
Comparing Execution Performance of Scheduled Dataflow With RISC Processors

Krishna M. Kavi
Roberto Giorgi

And
Joseph Arul

The University of Alabama in Huntsville

Abstract
In this paper we describe a new approach to

designing multithreaded architecture that can be used
as the basic building blocks in high-end computing
architectures. Our architecture uses non-blocking
multithreaded model based on dataflow paradigm. In
addition, all memory accesses are decoupled from the
thread execution. Data is pre-loaded into the thread
context (registers), and all results are post-stored
after the completion of the thread execution. The
decoupling of memory accesses from thread
execution requires a separate unit to perform the
necessary pre-loads and post-stores, and to control
the allocation of hardware thread contexts to the
enabled threads. The non-blocking nature of threads
reduces the number of context switches, thus
reducing the overhead in scheduling threads. Our
functional execution paradigm eliminates complex
hardware required for dynamic scheduling of
instructions used in modern superscalar architectures.
We will present our preliminary results obtained from
an instruction set simulator using several benchmark
programs. We compare the execution of our
architecture with that of MIPS architecture as
facilitated by DLX simulator.

Key Words. Multithreaded architectures, Dataflow
architectures, Superscalars, Decoupled Architectures.

1. Introduction
The performance gap between processors and

memory has widened in the past few years and the
trend appears to continue in the foreseeable future.
Multithreading has been touted as the solution to
minimize the loss of CPU cycles by executing several
instruction streams simultaneously. While there are
several different approaches to multithreading, there
is a consensus that multithreading, in general,
achieves higher instruction issue rates in processors
that contain multiple functional units (e.g.,
superscalars and VLIW) or multiple processing
elements (i.e., Chip Multiprocessors) [2, 10, 11, 16,
17].

It is necessary to find an appropriate
multithreaded model and implementation to achieve

the best possible performance. We believe that the
use of non-blocking dataflow based threads are
appropriate for improving the performance of
superscalar architectures. Dataflow ideas are often
utilized in most modern processor architectures.
However, these architectures rely on conventional
programming paradigms and require complex
runtime transformation of the control-flow programs
into dataflow programs. This necessitates complex
hardware to detect data and control hazards
(renaming of registers and branch prediction), reorder
and issue multiple instructions.

Our architecture differs from other multithreaded
architectures in two ways: i) our programming
paradigm is based on dataflow, and ii) complete
decoupling of all memory accesses from execution
pipeline. The underlying dataflow and non-blocking
models of execution permit a clean separation of
memory access (which is very difficult to coordinate
in other programming models). Data is pre-loaded
into an enabled thread's register context prior to its
scheduling on the execution pipeline. After a thread
completes execution, the results are post-stored from
its registers into memory. Previously we used
queuing models and mean value analyses to compare
our architecture with conventional RISC processors
and other decoupled systems [8,9]. Now, we have
developed an instruction level simulator1. In this
paper, we report our initial execution performance of
SDF using the simulator We compared our
architecture with a conventional scalar RISC
processors using DLX simulator [6].

2.Related Research And Background
2.1. Decoupling Memory Accesses From Execution

Pipeline
Decoupling memory accesses from the execution

pipeline in order to overcome the ever-increasing
processor-memory communication cost was first
introduced in [14]. Advances in cache memory
technologies made the decoupling unnecessary at that

1 A complete instruction set specification (for both
EP and SP) can be found in [3].

time. Moreover, control-flow model of conventional
architectures presented difficulties in coordinating the
instructions for Access and Execute units. The gap
between processor speed and average memory access
time is once again the major limitation in achieving
high performance. Decoupled architectures,
particularly when combined with multithreaded
models may again present a solution in leaping over
the “memory wall”. Recently, a similar concept was
the major guideline in the design of Rhamma [5]. A
comparison (using analytical models) of our
architecture with Rhamma can be found in [8,9].
2.2. Dataflow Model and Architectures

The dataflow model and architecture have been
studied for more than two decades and held the
promise of an elegant execution paradigm with the
ability to exploit inherent parallelism in applications.
However, the actual implementations of the model
have failed to deliver the promised performance.
Nevertheless, several features of the dataflow
computational model have found their place in
modern processor architectures and compiler
technology (e.g., Static Single Assignment, register
renaming, dynamic scheduling and out-of-order
instructions execution, I-structure like
synchronization, non-blocking threads). Most
modern processors utilize complex hardware
techniques to detect data and control hazards, and
dynamic parallelism -- to bring the execution engine
closer to an idealized dataflow engine.

