. However, the mentioned effects can be consid-
ered as the most anticipated outcomes. All in all, selecting
the appropriate acceleration method involves weighing these
trade-offs to achieve the desired performance while consider-
ing system constraints.

V. RESULTS ANALYSIS AND OPTIMIZATION
This section aims to review several case studies, illustrating
how acceleration architectures and techniques discussed in
Section IV have been applied to develop real-time object
detection systems, along with an analysis of their outcomes.
Then, recent advancements and works in this field are com-
pared across multiple metrics—such as throughput, accuracy,
pixel throughput, and power efficiency—highlighting state-
of-the-art results and revealing trends in FPGA-based real-
time object detection. Finally, optimization strategies specif-
ically aimed at achieving real-time performance in FPGA-
based object detection systems are briefly discussed.

A. CASE STUDIES: ADOPTION OF ACCELERATION
TECHNIQUES IN FPGA-BASED REAL-TIME OBJECT
DETECTION
This section discusses examples of applying the aforemen-
tioned acceleration techniques in developing real-time object
detection systems on FPGAs. The works are chronologically
reviewed to illustrate the progress in this field. The results
of adopting these techniques are presented and analyzed to
demonstrate how they have contributed to enhancing the
performance, accuracy, and efficiency of such systems. Ad-
ditionally, an overview of the overall architecture proposed
by some recent works is briefly examined to provide context
on the approaches adopted in state-of-the-art object detection
solutions.
Fan et al. (2018) [47] demonstrated the effectiveness of

channel pruning in boosting the performance and hardware
efficiency of FPGA-based real-time object detection systems.
By pruning up to 10% of the channels of a customized SSD
model [19], they achieved a model 3 times smaller with
a minimal accuracy loss of just 1.8%. Also, by proposing
a partial quantization scheme, they minimized the accuracy
drop caused by quantization. This quantization scheme pre-
serves 32-bit precision for certain components like Pre- and
post-processing modules while quantizing most layers in the
feature extractor to 8 bits. They also used 8-bit weights
and activation in their proposed system. By employing the
roofline model technique tailored for the target platform, i.e.,
a Xilinx Zynq ZC706 with a DRAM memory bandwidth of
1.2 GB/s, they improved overall performance by caching all
intermediate results in the on-chipmemory. By applying these
techniques, they achieved 64.8 FPS, a latency of 15.43 ms,
and a power consumption of 9.9 W using a single computa-
tion engine architecture. These results represent a more than
sixfold improvement in throughput and latency, along with a
94% reduction in power consumption, compared to running
the original model on a TITAN X Pascal GPU.
Nguyen et al. (2019) [15] implemented a real-time object

detection system using YOLOv2 [71] on a VC707 FPGA,
employing 1-bit weights and flexible 3-to-6-bit activations.
This approach led to a 30-fold reduction in model size and a
5.4-fold decrease in activation size. They demonstrated that
even with such low-bit quantization, an acceptable accuracy
(51.68% mAP) with a high inference speed (66 FPS) is pos-
sible with a power consumption of 8.7 W. They developed an
efficient streaming architecture tailored for real-time object
detection, focusing on optimizing the data path, where all
convolutional layers are fully pipelined. Additionally, they
enhanced loop computations using loop reordering and tiling
techniques, enabling the convolutional layers to run effec-
tively on their resource-constrained FPGA.
They also introduced a data reuse scheme to minimize

memory accesses and enhance computation performance by
reusing both the input data and the weights (Figure 14). The
input is processed in sliding cubes (with K × K × Ti pixels)
that move across the image in row passes. During each pass,
the T0 weight blocks are reused to perform convolutions,
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FIGURE 14. Data reuse scheme proposed in [15], minimizing memory
accesses by reusing both input data and weights, with intermediate
results stored in line buffers. K × K × Ti defines the size of the input
sliding cube in pixels, and T0 denotes the number of weight blocks
concurrently convolved with the input sliding cubes in each iteration.
(Figure adapted from [15]).

generating temporary output values that are stored in line
buffers. These computations are performed in parallel, and
the results are accumulated across multiple row passes. After
each pass, the input sliding cube shifts, and newweight blocks
are fetched. The convolutional outputs are accumulated in
the line buffers, reducing the need for additional memory
accesses. The weights are fetched once per row pass (H times
in total) and from on-chip SRAM, resulting in fewer memory
accesses. Once all rows are processed, the final accumulated
output is forwarded to the next layer, minimizing external
memory access. The parameters Ti and T0 are chosen to
balance hardware cost and performance, ensuring efficient
memory usage and parallel computation.

The results demonstrate approximately a 24% improve-
ment in throughput and a 90% reduction in power con-
sumption compared to running the same model with 32-bit
floating-point precision on a GTX Titan X GPU.

Hao et al. (2019) [192] presented a co-search method
that enhanced the performance of CNN-based object detec-
tion, leading to gains in accuracy, frame rate, and energy
efficiency. The proposed approach was tested on an object
detection task from the DAC-SDC competition [280], where
it outperformed the first-place winner using a PYNQ-Z1
board. This implementation could meet real-time require-
ments, delivering up to 29.7 FPS and achieving 68% accuracy.
Their solution delivered a 6.2% improvement in IoU, reduced
power usage by 40%, and was 2.5 times more energy efficient
compared to the state-of-the-art FPGA designs. Also, in com-
parison to GPU-based designs on Nvidia Jetson TX2, their
method achieved nearly identical accuracy (approximately
69% IoU) while offering an energy efficiency advantage of
3.1 to 3.8 times.

Wang et al. (2020) [73] also applied an unstructured
pruning to YOLOv2 [71] and showed the effectiveness of
this technique in implementing real-time object detection on
FPGAs. Their approach leveraged hardware-aware optimiza-
tions, including model pruning and quantization, to reduce
the computational workload and memory footprint of the
YOLOv2 network. Using the roofline model as an optimiza-
tion flow guidance to adopt a fine-grained unstructured prun-
ing scheme, they achieved a 7x reduction in computational

workload with only a 2.35% loss in accuracy. This tech-
nique, along with applying 8-bit quantization on the whole
model and adopting a layer fusion approach, allowed for
high-throughput object detection at 61.9 FPS using a single
computation engine architecture. They also achieved a high
power efficiency of 81.92 GOPS/W on an Arria-10 FPGA,
demonstrating the viability of these techniques for real-time
object detection.
Chang et al. (2021) [82] showed that adopting a mixed-

precision quantization approach is a more effective way to
minimize the accuracy loss than applying fixed bit-width
quantization. By quantizing weights and activations to 5-8
bits and 7-8 bits, respectively, they developed a real-time
object detection system based on YOLOv3 [80] using the
ZCU102 FPGA platform. They achieved a throughput of 22
FPS with 49.7% mAP, reflecting only a 1.5% accuracy loss
compared to the 32-bit floating-point model.

