
Embedded Reconfigurable Computing: the ERA 

Approach 
 

Georgios Keramidas 

Industrial Systems Institute 

Patras, Greece 

Stephan Wong, Fakhar Anjam, Anthony Brandon, Roel Seedorf 

Delft University of Technology 

Delft, The Netherlands 

Claudio Scordino 

Evidence Srl. 

Pisa, Italy

Luigi Carro,               

Debora Matos 

UFRGS 

Porto Alegre, Brazil 

Roberto Giorgi,                     

Stamatis Kavvadias 

University of Siena 

Siena, Italy 

Sally A. McKee,                 

Bhavishya Goel 

Chalmers University of Technology 

Göteburg, Sweden  

Vasileios     

Spiliopoulos 

Uppsala University 

Uppsala, Sweden 

 

 
Abstract—The growing complexity and diversity of embedded 

systems—combined with continuing demands for higher 

performance and lower power consumption—places increasing 

pressure on embedded platforms designers. The target of the 

ERA project is to offer a holistic, multi-dimensional methodology 

to address these problems in a unified framework exploiting the 

inter- and intra-synergism between the reconfigurable hardware 

(core, memory, and network resources), the reconfigurable 

software (compiler and tools), and the run-time system. Starting 

from the hardware level, we design our platform via a structured 

approach that allows integration of reconfigurable computing 

elements, network fabrics, and memory hierarchy components. 

These hardware elements can adapt their composition, 

organization, and even instruction-set architectures to exploit 

tradeoffs in performance and power. Appropriate hardware 

resources can be selected both statically at design time and 

dynamically at run time. Hardware details are exposed to our 

custom operating system, our custom runtime system, and our 

adaptive compiler, and are even visible all the way up to the 

application level. The design philosophy followed in the ERA 

project proved efficient enough not only to enable a better choice 

of power/performance trade-offs but also to support fast 

platform prototyping of high-efficiency embedded system 

designs. In this paper, we present a brief overview of the design 

approach, the major outcomes, and the lessons learned in the 

ERA project. 

Keywords: adaptive embedded platform; hardware-software 

codesign; reconfigurable computing. 

I.  INTRODUCTION 

The embedded systems market has become a main focus in 
Europe, distinguishing the European high technology sector 
from the more high-performance systems market in the USA 
and the consumer electronics and semiconductor markets in 
Asia. The strong application areas in Europe are spread among 
different application markets such as automotive, aerospace, 
industrial automation, medical/healthcare, telecommunication, 
and audio/video processing. The target Objective ICT-
2009.3.4 “Embedded Systems Design”, to which the ERA 
project was submitted, puts a strong focus on the development 

of a novel (generic) embedded systems design methodology 
that can be applied to several application areas. 

In the ERA (Embedded Reconfigurable Architectures) 
project [1], we develop a platform that can adapt itself through 
coarse-grain reconfigurable hardware to tailor the hardware 
itself to the changing needs of the applications running it to 
respond to different application markets, platform usage, or 
user objectives. The proposed ERA platform can provide 
adaptability at different abstraction levels: optimization of 
application software at design time, OS control and 
optimization at run time to cope with changing conditions, and 
hardware adaptation at run time to efficiently tune its 
performance to the application or OS needs, taking power 
budgets into account. 

However, harnessing a highly reconfigurable hardware 
fabric requires innovative design solutions and methodologies 
given the many problems that have to be addressed. First, 
power consumption of reconfigurable devices is generally 
high, since reprogramming them requires reading from an 
external memory. Second, support for reconfiguration 
necessarily requires additional wiring and extra hardware 
complexity. Finally, design flows must remain sufficiently 
simple to hide optimization bottlenecks from the user. The 
ERA project addresses these issues by introducing a 
reconfigurable fabric that can be adapted at design time, at 
application deployment, and even during execution (and thus 
over the product’s entire lifetime). 

Finally, to exploit the adaptability of the proposed ERA 
platform, we deployed specific software tools (working either 
at complier or OS level) and we developed our own 
benchmark suite (and a corresponding benchmark 
characterization methodology). The applications comprising 
the ERA benchmark suite were carefully selected to represent 
workloads of new-generation smart phones. 

