
Performance Evaluation of a Non-Blocking Multithreaded Architecture for
Embedded, Real-Time and DSP Applications

Krishna M. Kavi and Joseph Arul
The University of Alabama in Huntsville

Roberto Giorgi
The University of Siena, Ialy

Abstract
This paper presents the evaluation of a non-blocking,
decoupled memory/execution, multithreaded
architecture known as the Scheduled Dataflow (SDF).
Our research explores a simple, yet powerful execution
paradigm that is based on non-blocking threads, and
decoupling of memory accesses from execution
pipeline. This paper compares the execution cycles
required for programs on SDF with the execution cycles
required by programs on Superscalar and VLIW
architectures.
Key Words: Multithreaded architectures, Superscalars,
VLIW, Decoupled Architectures.

1. Introduction
The major recen trend in digital signal processor

(DSP) architecture is to use complex organizations to
exploit instruction level parallelism (ILP). The two most
common approaches for exploiting the ILP are
Superscalars and Very Long Instruction Word (VLIW)
architectures. Superscalars rely on hardware techniques
to find independent instructions and issue them to
independent functional units. VLIW, on the other hand
relies on a compiler to schedule independent
instructions statically. A different approach for
improving processing performance, particularly to
bridge the performance gap between processors and
memory, is multithreading. There is a consensus that
multithreading achieves higher instruction issue rates
on processors that contain multiple functional units
[8,9,16], We believe that the use of non-blocking
threads is appropriate for improving the performance of
Superscalar and VLIW architectures.

Our architecture differs from other multithreaded
models in two ways: i) our programming paradigm is
based on non-blocking functional threads, which
eliminates the need for runtime instruction scheduling,
and ii) complete decoupling of all memory accesses
from execution pipeline. The underlying functional non-
blocking model permits for clean separation of memory
accesses from execution (which is very difficult to
coordinate in other programming models). Since our
achitecture performs no runtim instruction scheduling,
our architecture requires less complex hardware and
potentialy achieve energy savings -- it was stated that a
significant power is expended by instruction issue logic
of modern Superscalar architectures, and the power

consumption increases quadratically with the size of
the instruction issue width [12,18]. In this paper we
present a comparison our architecture with
conventional Superscalar architecture containing
multiple functional units and aggressive Out-of-Order
instruction issue logic using SimpleScalar Tool Set
[3]. We have also compared the performance of our
architecture with VLIW architectures using Texas
Instruments TMS320C6000 VLIW processor
simulator tool-set[15], and the Trimaran
infrastructure1. Since we target our processor
architecture for real-time, embedded and DSP
applications, we present our evaluations using
benchmarks that reflect these applications (viz.,
Matrix Multiplication, FFT, a picture zooming
applications).

In Section 2 we present research that is most
closely related to ours. In Section 3 we present our
SDF architecture in detail. Section 4 discusses the
methodology that we used in our evaluation and
shows our numerical results for real programs.

2. Related Research and Background
Decoupling memory accesses from the execution

pipeline to overcome an ever-increasing processor-
memory communication cost was first introduced in
[13]. Decoupled ideas were recently used in a
multithreaded architecture known as Rhamma [5].
Rhamma uses blocking threads requiring many more
thread context switches than our non-blocking
threads. Moreover, Rhamma does not group all Load
instructions together into "pre-load" and all Store
instructions together into "post-store" as done by
SDF. Because of these differences, SDF outperforms
Rhamma [6].

Dataflow architectures are the most recognized
implementations of functional computational model
[10,11]. Our architecture extends ETS [10,11] and
Cilk models [4].

3. The Scheduled Dataflow Processor (SDF)
The basic processing element in our architecture

consists of two units: Synchronization Pipeline (SP)
and Execution Pipeline (EP). SP is responsible for

1 http://www.trimaran.org

scheduling enabled threads on EP, pre-loading thread
context (i.e., registers) with data from the thread’s
(Frame) memory, and post-storing results from a
completed thread’s registers into the (Frame) memories
of destination threads. More detailed description of our
architecture can be found [2,6,7].
3.1 Execution Pipeline

Figure 1 shows the block diagram of the Execution
Pipeline (EP). EP executes computations of a thread
using only registers. Instruction fetch unit behaves like a
traditional fetch unit, relying on a program counter to
fetch the next instruction. EP executes instructions
sequentially with no dynamic instruction issue, nor out-
of-order instruction execution. As with any
multithreaded system, SDF uses multiple register sets to
support active threads; and the achievable thread-level
parallelism depends on the number of hardware
contexts.