There have been several hybrid architectures
proposed where the dataflow scheduling was applied

only at thread level (i.e., macro-dataflow) with
conventional control-flow instructions comprising
threads (e.g., [4, 7, 13]). In such systems, the
instructions within a thread do not retain functional
properties, and introduce side effects, WAW and
WAR dependencies. Not preserving dataflow
properties at instruction level requires complex
hardware for the detection of data dependencies and
dynamic scheduling of instructions. A comparison of
our architecture with a hybrid architecture EARTH
[7] using analytical models was reported in [8,9].

3. Decoupled Scheduled Dataflow
Architecture

Our architecture consists of two processing units:
Synchronization Pipeline (SP) and Execution
Pipeline (EP). SP is responsible for scheduling
enabled threads on EP, pre-loading thread context
(i.e., registers) with data from the thread’s Frame
memory, and post-storing results from a completed
thread’s registers in Frame memories of destination
threads. A thread is enabled when all its inputs are
received: the number of inputs is designated by its
synchronization count, and the input data is stored in
its Frame memory. The EP performs thread
computations including integer and floating point
arithmetic operations. In this section we will describe
the two processing units in more detail.
3.1. Execution Pipeline

Figure 2 shows the block diagram of the
Execution Pipeline (EP).

__

Instruction
Fetch Unit

Decode
Unit

Execute
Unit

Write-Back
Unit

PC

Reg . Context Register Sets

Instruction
Cache

Pre-Loaded
Threads

Figure 2. General Organization of Execution Pipeline (EP).
__

Instruction fetch unit behaves like a traditional
fetch unit, relying on a program counter to fetch the
next instruction2. We rely on compile time analysis
to produce the code for EP so that instructions can be

2 Since both EP and SP need to execute instructions,
our instruction cache is assumed to be dual ported.

executed in sequence and assured that the data for the
instruction is already available in its pair of source
registers (or can be forwarded within the pipeline
from preceding instructions). The information in the
Register context can be viewed as a part of the thread
continuation: <ip, fp>, where fp refers to a register
set assigned to the thread during its execution.
Decode (and register fetch) unit obtains a pair of

registers that contains the two source operands for the
instruction. Execute unit executes the instruction and
sends the results to write-back unit along with the
destination register numbers. Write-back unit writes
two values to the register file.

As can be seen, the Execution Pipeline (EP)
behaves more like a conventional pipeline while
retaining the primary dataflow properties; data flows
from instruction to instruction. Moreover, the EP
does not access data cache memory, and hence
require no pipeline stalls (or context switches) due to
cache misses.
3.2. Synchronization Pipeline

 Figure 3 shows the organization of the primary
pipeline of the Synchronization Processor (SP). Here
we deal mostly with pre-load and post-store
instructions. The pipeline consists of the following

stages: Instruction Fetch unit fetches an instruction
belonging to the current thread using PC. Decode
unit decodes the instruction and fetches register
operands (using Register Context). Effective Address
unit computes effective address for memory access
instructions. LOAD and STORE instructions only
reference the Frame memories of threads, using a
frame-pointer (FP) and an offset into the frame —
both the frame-pointer and the offset are contained in
registers. Memory Access unit completes LOAD and
STORE instructions. Pursuant to a post-store, the
synchronization count of a thread is decremented.
Execute unit decrements synchronization counts.
When the count becomes zero, the thread is moved to
enabled list for pre-load and subsequent execution on
EP. Finally, Write-Back unit completes LOAD (pre-
load).