II. PROJECT OVERVIEW 

To cope with the power and performance problems that 
reconfiguration presents, the ERA approach emphasizes 



accelerator development within a coarse-grain reconfigurable 
fabric. The ERA family of architectures combines the ρ-VEX 
reconfigurable VLIW processor, flexible memory 
organizations, and a configurable interconnection network that 
provides better power management by distributing routing 
resources (Fig. 1). The software stack is comprised of a 
compiler and an OS (including a run-time management 
system) that can drive both static and dynamic reconfiguration 
decisions according to application characteristics and user 
power and performance objectives. 

The choice to use one adaptable processor avoids the need 
to create a different accelerator for each new application or 
application domain, which is costly in terms of design time 
and time-to-market. Adapting the processor organization on-
the-fly avoids these pitfalls while supporting flexible power 
and performance management. VLIW processors represent an 
excellent design point with respect to this management 
strategy because of their excellent power/performance trade-
offs. The issue-width and dimensionality can be varied to meet 
size and power design constraints. The variable issue-width 
can increase ILP at the cost of heavier pressure on the memory 
subsystem (which we therefore adapt, as well). Knowing 
specific application behaviors and requirements—along with 
user objectives—allows us to precisely tailor the memory 
hierarchy organization and management to better match the 
processor’s data-consumption needs. On-chip memory can be 
effectively reorganized; 
targeted turned-off policies 
(e.g., decay) can reduce power 
consumption; shared-memory 
communication can be 
minimized; and data 
placement and replacement 
can be controlled in hardware 
and software. Such malleable 
memory systems leverage 
information from the 
application and the compiler 
together with hardware 
monitoring and profile-
directed feedback. Just as 
memory needs change from 
phase to phase and from 
application to application, so 
do communication 
requirements. We thus 
implement a reconfigurable 

NoC to manage changing communication needs. Finally, 
dedicated monitoring hardware is responsible for conveying 
information to the OS level to support global reconfiguration 
decisions.  

III. ERA BENCHMARKS & CHARACTERIZATION 

A. The ERA Benchmark Suite (EBS) 

In the context of the ERA project, the partners have put 
together a number of benchmarks representative of the 
embedded domain. In order to select interesting applications, 
the partners chose a new generation mobile phone as the target 
appliance, although considerations that emerged during the 
project lifetime extend beyond that domain. The selected 
benchmarks, shown in TABLE I, include image, video, and 
sound processing applications, as well as security and text 
recognition (OCR) applications. Some of the benchmarks 
were taken from other suites, as indicated in the table. The 
mobile phone scenario also allows us to take into account the 
presence of a complex operating system, since it has a 
fundamental role in the management of the hardware platform, 
and thus in the adaptation process. 

TABLE I.  The ERA Benchmark Suite (EBS) 

Application Characteristics Domain Source 

cjpeg/djppeg 
Image compression / decompression 

using JPEG method ([5]) 

image 

processing 
C 

X.264 H.264 encoder and decoder ([6]) 
video 

processing 
C 

EC-DS Elliptic Curve Digital Signature [7] security C 

tesseract Perform OCR recognition OCR C++ 

mpeg2 MPEG2 video decoder 
video 

processing 
C 

ac3 AC3 audio decoder 
audio 

processing 
C 

susan 
Image smoothing, corner, and  edge 

detection ([5]) 

image 

processing 
C 

 

 
Fig.  1. High-level view of the ERA system. 

 
Fig.  2. Power profiles of the execution of cjpeg with different frequencies and processor issue widths. 

 

 

 



B. Benchmark Characterization 

We performed an in-depth and diverse characterization of 
the EBS, exploring the design space for reconfiguration, but 
also in terms of configuration-independent metrics (with and 
without OS instructions), and phase classification. Our results 
include detailed execution profiles of the applications. 
Representative results are shown in Fig. 2 and Fig. 3. For all 
experiments, we use the COTSon/SimNow [3] simulation 
infrastructure, and we conduct further processing with 
Simpoint [4] frequency vectors of instructions executed in 
functions and loops in each interval for phase classification. 
For power, we use McPAT [2], modified for efficient per-
interval measurements. 