FIGURE 15. An architecture for accelerating YOLOv3 on FPGA. It is based
on a pipelined multicore processing architecture consisting of a Control
Unit to manage all operations, a Compute Engine with multiple layers of
2D arrays of PEs, and an on-chip memory unit optimized for parallel data
access (Figure adapted from [82], .

As Figure 15 shows, the proposed architecture features a
pipelined multicore unit composed of a computing engine, an
elastic on-chip buffer, and a control unit.
The computing engine performs operations like convolu-

tion, activation, and pooling with mixed precision This unit
consists of Reconfigurable Microprocessing Elements (Rm-
PEs) organized in a 3D array to adapt to various convolutional
layer requirements. Each RmPE performs parallel MAC op-
erations, using DSP and LUT-based adders. Multiple Rm-
PEs form Reconfigurable Macro Processing Units (RmPUs),
which combine into a 3D array for enhanced parallelism. The
Control Unit manages configurations, including bit-widths,
activation (e.g., ReLU), pooling types, and dataflow patterns,
optimizing resource utilization. The unit supports flexible
data processing by adapting to different CNNmodels through
reconfigurable parameters for input/output widths and convo-
lution array setup.
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The on-chip buffer unit is a flexible memory system dy-
namically partitioned into physical banks, optimized for par-
allel data access, and configured by the Control Unit to match
computational needs. It stores intermediate data for convolu-
tion, activation, and pooling tasks, reducing off-chip memory
dependency and facilitating cross-layer data reuse.

The Control Unit orchestrates the pipelined multicore unit
by breaking down convolution tasks into smaller, tile-based
subtasks and coordinating the computing engine and on-chip
buffer accordingly. It decodes instructions, queues them by
type (control, memory access, and computation), and man-
ages synchronized, parallel issuance, ensuring data depen-
dencies are met for efficient execution.

Cai et al. (2021) [68] proposed an FPGA-based ap-
proach for real-time underwater object detection based on a
single computation engine architecture, utilizing the Wino-
grad algorithm to optimize various convolution operations
within the network. They also improved data reuse through
a ping-pong-based memory access approach. By adopting
these techniques, they were able to achieve 33.14 FPS with
MobileNetV3-SSDLite [19] when the accelerator was de-
ployed on a Zynq XC7Z045 device running at 150 MHz.
Compared to a CPU (Intel i7-8700), the proposed accelerator
offers an 8.7× speedup, enhancing energy efficiency by 60×.

Huang et al. (2021) [193] showed that employing an
effective data reuse strategy in FPGA implementations can
greatly enhance the performance of real-time object detection
by optimizing memory access patterns and increasing data
locality. Their approach employed buffering techniques to
reduce the frequency of memory fetches, lowering latency
and boosting throughput. This strategy proved particularly
beneficial for deformable convolutions, where irregular mem-
ory access patterns typically limit data reuse. Theymodify the
deformable convolution operation to enhance performance
further by restricting adaptive offsets to fixed ranges, enabling
more efficient data reuse. Additionally, they replaced the
full 3 × 3 deformable convolutions with 3 × 3 depthwise
deformable convolutions and 1 × 1 convolutions, akin to
the depthwise separable convolution approach used in Xcep-
tion [281], thereby streamlining computation and enhancing
the efficiency of the FPGA implementation. Using their de-
veloped object detection model on an Ultra96 board, they
achieved up to 32.2 FPS on the Pascal VOC dataset [40]
while consuming only 5.6 W of power.

In their proposed workflow for implementing YOLOv4
on a Zynq UltraScale+ MPSoC FPGA, Liew et al. (2022)
[224] demonstrated how leveraging knowledge distillation
can help recover some of the accuracy lost due to pruning and
quantization. As shown in Figure 16, the size of the baseline
model (with 32-bit floating point precision) was reduced by
56% and 88% after applying channel-wise model pruning and
then 8-bit quantization (INT8), respectively. This reduction in
model size was crucial for achieving real-time performance at
33.34 FPS, though it came with an 8% decrease in accuracy.
However, adopting knowledge distillation led to a recovery of
some accuracy by about 2.5%.

FIGURE 16. The effect of applying pruning (p), quantization (Q), and
knowledge distillation (KD) techniques one after the other on the size and
accuracy of the YOLOv4 model (the numbers extracted from [224]).

Jain et al. (2022) [77] developed a real-time object de-
tection system based on tiny-YOLOv2 [71], in which a
mixed-precision quantization scheme (8-bit weight and 16-bit
activation) was adopted. By taking advantage of QAT, they
could not only achieve a satisfactory processing throughput
(23 FPS) for real-time performance on the XC7Z035 FPGA
but also recover the accuracy loss caused by applying quan-
tization to reach a high accuracy of 57.1%. To find the best
spatial and temporal unrolling factor for designing an energy-
efficient and high-speed architecture, they did a design space
exploration using the ZigZag tool, an optimization framework
[282].

FIGURE 17. Overall accelerator architecture, consisting of a SIMD array,
activation, pooling, and control units along with memories to store input,
weight, and output values (Figure adapted from [77]).
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Subsequently, as Figure 17 shows, they developed an ar-
chitecture using an array consisting of 32 Single Instruction
Multiple Data (SIMD) units, where each SIMD unit consists
of 14 parallel PEs. The architecture also includes a 2× 2 max
pooling unit with strides of 1 and 2, along with an activation
unit that performs ReLU and Leaky ReLU. To minimize
latency, dual-port memories are used to enable parallel read
and write operations. A control unit is also implemented
to manage data movement and oversee the operation of the
SIMD arrays and other components.

Suh et al. (2023) [69] utilized a low-precision quanti-
zation approach to implement the SSD model, trained on
a custom drone dataset on the Zynq ZU3EG FPGA. They
introduced a uniform quantization scheme with power-of-two
(POT) quantization boundaries, termed UniPOT, designed to
streamline the model, reduce its size, and eliminate the need
for multipliers by substituting them with shift registers. Their
results showed that applying UniPOT quantization with 8-bit
precision resulted in only a minimal accuracy drop (0.24%
mAP) compared to the baseline 32-bit model. Their proposed
design achieved 88.42% mAP, an energy efficiency of 79
GOPS/W, and 158 GOPS throughput.