__

Instruction
Fetch Unit

Decode
Unit

Execute
Unit

Write-Back
Unit

PC

Reg . Context Register Sets

Instruction
Cache

Enabled
Threads

Effective
Address Unit

Data Cache

Post-Store
Threads

Memory
Access Unit

Figure 3. The Synchronization Pipeline.
__

In addition to accessing memory (for pre-load and
post-store), Synchronization Pipeline (SP) holds
thread continuations awaiting inputs and allocates
register contexts for enabled threads. In our
architecture a thread is created using a FALLOC
instruction. FALLOC instruction creates a frame and
stores instruction pointer (IP) of the thread and its
synchronization count (Synch Count) indicating the
number of inputs needed to enable the thread. When
a thread completes its execution and "post-stores"
results (performed by SP), the synchronization counts
of awaiting threads are modified.

An enabled thread is scheduled by allocating a
register context to it, and "pre-loading" the registers
from its Frame memory. In order to speed up frame
allocation, SP pre-allocates fixed sized frames for
threads and maintains a stack of indexes pointing to
the available frames. The Execution processor (EP)
pops an index from the stack and uses it as the
address of the frame (i.e., FP) in response to a
FALLOC instruction. SP pushes de-allocated frames
when executing FFREE instruction subsequent to
post-stores of completed threads. The register sets

(Reg. Context) are viewed as circular buffers for
assigning (and de-allocating) to enabled threads.
These policies permit for fast context switch and
creation of threads. A thread moves from "pre-load"
status (at SP), to "execute" status (at EP) and finishes
in "post-store" status (at SP). We use FORKSP to
move a thread from EP to SP and FORKEP to move
a thread from SP to EP. FALLOC and FFREE take 2
cycles in our architecture. FORKEP and FORKSP
take 4 cycles to complete. This number is based on
the observations made in Sparcle [1] that a 4-cycle
context switch can be implemented in hardware.
Figure 4 shows a more complete view of the SP.

The scheduler unit is responsible for determining
when a thread becomes enabled and allocating a
register context to the enabled thread. Scheduler will
also be responsible in scheduling preload and post-
store threads on multiple SP’s and preloaded threads
on multiple EP’s in superscalar implementations of
our architecture. We are currently developing the
superscalar implementation of SDF. Note the
scheduling is at thread level in our system, rather
than at instruction level.

Notice how a thread is identified differently
during its life cycle. Initially, when a thread is
created, a frame is allocated. Such a thread (called
Waiting) will be identified by a Frame Pointer (FP),
an Instruction Pointer (IP) that points to the first
instruction of the thread, usually a pre-load
instruction, and a synchronization count (Synch
Count) indicating the number of inputs needed before
the thread is enabled for execution. When the
synchronization count becomes zero, the thread is
moved to the Enabled list, following the allocation of
a Register Context. At this time, the thread is
identified by a FP, a Reg. Context, and IP. Once a

thread completes the "pre-load" phase, it is moved to
the Pre-Loaded list and handed off to the Execution
Processor (EP). At this time, Register Context and
the Instruction Pointer identify threads. The IP will
now point to the first instruction beyond the pre-load
(referring to the first executable instruction). After
EP completes the execution of a thread, the thread is
then moved to the Post-Store list and handed off to
the SP for post-storing (by executing FORKSP
instruction). At this time a Register Context and an
IP identify the thread. The IP points to the first post-
store instruction.

__

P o s t - S t o r eT h r e a d s

Waiting T h r e a d s

Avai lab le
F r a m e s

Scheduler

Enabled Threads

FP Reg. Context IP

Preloaded Threads

SP Pipeline
Priority
Control

IPReg. Context

FP IP Synch Count

Figure 4. Overall Organization of the SP.
__

4. Evaluation of the Decoupled Scheduled
Dataflow Architecture

Initially, we relied on analytical models and
Monte Carlo simulations to compare the proposed
architecture with Rhamma [5], ETS [12], a hybrid
architecture [7] and conventional RISC processors
[8,9]. More recently we developed an instruction
level simulator for Scheduled Dataflow architecture.
At present the simulator assumes a perfect cache.
Using the simulator we were able to compare
performance of the Scheduled Dataflow system with
a single threaded RISC architecture. Our aim is to
evaluate the benefits of separating memory accesses
from execution pipeline: hence we use an architecture
where a single pipeline executes all instructions
including memory accesses to compare with our
decoupled system. In the near future we will extend
our studies to compare SDF with recent
multithreaded and superscalar architectures.
4.1 Execution Performance Of Scheduled Dataflow.