IV. HARDWARE PLATFORM  

A. Core Microarchitecture: The ρ-VEX VLIW Processor 

The ρ-VEX [13][14] is an extensible and reconfigurable 
softcore VLIW processor based on the VEX ISA [15]. The 
parameterized processor is implemented in VHDL. A VEX 
development toolchain including a C compiler and a cycle-
accurate simulator is freely available from Hewlett-Packard 
(HP) for architectural exploration and code generation. 

Fig. 4 depicts the methodology to generate and utilize the 
design-time configurability of the ρ-VEX processor. The 
process starts with a C application, which is simulated and 
profiled to determine a good processor configuration for it. 
The VEX simulator [16] reads the processor's configuration 
parameters, such as issue-width; number of ALUs, multipliers 
(MULs), and load/store or memory units (MEMs); latencies 
for the different functional units (FUs); and register file size. It 
simulates the application and then generates a detailed log file 
with statistics such as execution cycles, total executed 
operations, total branches, stall cycles, memory operations 
(accesses, misses), and IPC. The process can be repeated until 
a good processor configuration is found. The optimized 
processor parameters are then used to generate a synthesizable 
VHDL description for the processor. We do not require any 
commercial tools for VHDL generation. The parameters are 
set in a configuration file and included with the design files 
when the processor is being synthesized. The compiler is also 
provided with the same description to generate an executable 
for the processor. Hence, optimized processors can be 
implemented in FPGAs quickly for different applications, 
reducing the development time and the associated costs. 

Furthermore, utilizing the 2-issue ρ-VEX processor, we 
implemented a run-time reconfigurable multi-core processor, 
called the 2-4-8-issue ρ-VEX processor [17]. The processor 
has four 2-issue cores, each of which can run independently. If 
not in use, each core can be taken to a low power mode by 
gating off its source clock to reduce the power consumption. 
Multiple (up to four) 2-issue cores can be combined at run-
time to make a larger issue-width core. The possible 
configurations for the processor are: (1) four 2-issue cores, (2) 
one 4-issue and two 2-issue cores, (3) two 4-issue cores, and 
(4) one 8-issue core. The configuration and issue-width are 
changed in a single cycle after the configuration bits are 
written. The parameters that can be changed at run-time 
include the issue-width; the number of ALU, MUL, and MEM 
units; and the size of the register file. The processor can 
exploit both instruction and/or thread level parallelism. 
Individual cores can be interrupted (and their states saved), 
merged, or split, and their running tasks can be migrated to 
other cores in order to improve performance and power 
consumption characteristics. 

 
(a) Instruction mix per interval of cjpeg, plus memory read and write 

operations (x86 ISA), including the OS (left) and excluding the OS (right). 

(int instrs: orange, cntrl instrs: blue, read ops: green, write ops red) 

 
(b) Phase classification for cjpeg using Simpoint (Kmax=10) 

Fig.  3. Per interval detailed instruction mix profile (above) and phase 

classification (below) of cjpeg. 

  

H.P. VEX toolchain:
Parameterized C 

compiler and cycle-

accurate simulator

C application

VEX

Executable

Synthesizable 

VHDL

Instruction and 

data memories

VLIW Processor 

Generation

Parameterized 

Processor

Instru

ction

Mem

ory

Data

Mem

ory

Deco

de
Fetch Write

back

GR CTRL

BR MEM

PC

Execute 0/1

A A

A A

Assembler, Linker,       

Memory initializer

Simulation 

Statistics

Parameters:

§ Execution cycles

§ Stall cycles

§ Executed operations

§ Total branches

§ Memory accesses

§ Total misses

§ IPC

Processor 

Description 

Parameters:

§ Issue-width

§ No. of ALUs

§ No. of MULs

§ No. of MEMs

§ FU Latencies

§ Register file size

 
Fig.  4. Methodology to generate and utilize the ρ-VEX processor. 



Table II presents the implementation results for the 2-, 4-, 
8-, and 2-4-8-issue ρ-VEX processors. We used the Xilinx ISE 
version 13.2 and the Virtex-6 XC6VLX240T-1FF1156 FPGA 
for the implementation. All the processors run at above 100 
MHz. The 2-, 4-, and 8-issue processors have the same 
number of ALUs as their issue-width; have only 1 MEM unit 
each; and have 2, 2, and 4 MUL units, respectively. The 2-4-8-
issue processor has 8 ALUs, 8 MULs, and 4 MEM units. 