In stru ction
Fetch Un it

Deco de
Un it

E x ecute
U nit

W rite-B ack
U nit

PC

Reg . Co n tex t R e gist er Se ts

In struction
C ach e

Pre-Lo ad ed
Th read s

Figure 1. Execution Pipeline (EP).

3.2 Synchronization Pipeline
Figure 2 shows the organization of the memory

pipeline of the Synchronization Processor (SP). Here
we deal with pre-load and post-store instructions, as
well as I-Fetch2 and I-Store for accessing array and
structured data items. In addition to accessing memory,
Synchronization Pipeline (SP) holds thread
continuations awaiting inputs and allocates register
contexts for enabled threads. In our architecture a thread
is created using a FALLOC instruction which takes two
arguments: an instruction pointer (IP), and a
synchronization count (Synch Count) indicating the
number of enabling inputs needed. FALLOC returns a
frame pointer in a register after allocating a frame and
storing IP and Synch Count in the first two locations of
the allocated frame. The frame pointer returned by
FALLOC will be utilized to store data in the spawned
thread’s frame memory.

2 We use I-structure memory for arrays and structures.
Information on I-structures can be found in most dataflow
literature. Index computation is performed by EP while the
actual access to I-structures is achieved by SP. Simple index
calculations can be done by SP directly.

Po st- S t o r e T h r e ad s

W a itin g T h r e a d s

A v ai la b le
Fr a m e s

S ched u ler

En ab led Th read s

FP Reg . Co n tex t IP

P relo ad ed Th read s

S P P ip eline
Pri or ity
C ont ro l

I PReg . C on tex t

FP IP Sy nch C o u nt

Figure 2. Overall Organization of the SP

An enabled thread (when the Synch Count
becomes zero) is scheduled by allocating a register
context to it. In order to speed up frame allocation,
we pre-allocate fixed sized frames for threads and
maintain a stack of indexes pointing to the available
frames. The Execution processor (EP) pops a Frame
Pointer from the stack and uses it as the address of the
frame (i.e., FP) in response to a FALLOC instruction.
SP pushes de-allocated frames when executing
FFREE instruction after pre-loading a thread’s
register set. These policies permit for fast context
switch and creation of threads. A thread moves from
"pre-load" status (at SP), to "execute" status (at EP)
and finishes in "post-store" status (at SP). We use
FORKSP to move a thread from EP to SP and
FORKEP to move a thread from SP to EP. FALLOC
and FFREE take 4 cycles in our architecture.
FORKEP and FORKSP take 4 cycles to complete.
These numbers are based on the observations made in
Sparcle [1] that a 4-cycle context switch can be
implemented in hardware.

3.3. Instruction Set Architecture of SDF.
We first show how the instructions executed by

EP would look-like using a simple example (Figure
3).

+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)

Figure 3. A simple dataflow graph.

Each node of the graph will be translated into a SDF
instruction. The two source operands destined for a
dyadic SDF instruction are stored in a pair of registers
associated with that instruction.

ADD RR2, R11, R13 / A+B, Result in R11 and R13
ADD RR4, R10 / compute X+Y, Result in R10
SUB RR4, R12 / compute X – Y, Result in R12
MULT RR10, R14 / (X+Y)*(A+B), Result in R14
DIV RR12, R15 /(X-Y)/(A+B), Result in R15

The use of separate pairs of registers with each
instruction is akin to the reservation stations (using
Tomosulo’s approach) or dynamic renaming of registers
as utilized by most modern Superscalar architectures .
The register assignment for instructions is done
statically by the compiler and requires no hardware
support to. Assuming that the inputs A, B, X and Y to
the graph of Figure 3 are available in R2, R3, R4 and
R5, respectively (this is achieved during pre-load), the
five instructions shown above will be executed
sequentially and perform the necessary computations.
Note that the source operands are specified as a pair of
registers using "RR", for example, ADD RR2, R11,
R13 adds R2 and R3, and stores the result in R11 and
R13. Our instructions still retain the functional nature –
there are no write-after-read and write-after-write
dependencies with our instructions.