In this section we compare the execution cycles
required for Scheduled Dataflow with those for a

conventional RISC system using DLX simulator [6].
The programs used for this comparison include a
recursive Fibonacci program, Matrix Multiply,
Livermore Kernel 5 and a code segment for picture
zooming application [15]. We used dlxcc to generate
DLX code in our comparisons. We equate a thread in
SDF with a function in DLX -- if a SDF thread
executes 5 (unrolled) loop iterations, so does the
equivalent DLX function. The results are shown in
Table 1.

We used a degree of 5 unrolling for Matrix
multiply, Livermore Loop 5 and Zoom; we also used
5 (concurrent) threads for these 3 programs in SDF.
In both platforms, we assumed one cycle per
arithmetic and memory access instructions. However,
if memory access requires more than one cycle
(realistic caches with cache misses) we feel our
multithreading will lead to even better performance
than conventional single threaded system. As can be
seen from Table 1, SDF system outperforms MIPS
architecture when the program exhibits greater
parallelism (e.g., Matrix Multiply, Zoom and

Livermore Loop 5). Livermore loop exhibits less
parallelism than Matrix Multiply due to a loop
carried dependency. Zoom exhibits moderate
parallelism; however, a significant serial fraction (in
the outer loop) exists, limiting the speed-up
(Amdahl's law).

SDF underperforms when the program exhibits
little parallelism (e.g. Fibonacci). This is in line with
general acceptance that multithreaded architectures
are not very effective for sequential (or single
threaded) applications. The speed achieved for
Matrix multiply really surprised us. Part of the speed
up is because of the multithreading, partly due to the
decoupling of memory accesses and partly due to
lack of any pipeline stalls (due to the non-blocking
dataflow model). Due to data dependencies
encountered by DLX (from Load to ALU ops), more
cycles were wasted. In addition, since SDF threads
are equated to functions in DLX, and since DLX used
stack for exchanging data, this may have caused

some unnecessary memory accesses in DLX. It is
satisfying to note that it is possible to design non-
blocking, fine-grained multithreaded architectures
with completely decoupled memory accesses, and
achieve scalable performance. Our architecture incurs
unavoidable overheads for creating threads
(allocation of frames, allocation of register contexts)
and transferring threads between SP and EP
(FORKEP and FORKSP instructions). At present,
data can only be exchanged between threads by
storing them in threads' frames (memory). These
memory accesses can be avoided by storing the
results of a thread directly into another thread's
register context. Our experiments show that Matrix
Multiply needs 11, 9, 8, 7, 6 when using 5, 4, 3, 2 and
1 concurrent thread, respectively. For this
application, we could have eliminated storing (and
loading) thread data in memory by allocating all
frames directly in register sets (by providing
sufficient register sets in hardware).

Table 1. Execution Behavior Of Scheduled Dataflow
Matrix Multiply(size N*N)
N DLX SDF Speed
 Cycles Cycles UP

 Zoom (PX*PY*C)
Size DLX SDF Speed
 Cycles Cycles UP

 Livermore 5
Size DLX SDF Speed
 Cycles Cycles UP

 Fibonacci
N DLX SDF Speed
 Cycles Cycles UP

25 966090 336153 2.87
50 7273390 2434753 2.99
75 2.4E+07 7938353 3.02
100 5.8E+07 18489453 3.14

5*5*4 10175 9661 1.05
10*10*4 40510 37421 1.08
15*15*4 97945 83331 1.17
20*20*4 161580 147391 1.09
25*25*4 271175 229601 1.18
30*30*4 391150 329961 1.19
35*35*4 532285 448471 1.19
40*40*4 645520 585131 1.10

 50 87359 56859 1.54
100 354659 215579 1.65
150 801959 476299 1.68
200 1E+06 839019 1.70
250 2E+06 1E+06 1.72
300 3E+06 2E+06 1.72
350 4E+06 3E+06 1.72
400 6E+06 3E+06 1.73
450 7E+06 4E+06 1.74

5 615 842 0.730
10 7014 10035 0.699
15 77956 111909 0.697
20 864717 1E+06 0.696
25 9590030 1E+07 0.696
30 1.1E+08 2E+08 0.696