Figure 18 shows the overall proposed architecture. The
design utilizes two separate DMAmodules to handle read and
write operations independently, each with its own descriptor
buffer. The read DMA module loads image tiles and weights
into designated input and weight buffers. A data router then
rearranges the pixel and weight data for optimized reuse in
MAC arrays, leveraging FIFOs to minimize buffer reads by
shifting and reusing data in registers. This setup enables effi-
cient pixel reuse within the register arrays, reducing memory
access. Each Processing Element (PE) in the MAC array
performs one multiply-accumulate (MAC) operation per cy-
cle, benefiting from loop unrolling and tiling techniques to
maximize efficiency.

FIGURE 18. Overall hardware block diagram of a proposed FPGA
accelerator, with two separate DMA modules, each equipped with a
dedicated DMA descriptor buffer. The data router will rearrange the pixels
and weights to maximize data reuse capability (Figure adapted from in
[69]).

Anupreetham et al. (2024) [67] developed a high-

performance, real-time object detection system on a Stratix
10 FPGA, achieving low latency and high throughput by
introducing a novel pipelined Non-Maximum Suppression
(NMS) algorithm. This new NMS design reduced latency
by removing the traditional dependency on sequential pro-
cessing, which typically slows down the object detection
pipeline. By allowing continuous dataflow between stages,
the pipelined NMS enabled concurrent processing of feature
extraction and SSD [19] detection stages, significantly de-
creasing end-to-end latency. Additionally, they enhanced the
system’s efficiency by incorporating a multi-threaded NMS
module that processes multiple images in parallel, aligning
with the throughput capacity of the CNN backbone accelera-
tor and thus preventing stalls.
As a result, the system achieved an end-to-end latency of

only 2.13 milliseconds, marking a substantial improvement
over prior FPGA implementations. It delivered 5.3× higher
throughput than previous solutions with comparable accu-
racy, i.e., 22.8% mAP on MS COCO [41], demonstrating a
significant advancement in balancing speed, efficiency, and
accuracy for FPGA-based real-time object detection.
D. Zhang et al. (2024) [86] introduced a fully hardware-

accelerated end-to-end object detection system, designed en-
tirely to run on FPGA devices. To meet real-time require-
ments and minimize system latency, all components, includ-
ing post-processing algorithms, were implemented on hard-
ware, eliminating the need for a CPU.
To enhance design flexibility and support various object

detection models, they adopted a single computation engine
architecture. However, to address the primary challenge of
this approach—intensive memory access—they employed
three dedicated data access units alongside on-chip buffers
to improve data reuse. These data access units leveraged
burst transfer mechanisms to optimize memory bandwidth
utilization andminimize data transfer overhead. Furthermore,
the proposed data buffering strategy allowed data transfers
to occur in parallel with computations, significantly boosting
execution efficiency. A ping-pong buffer mechanism further
enhanced data reuse within the design.
The system was evaluated using object detection models

such as YOLOv2 and YOLOv3, demonstrating substantial
performance improvements. Compared to state-of-the-art im-
plementations, such as [15], [48], [67], it achieved up to 9x
higher throughput and up to 5x lower latency.
When tested on a KC705 board, featuring a low-end

XC7K325T FPGA, the system delivered an impressive
throughput of 401 GOPS, consumed 12 W of power for the
entire system, and achieved a frame rate of 65 FPS while
running a quantized (8-bit) YOLOv3-tiny model.

B. COMPARATIVE ANALYSIS OF FPGA IMPLEMENTATIONS
Tables 9 and 10 present detailed information on recent stud-
ies, sorted based on the achieved pixel throughput, regarding
the implementations of real-time object detection models on
FPGAs. As shown in Table 9, the majority of these studies
utilize two main detection model families: YOLO [18] and
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SSD [19] (cf. Section II-A2). These one-stage detectors are
favored due to their balanced accuracy-speed performance,
which is crucial for developing real-time object detection
systems. Additionally, there are many lightweight variants of
these models suitable for resource-constrained devices like
FPGAs.

As a common technique employed in this context, different
quantization regimes have been adopted based on the avail-
able resources on the target FPGA device and the accuracy
required by the application of interest. The best-achieved
accuracy, processing speed (in FPS), and latency, as the most
relevant metrics for evaluating real-time object detection sys-
tems, are provided for each study. It is important to note
that the image resolution can affect system performance—the
larger the image size, the higher the achievable accuracy with
lower speed. Therefore, looking at the achieved pixel through-
put may help make a more meaningful and fair quantitative
comparison between the existing works. For this reason, the
reviewed works in Table 9 and 10 are sorted based on this
metric. Additionally, Figure 19 shows a comparison of the
reviewed works based on their pixel throughput performance.
Another critical metric is the achieved computational power,
or throughput, measured in Giga Operations Per Second
(GOPS). While FPS reflects the processing throughput from a
visual perspective, GOPS represents it from an architectural
standpoint. Knowing the working Frequency (Freq) is also
essential for a meaningful GOPS comparison. In addition,
power consumption and power efficiency are critical factors,
especially when developing systems for edge devices. Fig-
ure 20 shows the achieved power efficiency of the reviewed
works (if reported in the corresponding manuscript) to pro-
vide a visual comparison and facilitate analysis.

Table 10 specifically highlights the deployed FPGA de-
vices and the main development tools used in each work. All
studies here have relied on either AMD (formerly Xilinx) or
Intel (Altera) FPGA devices. This table also provides a report
on resource utilization and mentions the primary acceleration
techniques adopted in each study.

C. OPTIMIZATION STRATEGIES FOR REAL-TIME
PERFORMANCE
To develop a real-time object detection system on resource-
constrained devices such as FPGAs, it is essential to focus on
key metrics like throughput, latency, and accuracy. A detailed
review of these metrics within the context of this paper is
provided in Section II-C2.

As outlined in Section II-A, deep neural network (DNN)-
based models often provide the highest accuracy for object
detection tasks. However, these models are computationally
intensive, necessitating a careful balance between accuracy
and execution time, as discussed by Castells et al. [51]. This
balance becomes evenmore critical in hard real-time systems,
where meeting stringent timing requirements is essential for
safety and reliability.