In our architecture, SP pre-loads data in a thread’s
register set before scheduling the thread on EP (and EP
never accesses memory). Assume that the code block of
Figure 3 (viewed as a thread) receives the four inputs
(A, B, X, Y) from other threads; these inputs will be
saved in the frame until the thread is enabled for
execution. When enabled, a register context is allocated
to the thread and the input data for the thread from its
frame memory is “pre-loaded” into its registers.
Assuming that the inputs for the thread are stored in its
frame (RFP) at offsets 2, 3, 4 and 5, the first four
LOAD instructions shown below pre-load the thread’s
data into registers R2, R3, R4, R5 of the register set
allocated for the thread.

 LOAD RFP| 2, R2 / load A into R2
 LOAD RFP| 3, R3 / load B into R3
 LOAD RFP| 4, R4 / load X into R4
 LOAD RFP| 5, R5 / load Y into R5
 LOAD RFP| 6, R6 /FP for returning 1st result
 LOAD RFP| 7, R7 /frame offset for 1st result
 LOAD RFP| 8, R8 /FP for returning 2nd result
 LOAD RFP| 9, R9 / frame offset 2nd result

After the pre-load, the thread is scheduled for
execution on EP. The EP then uses only its registers
during the execution of the thread body (code shown
previously). Let us assume that the results generated by
MULT and DIV in our code example (i.e., R14 and
R15) are needed by two other threads. The frame
pointers and frame-offsets for the destination threads are
made available to the current thread in registers R6, R7,
R8 and R9 as shown in the pre-load code above (the last
4 LOAD instructions). Note that the frame pointers are

returned by FALLOC instructions as described
previously, and these pointers can be passed to other
threads.
 STORE R14, R6|R7 / store first result
 STORE R15, R8|R9 / store second result

These STORE instructions transfer (or post-
store) the results of the current thread (i.e., from
MULT in R14 and DIV in R15) to frames pointed to
by R6 and R8 at frame-offsets contained in R7 and
R9. SP executes STORE instructions after a thread
completes its execution at EP.

4. Evaluation of Scheduled Dataflow (SDF)
In this paper, we characterize our architecture

based on execution cycles for actual programs using
our instruction level simulator. At present the
simulator assumes a perfect cache (viz., all memory
accesses take one cycle). However, we examined the
expected cache behavior using traces from program
examination [2]. Our results indicate that SDF
produces cache miss behaviors similar to those for
Superscalar systems. Previously we reported a
comparison of our architecture with a single
threaded RISC architecture using DLX simulator
[7]. In this paper we will compare our SDF with
Superscalar architectures with multiple functional
units and Out-of-Order instruction issue logic as
facilitated by the SimpleScalar Tool Set [3]). We
will also present comparisons of SDF with VLIW
architectures as facilitated by Texas Instruments
TMS320C6000 VLIW processor simulator tool-set
[15], and the Trimaran3 infrastructure. Since we
target our architecture for embedded and DSP
applications, we chose Matrix Multiply, FFT and a
picture zooming program [14]. We chose these
applications since they exhibit different
characteristics. Matrix multiply can be written to
exploit both thread level and instruction level
parallelism; FFT exhibits higher degrees of thread
level parallelism with increasing data sizes; and
Zoom [14] consists of 3 nested loops and substantial
amount of instruction level parallelism in the middle
loop (but only small degrees of thread level
parallelism).

4.1. SDF vs. Superscalar
In the first experiment, we compared the

execution performance of SDF with a Superscalar
processor by varying the number of functional units
(we varied the number of Integer and Floating point
units in Superscalar, and varied the number of SPs
and EPs in SDF). For comparisons purposes we set

3 http://www.trimaran.org

the number of functional units in Superscalar (#Integer
ALUs + #Floating Point ALUs)4 equal the number of
SPs and EPs (#SPs + #EPs). Table 1 shows the
parameters we used for Superscalar. We have used the
compiler provided with SimpleScalar toolset to generate
highly optimized code for the benchmarks.