B. Memory-Driven Reconfiguration Policies 

One of the main contributions of the ERA project is the 
formulation of a new, three-dimensional reconfiguration 
approach according to which it is possible to carefully budget 
the available system power between the core and the last-level 
cache (LLC) in unicore and multicore reconfigurable 
scenarios. Figure 5 depicts a high-level view of the proposed 
reconfiguration framework. The idea behind our approach is 
that there is a great synergy between the following system 
parameters: i) Voltage/frequency level of the core (using core 
DVFS [8]), and ii) processor instruction window (leveraging 
dynamic core issue-width resizing), and iii) effective LLC size 
(controlled by cache resizing techniques [9]). As shown in 
Fig. 5, those three points formulate a triangle in which all 
vertices are tightly coupled and complex interactions between 
the three components exist. This reconfiguration triangle can 
orchestrate informed reconfiguration policies driven either by 
the application characteristics (memory or CPU bound 
programs, memory access behavior or ILP characteristics), the 
available power budget (in terms of any power related metric, 
e.g., EDP), or the required system performance (e.g., soft or 
real-time applications, QoS). 

Let us present a working scenario: starting from the core, it 
is possible to lower the core frequency by simultaneously 
increasing the core parallelism (issue-width) without hurting 
performance (case 1 in Fig. 5), if the application exhibits high 
ILP and is CPU bound. For CPU-bound programs we can 
further reduce the effective size of the LLC (case 2) using 
dynamic LLC resizing [9]. In contrast, in memory bound 
programs we can further reduce the core Voltage/frequency 
setting (using DVFS), since most of the time in those 
programs the core remains idle waiting while misses are 
serviced (case 3). Going one step further, by lowering the 
effective LLC size, the miss ratio of the program may increase 
(case 4), but by increasing the core parallelism we also 
increase the processor’s ability to tolerate the extra miss 
latencies (case 5). Finally, the bottom-line idea in our 
framework is that an orthogonal parameter in this 
reconfiguration triangle is the notion of memory-level 
parallelism (MLP) in LLC misses (case 6). The importance of 
MLP is highlighted in a separate publication [8]. 

C. Adaptive Network 

In the same manner, as processor-cache/memory 
bandwidth and throughput vary, communication needs also 
vary. Devising a single strategy/organization for the 
communication network would mean either spending extra 
power without reaping equivalent performance gains or 
suffering degradation in the quality of services. Therefore, in 
the ERA project an adaptable NoC is designed to manage 
changing communication needs. We chose to apply our 
reconfigurable approach to the router buffers due to their high 
power dissipation. We rely on a simple feedback-based 
mechanism to monitor and redistribute the buffer resources 
among the NoC channels at run time. Our solution basically 
adds multiplexers to each channel, allowing the allocation of 
buffer slots according to the current communication rates in 
each router port. Our architecture is called AR (Adaptive 
Router). More specifically, if a channel has a lower 
communication rate than its neighbor, it can lend some of its 
unused buffer slots to a neighbor having a higher 
communication rate. When a different communication pattern 
is detected, the roles may be reversed or modified at run time, 
with no need for a redesign step. The proposed architecture is 
able to sustain performance due to the fact that not all buffers 
are completely used at any given time. We have verified that 
our proposal offers significant advantages over similar 
approaches in both power and performance [18] [19]. 

V. SOFTWARE STACK 

The ERA software stack is comprised by the ρ-VEX 
reconfigurable compiler, an application API, and an 
innovative run-time system (including a supervisor module). 
The whole system is also supported by a customized Linux-
based OS designed and implemented for the purposes of the 
ERA project. 

A. Adaptive Compiler 

The use of the variable issue-width ρ-VEX VLIW 
processor necessitates corresponding support from the 
compiler side, which was not provided by existing VLIW 
compiler solutions (given the static scheduling used in VLIW 
cores). The ρ-VEX compiler toolchain consists of the HP 
VEX compiler, a port of the gnu binutils package with 
assembler and linker, and a tool to convert object files into 
synthesizable VHDL code for the instruction ROM and data 
memory. Furthermore, we investigated compiler algorithms 
that are able to offer the required flexibility and capacity to the 

TABLE II.  Implementation results for the ρ-VEX processors. 