Before adopting optimization techniques, discussed in Sec-
tion IV-B, it is crucial to select the appropriate hardware

architecture. Section III-C introduces two FPGA architec-
tures popular for developing object detection systems: single
computation engine and streaming architectures.
Among these, streaming architectures are more suitable

for real-time object detection due to their reduced memory
accesses, which enhance system speed and lower latency.
These architectures are also optimized to perform specific
tasks within each block, leveraging parallelism to boost per-
formance in object detection models [197]. However, this
level of optimization typically comes with higher hardware
costs compared to one-size-fits-all configurable engines.
The rapid development of deeper and more powerful ob-

ject detection models has shifted the focus from achieving
high accuracy to optimizing the performance of these models
on resource-constrained devices like FPGAs. Modern object
detection models tend to be computationally demanding and
require larger memory footprints, making performance opti-
mization a primary challenge.
To address these challenges, the typical workflow for

developing a real-time object detection system on FPGAs
involves simplifying and optimizing the chosen model. In
this regard, many works show the advantages of employing
Binarized Neural Networks (BNNs) [283] and Ternary Neu-
ral Networks (TNNs) [284] to achieve real-time inference
[15], [285]–[288]. BNNs [289] and TNNs [284] are two
types of neural networks in which the weights and activations
are quantized into two (-1,1) and three values (-1,0,1), respec-
tively.
However, compression and simplification techniques, such

as pruning and quantization, can result in accuracy degra-
dation. To mitigate this problem, retraining the compressed
models and utilizing knowledge distillation [222] are effec-
tive strategies. Mishra et al. [290] propose a method, called
Apprentice, which combines low-precision arithmetic with
knowledge distillation to achieve nearly the same accuracy
as the original model. Remarkably, this approach results in
less than a 1% accuracy loss compared to a 32-bit floating-
point model, even when employing ternary precision within
the ResNet architecture [121] on the ImageNet dataset [146].
In addition, a real-world object detection system com-

prises diverse components, some of which are best suited
for execution on a processor due to their sequential nature.
Considering this, adopting a hardware-software co-design
approach can facilitate the development of an optimal system
[67], [73], [291], [292]. This approach may become more
effective when combining hardware-aware NAS, discussed
in section IV-B. Adopting a co-design approach can enable
developers to design efficient object detection systems that
satisfy real-time constraints, including latency, throughput,
and accuracy, using FPGAs and FPGA-oriented system-on-
chip devices [192], [229].

VI. CHALLENGES AND FUTURE DIRECTIONS
A. EXISTING CHALLENGES
Seeking to enhance their accuracy, object detection models
are becoming increasingly larger and deeper with more com-
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FIGURE 19. Comparison of the reviewed works based on the achieved pixel throughput.

FIGURE 20. Comparison of the reviewed works based on their reported power efficiency (note: for some works power efficiency data is not available).
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plex architectures. Consequently, implementing such models
on FPGAs is challenging due to their limited memory and
computational resources. Furthermore, achieving real-time
performancewith these complexmodels is another significant
issue. As discussed, model simplification and compression
techniques can be employed to address this problem, albeit at
the expense of a drop in accuracy. Although the knowledge
distillation technique can mitigate the accuracy loss issue
[222], efficiently applying this method is not an easy task
[255]. Therefore, the first challenge is to make an object
detection model hardware-friendly while maintaining accept-
able model accuracy and speed to meet real-time constraints.

Developing FPGA-based object detection systems is a
complex and multifaceted procedure. It begins with develop-
ing a suitable model or modifying an existing one based on
the project requirements, leading up to the final hardware im-
plementation. Consequently, this process requires knowledge
from various areas (in both software and hardware) and the
ability to work with multiple tools to perform each part of
the development flow. For example, a designer may need to
work with an AI framework such as PyTorch (working with
Python), a high-level synthesis tool (working with C/C++),
an FPGA design tool like Vivado (working with HDL), and
some other software tools and programming languages de-
pending on the project. The important point is that in each
development phase, having comprehensive knowledge about
the subsequent steps is needed to design an efficient system.

Many efforts have been made to provide appropriate tools
to integrate this development process and reduce the need
for in-depth knowledge in all parts, especially concerning
hardware implementation [195], [196]. However, these tools
are typically designed to work with some predefined object
detection models for specific FPGA devices.

Consequently, the lengthy and challenging design process
remains one of the main challenges in this field, directly im-
pacting the time-to-market and, subsequently, the final price
of the system.

B. POSSIBLE FUTURE RESEARCH TRENDS
Naturally, addressing the existing challenges mentioned ear-
lier remains a primary research focus. As these challenges
evolve, the development of hardware-friendlymodels tailored
to FPGA architectures, accounting for their computational
and memory constraints, will likely remain a key direction.
Such models should aim to maximize the inherent parallelism
of FPGAs while minimizing resource utilization, leading to
better trade-offs between speed, accuracy, and power effi-
ciency. To this end, deeper exploration of co-design tech-
niques, such as Hardware-aware Neural Architecture Search
(HW-NAS) [227], can play a pivotal role. These approaches
could pave the way for automatic model optimization, poten-
tially enabling the deployment of more sophisticated detec-
tion models with less manual tuning.

A promising area is the creation of software tools that
can seamlessly integrate the design, optimization, and de-
ployment processes for FPGA-based object detection sys-

tems. Although tool development tends to be more com-
mercially driven, incorporating open-source initiatives and
academic collaborations could stimulate further innovation.
Additionally, the emergence of flexible hardware libraries
and parameterizable soft cores capable of executing diverse
object detection algorithms on a wide range of FPGA devices
could standardize and accelerate the development cycle. Such
efforts could emphasizemodularity, enabling rapid adaptation
to new FPGA platforms and model architectures without
extensive re-engineering.
The trend toward using distributed FPGA clusters for real-

time object detection is another area ripe for investigation.
Distributed configurations could unlock higher performance
and enable the design of fault-tolerant and scalable systems
suitable for hard real-time requirements [258]. Future studies
could explore novel frameworks for inter-node communica-
tion, computational task partitioning, and efficient scheduling
strategies. As object detection models continue to grow in
size and complexity, research on scalable data partitioning
schemes, latency minimization, and load balancing across
multiple FPGA nodes becomes increasingly vital. While
some initial studies [293]–[295] have explored these areas,
the field could benefit from more refined techniques to ad-
dress the demands of emerging high-performance detection
models.
The adoption of transformers in computer vision, partic-

ularly for object detection, has gained significant traction,
with transformer-based models showing performance that
rivals or surpasses that of conventional convolutional neural
networks (CNNs) [93], [110]. However, implementing these
models on FPGA platforms presents unique challenges due to
their complex architecture, extensive parameter sets, and sub-
stantial computational and storage requirements [94]. Thus,
more in-depth research is required to bridge the gap between
transformer-basedmodels’ capabilities and the hardware con-
straints of FPGA devices. Future studies could explore the
following directions to make FPGA-based transformer imple-
mentations feasible and efficient:

• Hardware-Friendly Transformer Architectures: De-
velopment of new transformer-based object detection
models optimized specifically for FPGA deployment,
focusing on reducing model complexity while maintain-
ing accuracy.