Table 1: Superscalar Parameters For Tables 2-4
Superscalar Parameter Value
Number of Functional
Units

Varied

Instruction Issue Width 64
Instruction Decode Width 64
RUU 64
LSQ 64
Branch Prediction Bimodal with 2048 entries

It is our contention that conventional Superscalar
systems do not scale well with increasing number of
functional units and the scalability is limited by the
instruction fetch/decode window size and the RUU size.
As stated previously, the power consumed by the
instruction issue logic increases quadratically with the
window width [12,18]. SDF relies on thread level
parallelism, and the decoupling of memory accesses
from execution. SDF performance can scale better with
a proper balance of workload among SPs and EPs. For
the Superscalar, we show execution cycles for both In-
Order (shown as I-O in Tables 2-4) and Out-of-Order
(shown as O-O in tables 2-4) instruction issue. In all
systems, we set all instruction cycles to 1, and assume
perfect cache.

In Table 2 we show the data for Matrix Multiply.
As can be noted, when we add more SPs and EPs
(correspondingly more Integer and Floating Point
functional units in Superscalar), SDF outperforms
Superscalar architecture, even when compared to
complex out-of-order scheduling used by Superscalars
(shown in bold in Table 2). For both systems, we
unrolled the innermost loop 5 times; for SDF, we
spawned 10 threads to execute in parallel. SDF’s
performance overtakes the Superscalar architecture with
3SPs and 3EPs. This is because, SDF can exploit the
functional units with available thread level parallelism
and decoupled memory accesses. The effect of
decoupling memory accesses can be observed from
table -- adding more SPs improves the performance
more significantly than when EPs are added. SDF
performance can be further improved by using more
than 10 active threads (or register contexts). The
scalability of SDF can more easily be seen from

4 It is not our intention to state that integer units equate to SP’s
or floating-point units are the same as EPs. For our initial
comparisons, we are hoping that this first order approximation
will be fair in terms of functional units.

Figure 5. The X-axis shows the number of
functional units (#SP+#EP for SDF; #Integer ALUs +
#FP ALUs for Superscalar). The figure shows the
execution times for 150*150 matrix multiplication.

Scalability of SDF (Matrix)

0

10000000

20000000

30000000

40000000

50000000

60000000

2+1 2+2 3+2 3+3 4+3 4+4 5+4 5+5

Number of Functional Units

E
x

e
c

u
ti

o
n

C

y
c

le
s

In Order Out of Order SDF

Figure 5. Scalability of SDF (Matrix Multiply)

The next table (Table 3) shows the results for FFT.
For small data sizes, SDF performs worse than the
Out-of-Order Superscalar execution, due to a lack of
significant thread-level parallelism. As the data size
increases, SDF exploits available thread-level
parallelism and outperforms Out-of-Order
Superscalar for FFT (for data sizes are greater than
256).

Once again, SDF performance scales better with
added functional units than that of a Superscalar.
Thus for larger data sizes, SDF can more effectively
utilize functional units than Superscalar systems that
rely only on ILP from a single threaded programming
model. SDF employs two levels of parallelism- thread
level parallelism, and the overlapped execution of
memory accesses with the execution of arithmetic
instructions. The fact that the performance improves
when more SPs are added indicates that the
decoupling of memory accesses can benefit from
more memory pipelines (contained in SP’s). Thus, the
data shows the benefits of both multithreading (as
demonstrated by the ability to exploit greater thread-
level parallelism with larger data sizes) and
decoupled memory accesses (as shown by improved
performance with added SPs).
Table 4 shows the data for Zoom. Once again, the
performance of SDF scales better than Superscalar.
With 3 SPs and 2 EPs, SDF outperforms even the
Out-of-Order Superscalar system, shown in bold in
Table 4..