Processor Registers LUTs DSP48E1s RAMB36E1s 

2-issue 844 2429 4 4 

4-issue 1451 4988 4 16 

8-issue 2754 12088 8 64 

2-4-8-issue 3187 16790 16 64 

 
Core

Configuration

IL1 & DL1

Core

DVFS

LLC

Configuration

2
Cache Size 

(CPU BOUND)

3
Freq. 

(MEMORY  BOUND)

1

Parallelism       Freq.  

(HIGH ILP/CPU BOUND)

4
    Cache Size 

Miss ratio

5
Core Parallelism  

MISS latency tolerance

6
LLC Misses + MLP 

CPU vs. MEMORY BOUND

 
Fig.  5. Memory-driven reconfiguration triangle. 



ρ-VEX core in a single VLIW schedule (even in the case of a 
multicore system). The compiler's awareness of the dynamic 
underpinnings of the ρ-VEX is combined with hardware 
techniques to enable the generation of generic binaries that can 
be executed by different-issue VLIW processor cores. This is 
achieved without losing much performance while maintaining 
full flexibility at run time to enable dynamic decisions based 
on other factors (e.g., other threads, energy/power budget). 

B. OS, Application API and Run-Time System 

The software stack is comprised of not only the compiler 
but also the application API needed to guide reconfiguration, 
an OS, and a run-time support system to manage the 
transformation process. The run-time system is a critical 
component because it is responsible for monitoring, allocating, 
and reconfiguring the underlying hardware resources. Several 
challenges must be addressed for an efficient implementation 
of a run-time system. For example, one must take into account 
the classic trade-off between the reconfiguration benefits (in 
power or performance) and the reconfiguration overheads 
(time or energy lost for selecting and instantiating a new 
system setup). Furthermore, in case of a multithreading 
workload, proper scheduling decisions must be issued. In 
contrast to traditional scheduling policies, our scheduler has 
the additional burden of reconfiguring the hardware fabric. 

Previous approaches in the area [10], [11] focused on run-
time instantiation of specific hardware components and 
suitable programming models, rather than considering run-
time mechanisms to issue reconfiguration decisions. As a 
result, in the ERA project, we have designed and implemented 
an appropriate software infrastructure to ease the investigation 
of innovative reconfiguration mechanisms and policies. The 
main goal of the software infrastructure is to reconfigure the 
hardware resources based on the information gathered by the 
monitoring hardware at run-time, the compiler, or even the 
phase detection approach described in Section III. Moreover, 
the software infrastructure includes a scheduler for allocating 
the reconfigurable processors and a basic programming model 
(API) to allow the applications or even the programmer to 
interact directly with the hardware in an abstract way.  

The ERA reference platform consists of a Xilinx Virtex-6 
FPGA board including a MicroBlaze softcore (to act as work 
dispatcher) and the reconfigurable fabric (an array of ρ-VEX 
cores, memory and network resources). The host core 
(MicroBlaze) is powered by an Evelin BSP embedded Linux 
distribution provided by Evidence Srl. Figure 6 depicts the 
main three components of the software infrastructure. The 

overall software stack has been fully implemented and 
validated on the ERA FPGA platform utilizing workloads 
where one part of them is executed on the host while the other 
part is executed on the ρ-VEX cores. 

Run-Time Library: the Run-Time Library is a typical C library 

invoked at compile time. It facilitates the communication 

between the application layer and the supervisor (see below) 

hiding all communication details. Its main goal is to let 

applications specify information about the next program phase 

via the API as shown in Fig. 7. The library also allows 

applications or even the users to dispatch work to the 

reconfigurable cores and gather the result of the computations 

via the provided API. An example is shown in Fig. 8.  