At this time we do not know if SDF performs
better than a more recent RISC superscalar processor
with dynamic instruction scheduling (i.e., out of
order instruction issue and completion, predicated
instructions). However, SDF system eliminates the
need for complex hardware required for dynamic
instruction scheduling. The hardware savings can be
used to include additional register-sets, which can
help in an increased degree of thread parallelism and
thread granularities.
4.2.. Thread Level Parallelism

Here we will explore the performance benefits of
increasing the thread level parallelism (i.e., number
of concurrent threads). We used the Matrix Multiply
for this purpose. We executed a 50*50 matrix
multiply by varying the number of concurrent
threads. Each thread executed five (unrolled) loop
iterations. The results are shown in Figure 5. As can

be expected, increasing the degree of parallelism will
not always decrease the number of cycles needed in a
linear fashion. This is due to the saturation of both
the Synchronization and the Execution Pipeline
(reaching nearly 80% utilization with 10 threads).
Adding additional SP and EP units (i.e., superscalar
implementation) will allow us to utilize higher thread
level parallelism. The number of registers available
per context also limits on how many concurrent
threads can be spawned at a time. We are exploring
techniques to enhance the thread level parallelism
when multiple EP’s and SP’s are available. Although
not presented in this paper, we observed very similar
behavior with other data sizes for Matrix Multiply
and the other benchmarks, Zoom and Livermore
Loop 5.
4.3. Thread granularity.

In the next experiment with Matrix Multiply, we
held the number of concurrent threads at 5, and

varied the thread granularity by varying the number
of innermost loop iterations executed by each thread
(i.e., degree of unrolling). The data size for Figure 6
is 50*50 matrices. Here, the thread granularity ranged
form an average of 27 instructions (12 for SP and 15
for EP) with no loop unrolling, to 51 instructions (13
for EP and 39 for EP) when each thread executes ten
unrolled loop iterations. Once again, the execution
performance improves (i.e., execution time
decreases) as the thread granularity increases.
However, the improvement becomes less significant
beyond certain granularity. The number of registers

per thread context (currently 32 pairs) also is a
limiting factor on the granularity. Our results
confirm that performance of multithreaded systems
can benefit both from the degree of parallelism and
coarser grained threads. Because of the non-blocking
nature and the decoupling of memory accesses, it
may not always be possible to increase thread
granularity in Decoupled Scheduled Dataflow (SDF).
We are exploring innovative compiler optimizations
utilizing speculative executions to increase thread run
lengths.

Thread Level Parallelism (Matrix Multiply)

0

6Million

1 Thrd 2 Thrds 3 Thr ds 4 Thrds 5 Thrds 10 Thrds

Number of Concurrent Threads

Ex
ex

ut
io

n
Cy

cl
es

5Million

4Million

3Million

2Million

1Million

Figure 5. Effect Of Thread Level Parallelism On SDF Execution (Matrix Multiply)

Effect of Thread Granularity (Matrix Multiply)

0

9Million

IUnroll 2Unroll 3Unroll 4Unroll 5Unroll 10Unroll

Degree of Unrolling

8Million

7Million

6Million

5Million

4Million

3Million

2Million

1Million

Figure 6. Effect Of Thread Granularity On SDF Execution (Matrix Multiply)
__

5. Conclusions
In this paper we presented a dataflow

multithreaded architecture that utilizes control-flow
like scheduling of instructions. Our architecture
separates memory accesses from instruction
execution to tolerate long latency operations. We
developed an instruction set level simulator for our
decoupled Scheduled Dataflow (SDF), and a backend

to a Sisal compiler. Using these tools we compared
the execution performance of SDF with that of a
single pipelined MIPS processing system. Our results
are very encouraging. When the degree of parallelism
is high, SDF substantially outperforms MIPS. We
also investigated the impact of increasing thread
granularity and thread level parallelism. As with any
multithreaded system, SDF shows performance

improvements with coarser grained threads and
increased thread level parallelism. Our current
architecture simulator assumes a perfect cache. We
will soon incorporate realistic cache memories into
our simulator.