• Innovative Hardware Accelerator Designs: Creation
of specialized FPGA accelerators that match the unique
structural characteristics of transformers, such as self-
attention operations. These designs should emphasize
parallelism and custom data paths to minimize latency
and optimize resource usage. Furthermore, leveraging
reconfigurable hardware properties to allocate resources
for different transformer layers based on workload adap-
tively could improve overall system efficiency.

• Enhanced Dataflow Techniques: Efficient dataflow
management can significantly reduce memory access
and power consumption. Exploring new memory hierar-
chy designs, data compression techniques, and efficient
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caching strategies can enhance parameter sharing and
data reuse across the transformer’s layers. Furthermore,
research could focus on dynamic memory allocation
schemes tailored to transformer models to optimize on-
chip memory utilization.

Ultimately, the future of FPGA-based real-time object detec-
tion will likely involve a combination of approaches, from
the development of optimized hardware accelerators and soft-
ware tools to advancements in model co-design. As object
detection models become increasingly sophisticated, the field
must evolve to address the growing demands for higher accu-
racy, lower latency, and better energy efficiency. Researchers
will need to push the boundaries of both algorithmic and
hardware architecture innovations to meet these challenges,
setting the stage for breakthroughs in real-time object detec-
tion on FPGAs.

VII. CONCLUSION
Real-time object detection is a critical task in applications
such as autonomous vehicles and robotics. Key requirements
like low latency, high throughput, and acceptable accuracy,
tailored to the specific use case, underline the importance
of efficient system designs. FPGAs have emerged as a suit-
able platform for these systems, offering unique advantages
such as true parallelism, low and deterministic latency, high
throughput, and the ability to process images directly from
external imaging sources.

This paper provides a detailed review of the implemen-
tation and optimization techniques commonly employed in
FPGA-based real-time object detection systems.We have dis-
cussed the concepts of soft and hard real-time systems, the ad-
vancements in object detection algorithms, particularly one-
stage CNN-based architectures due to their ability to balance
speed and accuracy in real-time scenarios, and commonly
used evaluation metrics and datasets. Furthermore, we have
analyzed existing literature on FPGA-based implementations
and compared their performance using pixel throughput as a
fair metric.

Despite significant progress, several challenges persist,
such as integrating newer, computationally demanding object
detection models, efficiently utilizing FPGA resources, and
scaling designs to support higher-resolution video streams.
Addressing these challenges requires innovative hardware-
software co-design approaches, enhanced toolchains, and ex-
ploration of hybrid systems combining FPGAs with other
accelerators.

Despite significant progress, implementing real-time ob-
ject detection systems on FPGAs faces challenges such as
accommodating increasingly complex models within limited
hardware resources, maintaining real-time performance, and
managing the multifaceted development process requiring
expertise across software and hardware domains. Techniques
like model simplification and knowledge distillation offer
partial solutions but involve trade-offs in accuracy. Addi-
tionally, the lack of flexible, integrated design tools pro-
longs development cycles and impacts time-to-market. Ad-

dressing these issues demands advancements in hardware-
aware model optimization, streamlined toolchains, and mod-
ular hardware architectures to enable efficient, scalable, and
adaptable FPGA-based systems.
Future research may focus on optimizing hardware-

friendly models, advancing co-design techniques like HW-
NAS, and developing integrated software tools for efficient
design. Exploring distributed FPGA clusters, modular hard-
ware libraries, and specialized accelerators for transformer-
based models could improve scalability, accuracy, and per-
formance, enabling more efficient real-time systems across
diverse applications.
In summary, this paper aims to provide a consolidated

overview of the field, offering insights into state-of-the-
art techniques, comparative analyses, and guidance for re-
searchers working to leverage FPGA platforms for real-time
object detection. By addressing the challenges and opportuni-
ties highlighted, FPGA-based implementations can continue
to advance as a robust solution for meeting real-time applica-
tion requirements.

APPENDIX A
SOME GENERAL DEFINITIONS IN THE CONTEXT OF
OBJECT DETECTION METRICS
Measuring the Intersection over Union (IoU) is a popular way
to evaluate an object detector’s localization accuracy. Given
a ground truth Bounding box (Bbox), it calculates the ratio
of the common, or overlapped, area between the ground truth
Bbox and the predicted Bbox to the area of their union, as
illustrated in Figure 21. The greater the IoU ratio means the
more detection accuracy. By setting a threshold, e.g., IoU >
0.5, as done in [40], it can be determined how precisely the
object is localized.

FIGURE 21. Definition of Intersection over Union (IoU), calculated by
dividing the intersection of the predicted bounding box (Bbox) and
ground truth (GT) Bbox by the union of them.

Based on the calculated IoU and a pre-determined thresh-
old, some other metrics, such as precision and recall, can be
obtained. The IoU greater than or equal to the threshold value
indicates that the prediction is correct. It should be noted that
IoU is basically related to the localization aspect of object
detection tasks and is not directly related to classification.
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Given the real label and the predicted one for each object,
the prediction result can be classified as shown in Table 11.
Accordingly, accuracy, precision, and recall values are de-
fined as follows:

TABLE 11. Prediction result category in object detection models based on
the label provided by the dataset (real label).

Real Label Predicted Label Prediction Category

Positive Positive True Positive (TP)

Positive Negative False Negative (FN)

Negative Positive False Positive (FP)

Negative Negative True Negative (TN)

Accuracy :=
(TP+ TN )

(TP+ FP+ TN + FN )

Precision :=
TP

(TP+ FP)

Recall :=
TP

(TP+ FN )

Accuracy determines how accurately the model makes
predictions, showing the overall performance of the model.
However, this metric has a significant drawback: it performs
poorly with imbalanced data, where one class significantly
outnumbers the others [296].

Two alternatives for accuracy are ‘‘precision’’ and ‘‘re-
call,’’ which focus on ‘‘true positive’’ predictions. The former
represents how precisely the model can predict the positive
class, measuring the quality of the detection task, while the
latter, also known as ‘‘sensitivity’’, refers to the proportion
of ‘‘true positive’’ predictions to all positive instances in the
dataset. From another point of view, if we need to minimize
the false positive predictions, we should focus on improving
precision, while recall is more important when the ability to
predict all positives outweighs the detection accuracy.