Supervisor: the supervisor is a user-level Linux daemon 
implemented in C++. It collects run-time information through 
the specified monitoring hardware, schedules requests on the 
ρ-VEX cores, and issues reconfiguration decisions. The 
supervisor can be programmed to follow specific optimization 
policies, e.g., to save power and/or to deliver more 
performance. The architecture-dependent information is stored 
in XML files for portability. More specifically, there are two 
XML files. The first file describes the hardware architecture. 
Each device is characterized by a set of properties that can be 
reconfigured independently by writing in special files exposed 
to user-level software by the kernel driver. This XML file 
specifies the available devices, their properties, and which 
files are available to trigger the reconfiguration. The file also 
contains information regarding the energy used by each 
configuration. The second XML file contains a 
“reconfiguration table” that holds extra information about the 
program phases and QoS requirements. 

 

struct task_arg { 
  void* ptr; // Pointer to data   
  size_t size; // Size of data 
}; 
 
vproc_t run_task (const char* processor_type, 
  const char* program_file, 
  const char* data_file, 
  const struct task_arg* in,  
  const struct task_arg* out, 
  enum queue_t queue, 
  const char* reconftable_file, 
  unsigned int priority); 
 
int get_result(vproc_t vproc, 
  enum block_t block, 
  const struct task_arg* out); 
 

Fig. 8: API for programming reconfigurable processors. 

START_PHASE (QoS, phase_type, deadline) 

QoS: value of Quality of Service (SMALL, MEDIUM, HIGH) 

phase_type: type of the phase; can be either NOTYPE or 
one or more flags (i.e., OR-ed) among PARALLEL, 
STRIDED, MANY_REFS, LOOP. 

deadline (optional): expected duration of the phase 

END_PHASE () 

Fig. 7: API for triggering reconfiguration. 

 

 

 

 
Fig.  6: Software infrastructure for reconfiguration. 

 



Linux kernel driver: the last component of the infrastructure is 
a Linux kernel driver that exports to user-level a set of files in 
the dev/ directory to enable the supervisor to interact with the 
reconfigurable hardware at run-time (e.g., to load data in a 
reconfigurable core or to resize the core issue-width). In 
addition, the driver can also manage thread migration between 
different cores and preempt the execution to run higher-
priority tasks. 

VI. PROTOTYPE SYSTEM 

A. Case Study: Reconfigurable Caches 

Finally, in this section we also present some additional 
information about the memory system implemented in our 
FPGA prototype platform. The ρ-VEX cores are equipped 
with our own RTL implementation of level-1 (L1) instruction 
and data caches. This hardware implementation allowed us to 
study the effects of cache configurations in a fully functional 
system. As a reference point, we relied on the cache 
implementation presented in [12]. The cache implementation 
was performed in a way to support a variety of configuration 
parameters which can be performed either at compile time or 
even at run-time. Static reconfigurations include all the major 
cache parameters (cache size, associativity, and block size) 
and policies (write policies and replacement policies).  

In addition to static reconfigurations, the data cache 
supports dynamic enabling/disabling of individual cache ways. 
This cache resizing is managed by the supervisor via the Linux 
kernel driver. The ρ-VEX core and cache design include 32-bit 
counters that can track cache performance statistics. The 
supervisor can use these performance numbers to guide 
informed way-resizing decisions. The cache associativity is 
governed by a control register that can be accessed by the 
supervisor. The current design supports dynamic 
reconfiguration of cache associativity only for write-through 
caches, since write-back caches would incur many costly 
write-backs on reconfiguration. When a cache way is disabled, 
the corresponding tag and data memory banks are clock gated 
to prevent further switching and power dissipation. 

VII. CONCLUSIONS 

In the ERA project, we focused on many different aspects 
of the design of reconfigurable embedded systems that allow 
for not only static determination of the (design) parameters, 
but, more importantly, dynamic adaption of these parameters 
at run time. The parameterization encompasses the processor 
core, on-chip memories, and NoC. We performed in-depth 
characterization and profiling of a representative set of 
benchmarks to drive the static design space exploration and 
the dynamic reconfiguration of these system components. We 
not only investigated and measured the benefits of our 
adaptive system for the different components separately, but 
also determined their interplay. In addition, we developed our 
own tools and adapted the GCC compiler to target our 
adaptive platform, which now allows (static and dynamic) 
reconfiguration decisions to be made by the application 
designer, compiler, OS, and hardware scheduler. In particular, 
we integrated the run-time support in a supervisor that 

considers the “wishes” from all of these sources to make run-
time reconfiguration decisions. In conclusion, the ERA project 
defined a new adaptive embedded system platform that can 
flexibly adapt itself to the different requirements of the 
application and the underlying hardware. We demonstrated 
that performance and energy consumption can be traded off at 
a much finer level of granularity than in previous systems. 