Table 2. Comparing SDF with Superscalars (Matrix Multiply)
Superscalar SDF Superscalar SDF Superscalar SDF Superscalar SDF

Data Size 2INT ALU 2SP 2INT ALU 2SP 3INT ALU 3SP 3INT ALU 3SP

1FP ALU 1EP 2FP ALU 2EP 2FP ALU 2EP 3FP ALU 3EP

50*50 I-O 1890104 1890104 1867200 1867200

O-O 712396 1504297 712396 860782 706877 756707 706877 574242

100*100 I-O 14824104 14824104 14633700 14633700

O-O 5532202 11843442 5532202 6660012 5511587 5941602 5511587 4440772

150*150 I-O 49763150 49763150 49110246 49110246

O-O 18514510 39762487 18514510 22227742 18468811 1992491 18468409 14819482

Superscalar SDF Superscalar SDF Superscalar SDF Superscalar SDF

Data Size 4Int ALU 4SP 4Int ALU 4SP 5Int ALU 5SP 5Int ALU 5SP
3FP ALU 3EP 4FP ALU 4EP 4FP ALU 4EP 5FP ALU 5EP

50*50 I-O 1867200 1867200 1867200 1867200
O-O 680321 507197 680321 430957 680321 381247 680321 345027

100*100 I-O 14633700 14633700 14633700 14633700

O-O 5306381 3970682 5306381 3330992 5306380 2982702 5306380 2665472
150*150 I-O 49110246 49110246 49110246 49110246

O-O 17782453 13308457 17782453 11115592 17782453 9990607 17782453 8894002

Table 3. Comparing SDF with Superscalars (FFT)
Superscalar SDF Superscalar SDF Superscalar SDF Superscalar SDF

Data Size 2INT Alu 2SP 2INT Alu 2SP 3INT Alu 3SP 3INT Alu 3SP

1FP Alu 1EP 2FP Alu 2EP 2FP Alu 2EP 3FP Alu 3EP
8 I-O 20418 20418 19933 19933

O-O 9377 10045 9377 9526 8645 8556 8202 8528

16 I-O 36038 36038 35394 35394

O-O 15737 24303 15737 22927 14550 20385 13997 20337

32 I-O 78794 78794 77695 77695

O-O 32902 57444 32902 54012 30515 47740 29621 47608

64 I-O 201547 201547 199069 199069

O-O 81519 133139 81519 124915 75952 110003 73937 109731

128 I-O 577851 577851 570906 5770906

O-O 228095 303518 228095 284382 214191 249774 208285 249070

256 I-O 1816758 1816758 1794386 1794386

O-O 703548 682417 703548 638705 664954 559665 644899 558353

512 I-O 6165028 6165028 6086525 6086525

O-O 2350656 1516660 2350656 1418356 2235095 12409448 2161717 1238580

4.2. SDF vs. VLIW
The Texas Instrument’s TMS320C6000 family of

DSP processors uses very long instruction word
(VLIW) architecture. The newest member of the
TMS320C6000 family, the ‘C647X, brings the highest
level of performance for processing data by utilizing 8
functional units, two register files, divided into two
data paths. Each data path consists of a Multiplier, an
Adder, a Load/Store units and one unit for managing
control-flow (branch and compare instructions). We
used a simulator and accompanying tools (including
optimizing compiler and profiling tool). We have set
instruction execution and memory access cycles to

match in SDF and TMS320C64X. For SDF we utilize
8 functional units (4SPs and 4EPs)5. We have started
working with Trimaran6 tools. In this paper we will
compare SDF with Trimaran using default
configurations and optimizations (using a total of 9
functional units, a maximum unrolling of 32 iterations,
and several other complex optimizations).

5 We concede that this may not be fair, since the processing
units in SDF (SP and EP) are homogeneous, while the
functional units in VLIW are not.

6See http://www.trimaran.org

Table 4. Comparing SDF with Superscalars (Zoom)
SS SDF SS SDF SS SDF SS SDF SS SDF