The ‘‘F1 score’’, also known as the ‘‘balanced F-score’’
or ‘‘F-measure’’, provides a means to evaluate the trade-
off between recall and precision. Representing the harmonic
mean of precision and recall, it ranges from 0 (indicating
the worst value) to 1 (indicating the best value). The F1-
score disregards variations in confidence values, limiting its
utility to comparing object detectors solely at a predetermined
confidence threshold level [297].

F1 :=
2

1
Precision +

1
Recall

=

(2 ∗ Precision ∗ Recall)
(Precision+ Recall)

(6)

Average precision (AP) has recently emerged as the most
commonly utilized evaluation metric for detection tasks [30].
AP can be derived by calculating the area under the precision

and recall curve (PR Curve). In other words, it indicates the
average precision values across all recall values ranging from
0 to 1.
Widely utilized in computer vision, AP serves as a popular

evaluation measure for assessing the prediction accuracy of
object detection models [45]. AP can be assessed across var-
ious IoU threshold ranges. For instance, it can be computed
for 10 IoU values ranging from 50% to 95%, with increments
of 5%, typically denoted as ‘‘AP@50:5:95’’. Additionally, it
can be evaluated at specific IoU thresholds, commonly 50%
and 75% denoted as ‘‘AP50’’ and ‘‘AP75’’ respectively [34].

APPENDIX B
ROOFLINE MODEL
In this visual model, the peak computational performance
provided by the hardware platform and themaximum off-chip
memory bandwidth are the two critical factors for estimating
the attainable performance [273].
The equation 7, represents a ‘‘roofline’’-type curve on the

Cartesian plane where the X-axis is the Operational Inten-
sity (OI) or Compute-To-Communication (CTC) measured
in Floating Point Operations per Byte or just Operations per
Byte [203] and the Y-axis represents the computational per-
formance measured in Floating Point Operations per second
or just Operations per second (Figure 22).

AchievablePerformance =

min

{
PeakComputationalPerformance
PeakMemoryBandwidth× CTC

(7)

FIGURE 22. The Roofline model.

In the Roofline model, an application’s performance can be
represented as a point on a Cartesian plane, which visualizes
the distance between the actual performance and the obtain-
able one.
In an application, the CTC ratio, also known as operational

intensity, represents the ratio of the total number of executed
operations to the amount of data transferred to and from
external memory and can be measured as operation per byte
(op/Byte) or floating point operation per Byte (Flops/Byte).
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The performance of the application is calculated at run time
while executing it.

The roofline constrains the achievable performance, de-
lineating the figure into two distinct regions: memory-bound
and compute-bound areas. The ridge point, also known as
the machine balance point, highlighted in Figure 22, is at
the intersection between the diagonal and horizontal lines.
Applications with CTC ratios on the left side of the ridge
point are considered ‘‘memory-bound’’, indicating that the
system cannot efficiently utilize all computational resources
due to limited off-chip communication. On the other hand,
applications with a CTC ratio on the right side of the ridge
point are referred to as ‘‘compute-bound’’.

If the application is memory-bound, optimizing memory
inefficiencies is often a fruitful strategy, focusing on factors
such as memory access pattern, data locality, and cache reuse
[273], [275], [298]. If the application is compute-bound, the
bottleneck lies in the computational power or efficiency of
the accelerator. In this case, applying some optimization tech-
niques such as loop unrolling and loop reordering may help
[273].
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[221] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model
compression. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 535–541,
2006.

[222] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[223] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression
via distillation and quantization. arXiv preprint arXiv:1802.05668, 2018.

[224] Lit-Yang Liew and Sheng-De Wang. Object detection edge performance
optimization on fpga-based heterogeneous multiprocessor systems. In
2022 IEEE International Conference on Consumer Electronics (ICCE),
pages 1–6. IEEE, 2022.

[225] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, and Jason Cong.
Caffeine: Towards uniformed representation and acceleration for deep
convolutional neural networks. In Proceedings of the ACM Turing Award
Celebration Conference-China 2023, pages 47–48, 2023.

[226] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C Ling, and
Gordon R Chiu. An opencl™ deep learning accelerator on arria 10. In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 55–64, 2017.

[227] Krishna Teja Chitty-Venkata and Arun K Somani. Neural architec-
ture search survey: A hardware perspective. ACM Computing Surveys,
55(4):1–36, 2022.

[228] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail
Niar, Martin Wistuba, and Naigang Wang. A comprehensive sur-
vey on hardware-aware neural architecture search. arXiv preprint
arXiv:2101.09336, 2021.

[229] Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, Qingfeng Zhuge,
Yiyu Shi, and Jingtong Hu. Accuracy vs. efficiency: Achieving both
through FPGA-implementation aware neural architecture search. In
Proceedings of the 56th Annual Design Automation Conference 2019,
pages 1–6, 2019.

[230] Liqiang Lu, Yun Liang, Qingcheng Xiao, and Shengen Yan. Evaluating
fast algorithms for convolutional neural networks on FPGAs. In 2017
IEEE 25th annual international symposium on field-programmable cus-
tom computing machines (FCCM), pages 101–108. IEEE, 2017.

[231] Bing Liu, Danyin Zou, Lei Feng, Shou Feng, Ping Fu, and Junbao Li.
An FPGA-based cnn accelerator integrating depthwise separable convo-
lution. Electronics, 8(3):281, 2019.

[232] Hongbo Zhang, Jiaqi Jiang, Yunhao Fu, and Yuchun Chang. Yolov3-tiny
object detection soc based on FPGA platform. In 2021 6th International
Conference on Integrated Circuits and Microsystems (ICICM), pages
291–294. IEEE, 2021.

[233] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. Advances in neural
information processing systems, 28, 2015.

[234] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[235] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery
for efficient dnns. Advances in neural information processing systems,
29, 2016.

[236] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Ma-
honey, and Kurt Keutzer. A survey of quantization methods for efficient
neural network inference. In Low-Power Computer Vision, pages 291–
326. Chapman and Hall/CRC, 2022.

[237] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage.
Advances in neural information processing systems, 2, 1989.

[238] Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead:
A far-sighted alternative of magnitude-based pruning. arXiv preprint
arXiv:2002.04809, 2020.

[239] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Autoprune: Au-
tomatic network pruning by regularizing auxiliary parameters. Advances
in neural information processing systems, 32, 2019.

42 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3544515

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Hozhabr and Giorgi: A Survey on Real-Time Object Detection on FPGAs

[240] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep
neural networks.(2019). arXiv preprint cs.LG/1902.09574, 2019.

[241] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection
for deep neural networks. In Proceedings of the European conference on
computer vision (ECCV), pages 304–320, 2018.