ACKNOWLEDGEMENT 

This work was supported by the European Commission in the 

context of the ERA (Embedded Reconfigurable Architectures) 

collaborative project #249059 (FP7). 

REFERENCES 

[1] ERA – Embedded Reconfigurable Architectures. [Online]. Available: 
http://www.era-project.eu, 2010. 

[2] S. Li, J.H. Ahn et al. McPAT: An Integrated Power, Area, and Timing 
Modeling Framework for Multicore and Manycore Architectures. Proc. 
of the International Symposium on Microarchitecture, 2009. 

[3] E. Argollo, A. Falcón et al. COTSon: Infrastructure for Full System 
Simulation. SIGOPS Operating Systems, 2009. 

[4] T. Sherwood, E. Perelman et al. Automatically Characterizing Large 
Scale Program Behavior. Proc. of the Architectural Support for 
Programming Languages and Operating Systems Conference, 2002. 

[5] M.R. Guthaus, J.R. Ringenberg et al. MiBench: A Free, Commercially 
Representative Embedded Benchmark Suite. Proc. of the Workload 
Characterization Workshop, 2001. 

[6] C. Bienia, S. Kumar, et al. The PARSEC Benchmark Suite: 
Characterization and Architectural Implications. Proc. of the Parallel 
Archiytectures and Compiler Techniques, 2008. 

[7] S. Bartolini, I. Branovic et al. Effects of Instruction-set Extensions on an 
Embedded Processor: a Case Study on Elliptic Curve Cryptography 
over GF(2m). IEEE Transactions on Computers, 2008. 

[8] G. Keramidas, V. Spiliopoulos, and S. Kaxiras. Interval Based Models 
for Run-time DVFS Orchestration in Superscalar Processors. Proc. of 
the Computing Frontiers Conference, 2010. 

[9] G. Keramidas, C. Datsios, S. Kaxiras. A Framework for Efficient Cache 
Resizing. Proc. of the Symposium on Systems, Architectures, Modeling 
and Simulation, 2012. 

[10] K. Kosciuszkiewicz, F. Morgan, K. Kepa. Run-Time Management of 
Reconfigurable Hardware Tasks Using Embedded Linux. Proc. of the 
Field-Programmable Technology Conference, 2007. 

[11] E. Lubbers, M. Platzner. A Portable Abstraction Layer for Hardware 
Threads. Proc of the Field Programmable Logic and Application 
Conference, 2008. 

[12] V. Saljooghi, A. Bardizbanyan et al. Configurable RTL Model for Level-
1 Caches. Proc. of the Norchip Conference, 2012. 

[13] S. Wong, T. van As, and G. Brown. ρ-VEX: A Reconfigurable and 
Extensible Softcore VLIW Processor. Proc. of the Field-Programmable 
Technologies Conference, 2008. 

[14] S. Wong and F. Anjam. The Delft Reconfigurable VLIW Processor. 
Proc. of the Advanced Computing and Communications, 2009. 

[15] J. Fisher, P. Faraboschi, and C. Young. Embedded Computing: A VLIW 
Approach to Architecture, Compilers and Tools. Morgan Kaufmann, 
2004. 

[16] Hewlett-Packard Laboratories. VEX Toolchain. [Online]. Available: 
http://www.hpl.hp.com/downloads/vex/. 

[17] F. Anjam, M. Nadeem, and S. Wong. Targeting Code Diversity with 
Run-time Adjustable Issue-slots in a Chip Multiprocessor. Proc. of the 
Design, Automation, and Test in Europe Conference, 2011. 

[18] D. Matos, C. Concatto et al. A NoC Closed-loop Performance Monitor 
and Adapter. Journal of Microprocessors and Microsystems, 2011. 

[19] D. Matos. et al. Reconfigurable Routers for Low Power and High 
Performance. IEEE Trans. on Very Large Scale Integr. Systems, 2011. 

 