While decoupled access/execute implementations
are possible within the scope of conventional
architectures, multithreading model presents greater
opportunities for exploiting the separation of memory
accesses from execution pipeline. We feel that, even
among multithreaded alternatives, non-blocking
models are more suited for the decoupled execution.
In our model, threads exchange data only through the
frame memories of threads. The use of frame
memories for thread data permits for a clean
decoupling of memory accesses into pre-loads and
post-stores. This could lead to greater data localities
and very low cache-miss rates.

At this time we do not know if our approach
performs better than modern superscalar systems that
use dynamic instruction scheduling (e.g., out of order
instruction issue and completions) or other
multithreaded systems such as SMT. However, our
system reduces hardware complexity.

6. References
[1] A. Agarwal, et al. "Sparcle: An evolutionary

processor design for multiprocessors", IEEE
Micro, pp 48-61, June 1993.

[2] M. Butler, et al. "Single instruction stream
parallelism is greater than two", Proc. of 18th
Intl. Symposium on Computer Architecture
(ISCA-18), pp 276-286, May 1991.

[3] R. Giorgi, K. M. Kavi and H.Y. Kim.
“Scheduled Dataflow Instruction Manual”,
http://crash1.eb.uah.edu/~kavi /Research
/sda.pdf

[4] R. Govindarajan, S.S. Nemawarkar and P;
LeNir. "Design and performance evaluation of a
multithreaded architecture", Proceeding of the
first High Performance Computer Architecture
(HPCA-1), Jan. 1995, pp 298-307.

[5] W. Grunewald and T. Ungerer, “A
Multithreaded Processor Design for Distributed
Shared Memory System,” Proc. Int’l Conf. on
Advances in Parallel and Distributed
Computing, 1997.

[6] J.L. Hennessy, and D.A. Patterson. Computer
Architecture: A Quantitative Approach,
Morgan Kaufmann Publisher, 1996.

[7 H.H.-J. Hum, ET. al., "A Design Study of the
EARTH Multiprocessor,'' Proceedings of the

Conference on Parallel Architectures and
Compilation Techniques (PACT), Limassol,
Cyprus, June 1995, pp. 59-68.

 [8] H.S. Kim, K.M. Kavi and A.R. Hurson. "A
simple non-blocking multithreaded
architecture", Proceedings of the 12th ISCA
PDCS-99, Ft. Lauderdale, FL, Aug. 18-20,
1999, pp 231-236.

[9] K.M. Kavi, H.-S. Kim, J. Arul and A.R. Hurson
"A decoupled scheduled dataflow multithreaded
architecture", Proceedings of the I-SPAN-99,
Fremantle, Western Australia, June 23-25,
1999, pp 138-143.

[10] V. Krishnan and J. Torrellas. “A chip-
multiprocessor architecture with speculative
multithreading”, IEEE Trans. on Computers,
Sept. 1999, pp.866-880.

[11] M. Lam and R.P. Wilson. "Limits of control
flow on parallelism", Proc. of the 19th Intl.
Symposium on Computer Architecture (ISCA-
19), pp 46-57, May 1992.

[12] G.M. Papadopoulos and D.E. Culler.
"Monsoon: An explicit token-store
architecture", Proc. of 17th Intl. Symposium
on Computer Architecture (ISCA-17), pp 82-
91, May 1990.

[13] S. Sakai, et al, “Super-threading: Architectural
and Software Mechanisms for Optimizing
Parallel Computations,” Proc. of 1993 Int’l
Conference on Supercomputing, July 1993, pp.
251-260.

[14] J.E. Smith. “Decoupled Access/Execute
Computer Architectures”, Proc of the 9th
Annual Symp on Computer Architecture, May
1982, pp 112-119.

[15] H. Terada, S. Miyata and M. Iwata. “DDMP’s:
Self-timed super-pipelined data-driven
multimedia processor”, Proceedings of the
IEEE, Feb. 1999, pp. 282-296

[16] J. Y. Tsai, et al. “The Superthreaded
processor architecture”, IEEE Trans. on
Computers, Sept. 1999, pp. 881-902.

[17] D.W. Wall. "Limits on instruction-level
parallelism", Proc of 4th Intl. Conference on
Architectural support for Programming
Languages and Operating Systems (ASPLOS-
4), pp 176-188, April 1991.

Acknowledgements: This research is supported in
part by NSF grants: CCR 9796310, EIA
9729889, EIA 9820147.