[242] Jian-Hao Luo, Jianxin Wu, andWeiyao Lin. Thinet: A filter level pruning
method for deep neural network compression. In Proceedings of the IEEE
international conference on computer vision, pages 5058–5066, 2017.

[243] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. What is the state of neural network pruning? Proceedings of
machine learning and systems, 2:129–146, 2020.

[244] Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M
Roy, and Ali Ramezani-Kebrya. Adaptive gradient quantization for
data-parallel sgd. Advances in neural information processing systems,
33:3174–3185, 2020.

[245] Brian Chmiel, Liad Ben-Uri, Moran Shkolnik, Elad Hoffer, Ron Banner,
and Daniel Soudry. Neural gradients are near-lognormal: improved
quantized and sparse training. arXiv preprint arXiv:2006.08173, 2020.

[246] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE journal of solid-state circuits, 52(1):127–138,
2016.

[247] Gaofeng Zhou, Jianyang Zhou, and Haijun Lin. Research on nvidia deep
learning accelerator. In 2018 12th IEEE International Conference on Anti-
counterfeiting, Security, and Identification (ASID), pages 192–195. IEEE,
2018.

[248] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han,
Youngjun Kwak, Sung Ju Hwang, and Changkyu Choi. Learning to
quantize deep networks by optimizing quantization intervals with task
loss. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4350–4359, 2019.

[249] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-entropy-
based quantization for deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5456–
5464, 2017.

[250] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization
for training and inference of neural networks. In Proceedings of the
EuropeanConference onComputer Vision (ECCV), pages 580–595, 2018.

[251] Frederick Tung and Greg Mori. Clip-q: Deep network compression
learning by in-parallel pruning-quantization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7873–
7882, 2018.

[252] Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M Sabry Aly, and Jie
Lin. Opq: Compressing deep neural networks with one-shot pruning-
quantization. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pages 7780–7788, 2021.

[253] Hongyang Liu, Sara Elkerdawy, Nilanjan Ray, and Mostafa Elhoushi.
Layer importance estimation with imprinting for neural network quanti-
zation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2408–2417, 2021.

[254] Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios
Georgiadis, and Joseph H Hassoun. Post-training piecewise linear quan-
tization for deep neural networks. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pages 69–86. Springer, 2020.

[255] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao.
Knowledge distillation: A survey. International Journal of Computer
Vision, 129(6):1789–1819, 2021.

[256] Md Maruf Hossain Shuvo, Syed Kamrul Islam, Jianlin Cheng, and
Bashir I Morshed. Efficient acceleration of deep learning inference on
resource-constrained edge devices: A review. Proceedings of the IEEE,
111(1):42–91, 2022.

[257] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. A brief survey of deep reinforcement learning. arXiv
preprint arXiv:1708.05866, 2017.

[258] Chenghao Wang and Zhongqiang Luo. A review of the optimal design of
neural networks based on FPGA. Applied Sciences, 12(21):10771, 2022.

[259] Shayan Moini, Bijan Alizadeh, Mohammad Emad, and Reza Ebrahim-
pour. A resource-limited hardware accelerator for convolutional neural
networks in embedded vision applications. IEEE Transactions on Circuits
and Systems II: Express Briefs, 64(10):1217–1221, 2017.

[260] Aleksandar Beric, Jef van Meerbergen, Gerard de Haan, and Ramanathan
Sethuraman. Memory-centric video processing. IEEE Transactions on
Circuits and Systems for Video Technology, 18(4):439–452, 2008.

[261] Shmuel Winograd. Arithmetic complexity of computations, volume 33.
Siam, 1980.

[262] Henri J Nussbaumer. The Fast Fourier Transform. Springer, 1982.
[263] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural

networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4013–4021, 2016.

[264] Anouar Nechi, Lukas Groth, Saleh Mulhem, Farhad Merchant, Rainer
Buchty, and Mladen Berekovic. FPGA-based deep learning inference ac-
celerators: Where are we standing? ACM Transactions on Reconfigurable
Technology and Systems, 16(4):1–32, 2023.

[265] Rui Xu, Sheng Ma, Yaohua Wang, Yang Guo, Dongsheng Li, and Yu-
ran Qiao. Heterogeneous systolic array architecture for compact cnns
hardware accelerators. IEEE Transactions on Parallel and Distributed
Systems, 33(11):2860–2871, 2021.

[266] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing
loop operation and dataflow in FPGA acceleration of deep convolutional
neural networks. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 45–54, 2017.

[267] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. An automatic
rtl compiler for high-throughput FPGA implementation of diverse deep
convolutional neural networks. In 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–8. IEEE,
2017.

[268] Chaoyang Zhu, Kejie Huang, Shuyuan Yang, Ziqi Zhu, Hejia Zhang, and
Haibin Shen. An efficient hardware accelerator for structured sparse
convolutional neural networks on FPGAs. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 28(9):1953–1965, 2020.

[269] Sparsh Mittal. A survey of FPGA-based accelerators for convolutional
neural networks. Neural computing and applications, 32(4):1109–1139,
2020.

[270] Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu, and Han-qing Lu.
Recent advances in efficient computation of deep convolutional neural
networks. Frontiers of Information Technology&Electronic Engineering,
19:64–77, 2018.

[271] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer cnn accelerators. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[272] Yu Xing, Shuang Liang, Lingzhi Sui, Zhen Zhang, Jiantao Qiu, Xijie Jia,
Xin Liu, Yushun Wang, Yi Shan, and Yu Wang. Dnnvm: End-to-end
compiler leveraging operation fusion on FPGA-based cnn accelerators. In
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 187–188, 2019.

[273] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an
insightful visual performance model for multicore architectures. Commu-
nications of the ACM, 52(4):65–76, 2009.

[274] Marco Siracusa, Lorenzo Di Tucci, Marco Rabozzi, Samuel Williams,
Emanuele Del Sozzo, and Marco D Santambrogio. A cad-based method-
ology to optimize hls code via the roofline model. In Proceedings of
the 39th International Conference on Computer-Aided Design, pages 1–
9, 2020.

[275] Bruno Da Silva, An Braeken, Erik H D’Hollander, and Abdellah Touhafi.
Performance modeling for FPGAs: extending the roofline model with
high-level synthesis tools. International Journal of Reconfigurable Com-
puting, 2013:7–7, 2013.

[276] Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres Takach.
An introduction to high-level synthesis. IEEE Design & Test of Comput-
ers, 26(4):8–17, 2009.

[277] Enrico Calore and Sebastiano Fabio Schifano. Performance assessment
of FPGAs as hpc accelerators using the FPGA empirical roofline. In
2021 31st International Conference on Field-Programmable Logic and
Applications (FPL), pages 83–90. IEEE, 2021.