Data 1INT 1SP 2 INT 2SP 2 INT 2SP 3 INT 3SP 3 INT 3SP

Size 1FP 1EP 1 FP 1EP 2 FP 2EP 2 FP 2EP 3 FP 3EP

50 I-O 528100 499976 499976 499573 499573

O-O 416625 464765 221253 314032 221253 230072 170235 163907 170235 153542

100 I-O 2094969 1994236 1994236 1993829 1993829

O-O 1660478 1855370 877150 1254357 877150 915057 696002 655907 696002 611707

150 I-O 4989542 7486216 7486216 4785812 4785812

O-O 3994462 4171875 2108470 2821032 2108470 2061057 1693042 1476057 1693042 1374402

200 I-O 8387641 7986709 7986709 7986302 7986302

O-O 6613286 7414280 3503558 5014057 3503558 3661977 2779131 2624357 2779131 2441917

Data SS SDF SS SDF SS SDF SS SDF SS SDF

Size 4 INT 4SP 4 INT 4SP 5 INT 5SP 5 INT 5SP 6 INT 6SP

3 FP 3EP 4 FP 4EP 4 FP 4EP 5 FP 5EP 5 FP 5EP

50 I-O 499573 499573 499573 499573 499573

O-O 165210 115887 165210 115452 160151 92892 160151 92837 160151 77912

100 I-O 1993827 1993827 1993827 1993827 1993827

O-O 656328 460317 656328 459667 646252 368747 646252 368417 646252 308777

150 I-O 4785811 4785811 4785811 4785811 4785811

O-O 1638111 1033277 1638111 1032567 1615054 827232 1615054 826827 1615054 693567

200 I-O 7986300 7986300 7986300 7986300 7986300

O-O 2624712 1834797 2624712 1833337 2587702 1468757 2587702 1468057 2587702 1229557

 Table 5 shows the data for Matrix Multiplication.
TMS 'C6000 performs rather poorly because the
optimized version relies on unrolling of only 5
iterations (unlike Trimaran, which uses 32 iterations).
SDF achieves better performance than TMS 'C6000
because we rely on thread level parallelism -- the data
in Table 5 uses 10 active threads. Trimaran
outperforms SDF because of the Herculean
optimization efforts made by the compiler. SDF's
performance can be improved by performing some
similar optimizations and/or increasing the number of
active threads. Trimaran exploits greater ILP since it
examines 32 loop iterations (and this can be noticed
with larger data sizes where Trimaran can sustain
higher issue rates).

Table 5. SDF vs VLIW (Matrix Multiplication)

Matrix Multi

Data SDF Trimaran TMS 'C6000 SDF/Trimaran DF/TMS C'6000

Size optimized

50*50 430957 331910 1033698 1.29841523 0.416908033

100*100 3330992 2323760 16199926 1.43344924 0.205617729

150*150 11115592 4959204 86942144 2.24140648 0.127850447

The next table (Table 6) shows the results of
comparing SDF with TMS 'C6000 and Trimaran for
FFT benchmark. Similar to the data in Table 3, SDF
outperforms Trimaran VLIW system for large data
sizes (greater than 256). As shown previously in Table
3, SDF scales better with more functional units. Thus
for larger data sizes, SDF can more effectively utilize

functional units than either Superscalar or VLIW
systems that rely only on ILP from a single threaded
programming model.

Table 7 shows the comparisons of SDF with the
two VLIW systems under investigation (TMS C'6000
and Trimaran) for Zoom. SDF consistently
outperforms both systems . SDF performance gains
improve slightly for larger data sizes.

5. Conclusions
Our goal is the search for a viable architecture that

can efficiently support fine-grained threads and
decouple memory accesses from execution pipeline.
To this end, we presented a non-blocking
multithreaded architecture, called SDF. In this paper
we presented a performance comparison of SDF with
Superscalar and VLIW architectures. The results are
very encouraging. Our data shows that SDF scales
better than conventional Superscalar systems when
more functional units are added. The data presented
shows the performance gains due to the decoupling of
memory accesses - SDF shows more dramatic
performance improvements when more SPs are added,
compared to the improvements when more EPs are
added.

While decoupled access/execute implementations
are possible within the scope of conventional
architectures, multithreading (particulalry non-
blocking) model presents greater opportunities for
exploiting the separation of memory accesses from

execution pipeline. In our model, threads exchange
data only through the frame memories of threads
(array data is provided through I-structure memory).
The use of frame memories for thread data permits for

a clean decoupling of memory accesses into pre-loads
and post-stores. This can lead to greater data localities.