[278] Guoqing Li, Jingwei Zhang, Meng Zhang, and Henk Corporaal. An
efficient FPGA implementation for real-time and low-power uav object
detection. In 2022 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1387–1391. IEEE, 2022.

[279] Pipelining. https://www.intel.com/content/www/us/en/docs/
oneapi-fpga-add-on/optimization-guide/2023-1/pipelining-001.html.
(Accessed on 03/29/2024).

[280] Xiaowei Xu, Xinyi Zhang, Bei Yu, Xiaobo Sharon Hu, Christopher
Rowen, Jingtong Hu, and Yiyu Shi. Dac-sdc low power object detection
challenge for uav applications. IEEE transactions on pattern analysis and
machine intelligence, 43(2):392–403, 2019.

VOLUME 11, 2023 43

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3544515

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Hozhabr and Giorgi: A Survey on Real-Time Object Detection on FPGAs

[281] François Chollet. Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1251–1258, 2017.

[282] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and
Marian Verhelst. Zigzag: Enlarging joint architecture-mapping design
space exploration for dnn accelerators. IEEE Transactions on Computers,
70(8):1160–1174, 2021.

[283] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. Advances in neural informa-
tion processing systems, 29, 2016.

[284] HandeAlemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot.
Ternary neural networks for resource-efficient ai applications. In 2017
international joint conference on neural networks (IJCNN), pages 2547–
2554. IEEE, 2017.

[285] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-
net: Training deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization framework.
Neural Networks, 100:49–58, 2018.

[286] Mohammad Ghasemzadeh, Mohammad Samragh, and Farinaz Koushan-
far. Rebnet: Residual binarized neural network. In 2018 IEEE 26th an-
nual international symposium on field-programmable custom computing
machines (FCCM), pages 57–64. IEEE, 2018.

[287] Dominika Przewlocka-Rus, Syed Shakib Sarwar, H Ekin Sumbul,
Yuecheng Li, and Barbara De Salvo. Power-of-two quantization for
low bitwidth and hardware compliant neural networks. arXiv preprint
arXiv:2203.05025, 2022.

[288] Tian Xia, Boran Zhao, Jian Ma, Gelin Fu, Wenzhe Zhao, Nanning Zheng,
and Pengju Ren. An energy-and-area-efficient cnn accelerator for uni-
versal powers-of-two quantization. IEEE Transactions on Circuits and
Systems I: Regular Papers, 70(3):1242–1255, 2022.

[289] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural net-
works with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[290] Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy. arXiv preprint
arXiv:1711.05852, 2017.

[291] Jude Haris, Perry Gibson, José Cano, Nicolas Bohm Agostini, and David
Kaeli. Secda: Efficient hardware/software co-design of FPGA-based
dnn accelerators for edge inference. In 2021 IEEE 33rd International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 33–43. IEEE, 2021.

[292] Afzal Ahmad, Muhammad Adeel Pasha, and Ghulam Jilani Raza. Ac-
celerating tiny yolov3 using FPGA-based hardware/software co-design.
In 2020 IEEE international symposium on circuits and systems (ISCAS),
pages 1–5. IEEE, 2020.

[293] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason
Cong. Energy-efficient cnn implementation on a deeply pipelined FPGA
cluster. In Proceedings of the 2016 International Symposium on Low
Power Electronics and Design, pages 326–331, 2016.

[294] Yasuyu Fukushima, Kensuke Iizuka, and Hideharu Amano. Parallel
implementation of cnn on multi-FPGA cluster. IEICE TRANSACTIONS
on Information and Systems, 106(7):1198–1208, 2023.

[295] Yasuyu Fukushima, Kensuke Iizuka, and Hideharu Amano. Parallel
implementation of vision transformer on a multi-FPGA cluster. In
2023 Eleventh International Symposium on Computing and Networking
(CANDAR), pages 100–106. IEEE, 2023.

[296] Fadi Thabtah, Suhel Hammoud, Firuz Kamalov, and Amanda Gonsalves.
Data imbalance in classification: Experimental evaluation. Information
Sciences, 513:429–441, 2020.

[297] Rafael Padilla, Wesley L Passos, Thadeu LB Dias, Sergio L Netto, and
Eduardo ABDa Silva. A comparative analysis of object detection metrics
with a companion open-source toolkit. Electronics, 10(3):279, 2021.

[298] Marco Siracusa, Emanuele Del Sozzo, Marco Rabozzi, Lorenzo Di Tucci,
Samuel Williams, Donatella Sciuto, andMarco Domenico Santambrogio.
A comprehensivemethodology to optimize FPGA designs via the roofline
model. IEEE Transactions on Computers, 71(8):1903–1915, 2021.

SEYED HANI HOZHABR received the B.S. de-
gree from the University of Applied Science and
Technology in electronic engineering and M.S.
degrees in electrical engineering-electronics from
Malek-Ashtar University of Technology, Tehran,
Iran. He is currently working toward a PhD degree
in information engineering and science at the Uni-
versity of Siena, Siena, Italy. Since 2022, he has
been actively collaborating with the Computer Ar-
chitecture Lab as a researcher. His current research

interests include hardware implementation, FPGA-based AI accelerators,
and SoC design for vision applications.

ROBERTO GIORGI (M’88–SM’04) Roberto
Giorgi is an Associate Professor at the Depart-
ment of Information Engineering, University of
Siena, Italy (qualified for Full Professorship). He
received his PhD in Computer Engineering and
his Master in Electronics Engineering, Summa
cum Laude both from the University of Pisa,
Italy. He has been the coordinator of a 4-year Fu-
ture and Emerging Technology European project
(TERAFLUX), coordinator of a 3-year H2020

project (AXIOM), Workpackage leader of the Embedded Reconfigurable
Architecture project, deputy steering committee member in HiPEAC (High-
Performance Embedded-system Architecture and Compiler), participating
in SARC (Scalable ARChitectures). He participated in the ChARM project,
developing software for performance evaluation of ARM-processor-based
embedded systems with cache memory. He has been selected by the Eu-
ropean Commission as an ICT/HPC independent expert. He is the author
of more than 130 scientific papers. His current interests include Computer
Architecture themes such as Embedded Systems, Multiprocessors, Memory
System Performance, Workload Characterization, and Reconfigurable Com-
puting. He is a Lifetime member of ACM and a Senior Member of the IEEE,
IEEE Computer Society.

44 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3544515

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Hozhabr and Giorgi: A Survey on Real-Time Object Detection on FPGAs

VOLUME 11, 2023 45

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3544515

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