Table 6 Comparing SDF with VLIW (FFT)
Data SDF Trimaran TMS 'C6000 SDF/Trimaran SDF/TMS 'C6000

Size

8 8148 4622 26717 1.762873215 0.304974361

16 19323 12391 73456 1.559438302 0.263055435

32 45028 31665 213933 1.422011685 0.210477112

64 103491 81375 619241 1.271778802 0.167125562

128 234766 214685 2040729 1.093537043 0.115040263

256 525457 595211 6943638 0.882807945 0.075674596

512 1163956 1768441 0.658181981

Table 7. Comparing SDF with VLIW (Zoom)

Data SDF Trimaran TMS C'6000 SDF/Trimaran SDF/TMS 'C6000

Size Optimized Optimized

50*50*4 115452 157770 144201 0.7317741 0.800632451

100*100*4 459667 630520 641625 0.72902842 0.716410676

150*150*4 1032567 1418270 1480525 0.72804685 0.697433005

200*200*4 1833337 2521020 2959430 0.72722033 0.619489902

250*250*4 2862857 3938770 4729593 0.72684036 0.605307264

.

6. References
[1] A. Agarwal, et. Al. "Sparcle: An evolutionary processor

design for multiprocessors", IEEE Micro, pp 48-61, June
1993.

[2] J. Arul, K.M. Kavi and S. Hanief. “Cache Performance of
Scheduled Dataflow Architecture”, Proc. of the 4th
International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP2000),pp 110-123

[3] D. Burger and T. M. Austin. "The SimpleScalar Tool Set
Version 2.0", Tech Rept. #1342, Department of Computer
Science, University of Wisconsin, Madison.

[4] R. D. Blumofe, et. al., “Cilk: An efficient multithreaded
runtime system”, Proc of the 5th ACM Symposium on
Principles and Practice of Parallel Programming (PPoP),
July 1995.

[5] W. Grunewald, T. Ungerer, “A Multithreaded Processor
Design for Distributed Shared Memory System,” Proc.
Advances in Parallel and Distributed Computing, 1997.

[6] K.M. Kavi, H.-S.Kim, J. Arul and A.R. Hurson "A
decoupled scheduled dataflow multithreaded
architecture", Proceedings of I-SPAN-99, June 23-25,
1999, pp 138-143.

[7] K.M. Kavi, R. Giorgi and J. Arul. “Comparing execution
performance of Scheduled Dataflow Architecture with
RISC processors”, Proc. of PDCS-0, Aug. 8-10, 2000, pp
41-47

[8] V. Krishnan and J. Torrellas. “A chip-multiprocessor
architecture with speculative multithreading”, IEEE Trans.
on Computers, Sept. 1999, pp.866-880.

[9] M. Lam and R.P. Wilson. "Limits of control flow on
parallelism", Proc. of the 19th Intl. Symposium on
Computer Architecture, pp 46-57, May 1992.

[10] G.M. Papadopoulos and K.R. Traub. (1991).
"Multithreading: A Revisionist View of Dataflow
Architectures," Proceedings of the 18th International
Symposium on Computer Architecture, pp. 342-351.

[11] G.M. Papadopoulos and D.E. Culler. "Monsoon: An
explicit token-store architecture", Proc. of 17th Intl.
Symposium on Computer Architecture, pp 82-91.

[12] S. Onder and R. Gupta. “Superscalar execution with
direct data forwarding”, Proc of the International
Conference on Parallel Architectures and Compiler
Technologies, Paris, Oct. 1998, pp 130-135.

[13] Smith, J.E. “Decoupled Access/Execute Computer
Architectures”, Proc of the 9th Annual Symp on
Computer Architecture, pp 112-119.

[14] H. Terada, et. al. “DDMP’s: Self-timed super-pipelined
data-driven multimedia processor”, Proceedings of the
IEEE, Feb. 1999, pp 282-296

[15] “TMS320C6000 CPU and Instruction Set Reference
Guide”, January 2000.

[16] J. Y. Tsai, J. Huang, C. Amlo, D. Lilja, and P. C. Yew.
“The Superthreaded processor architecture”, IEEE Trans.
on Computers, Sept. 1999, pp. 881-902.

[17] D.M. Tullsen, et al., “Simultaneous Multithreading:
Maximizing On-Chip Parallelism,” Proceedings of the
22nd International Symposium on Computer
Architecture, 1995, pp 392-403.

[18] K. Wilcox and S. Manne. “Alpha processors: A history
of power issue and a look at the future”, Cool Chips
Tutorial in conjunction with MICRO-32, Haifa, Israel,
Dec. 1999.

