SoftwareX 18 (2022) 101105

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

WeDbRISC-V: A 32/64-bit RISC-V pipeline simulation tool R

Gianfranco Mariotti, Roberto Giorgi *

Check for
updates

Department of Information Engineering and Mathematics, University of Siena, Via Roma 56, 53100 Siena, Italy

ARTICLE INFO

Article history:

Received 23 February 2021

Received in revised form 25 January 2022
Accepted 5 May 2022

ABSTRACT

WebRISC-V is a web-based education-oriented tool, which permits the investigation of the pipelined
execution of assembly programs according to the RV32IM and RV64IM specifications (32-bit or 64-bit
RISC-V processor). The tool permits to evaluate and understand slow-downs in the execution due
to pipeline stalls and further investigate the internal state of the pipeline architectural blocks (e.g.,

Keywords:

Simulation environments
Interactive learning environments
Computer architectures

Pipeline computing

registers, memory, multiplexers, ALU).

The pipeline concept is illustrated in the vast majority of university courses in Computer Architec-
ture, since it is the well established standard for implementing high-performance processors. However,
the impact of pipelined execution is often underestimated or even unknown, whilst it represents a very
important source for the speed-up of programs.

Several similar tools exist and are publicly available, but WebRISC-V is currently the first one
that can be executed directly in a web-browser while displaying the cycle-by-cycle detailed pipeline
execution for a RISC-V processor.

This paper describes WebRISC-V, compares it against other similar available tools and presents
its features. An example of usage for investigating the pipeline with the support of an automatically
generated pipeline diagram is provided.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

1.8.0
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00043

BSD-3-Clause

git

PHP, JavaScript, HTML, CSS
PHP, PHP GMP

wrv-admin@webriscv.dii.unisi.it

1. Motivation and significance

In the Computer Science [1,2] and Computer Engineering [2]
curricula, Computer Architecture (i.e., Architecture and Organiza-
tion) is recognized as one of the core requirements.

A common problem in teaching Computer Architecture courses
is how to help students understand abstract concepts of proces-
sor architecture and complex techniques of hardware organiza-
tion. This is especially notable when teaching the architecture of
computers to undergraduate students, as experience shows that

* Corresponding author.
E-mail addresses: mariotti@dii.unisi.it (Gianfranco Mariotti), giorgi@unisi.it
(Roberto Giorgi).

https://doi.org/10.1016/j.s0ftx.2022.101105

they may find difficulties in understanding processor logic and
implementation [3].

In order to help understand the internal of the processors,
active learning, e.g., taking advantage of advanced software tech-
nology like simulators, has been shown an effective teaching
technique [4]. Compared to real hardware, simulators are less
expensive and more flexible as they are easy to set up, use,
modify and even provide access to details sometimes not practi-
cally accessible. Considering traditional teaching materials, such
as schematic diagrams and text descriptions, simulation can sig-
nificantly improve students learning and assist instructors in
teaching [5-7].

In a pipelined processor, the simultaneous execution of multi-
ple instructions in the different stages produces situations that

2352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2022.101105
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101105&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00043
mailto:wrv-admin@webriscv.dii.unisi.it
mailto:mariotti@dii.unisi.it
mailto:giorgi@unisi.it
https://doi.org/10.1016/j.softx.2022.101105
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Gianfranco Mariotti and Roberto Giorgi

cannot occur in a non pipelined processor, such as hazardous
situations that impede a smooth flow through pipeline stages.
Software simulation enables practical insights into these situ-
ations that cannot be visualized conveniently on real proces-
sors. Furthermore, it allows for a high level of individualization,
therefore providing significant help in learning efforts. Once the
concepts are demonstrated, students can progress at a pace that
suits them and practice until they are sure to have mastered the
topic.

This paper briefly describes WebRISC-V [8], a web-based RISC-
V pipeline simulation environment, compares it with similar
tools, and illustrates a detailed example of a simple program that
can be accelerated through the pipeline forwarding technique.
Other basic features have been introduced in [9)].

WebRISC-V is based on the RISC-V Instruction Set Architecture,
a high quality modern, free and open ISA standard, in contrast to
other commercially popular ISAs that are proprietary [10]. RISC-
V is also becoming popular in Computer Architecture courses as
a substitute of other ISAs [11]. From a design point of view, the
RISC-V avoids the technical pitfalls of other ISAs and is straight-
forward to implement in many microarchitectural styles [12].
RISC-V has the potential to increase innovation in microprocessor
design, reduce computer system cost and, as Moore’s law wanes,
ease the transition to more specialized computational devices.
Initially designed for research in the academic field, it is on its
way to become a widely accepted industrial standard for mi-
croprocessors [13], and multiple hardware implementations are
currently available [14].

Until recently, the most used architecture in the academic field
was MIPS, in order to achieve effective and easy learning. With
the rise in popularity and adoption of RISC-V, educational tools
are starting to appear to explore this ISA [15].

Educational software can allow students to learn assembly
programming and study machine language by executing pro-
grams and observing run-time changes of the memory and the
internal elements of the processor.

In the following, we briefly compare several educational
pipeline simulators that are available nowadays.

1.1. A comparison of computer architecture pipeline simulators

PBSE [16] (MARS [17] plug-in), MIPS X-ray [18] (MARS plug-
in), DrMIPS [19], Mipster32 [20], UCOMIPSIM [21], Visimips [22],
WASP [23] and WebMIPS [24] are tools for the MIPS ISA; Ripes
[25] and WebRISC-V are similar tools, but supporting the RISC-V
ISA.

We report in Table 1 an analysis on datapath implementation
and simulation environment characteristics of these tools. The
simulators are grouped and identified by the columns:

e ISA: which ISA the tool supports;
e Simulation Tool: how the educational software is named.

The categories through which the datapath simulators were ana-
lyzed are the following:

e Graphical Presentation: how the micro-architecture of the
processor is shown to the user by the tool.
Typically, these simulators fall in one of these three cases:

1. Stage Blocks: a reduced datapath view, exposing only
blocks that represent the phases of the pipeline (Fetch,
Decode, Execute, Memory and Write-Back);

2. Datapath: a simplified model, without control units
and signals;

3. Datapath with Control Unit: a complete datapath model.

SoftwareX 18 (2022) 101105

e Visualization of Architectural Elements: whether the sim-
ulator allows you to display the details of the datapath
architectural elements;

e Console I/O Syscalls: whether the tool permits both input
and output system calls (I/O), only output ones (O), or none;

e Datapath Implementation: whether the implementation of
the processor is single cycle (i.e, without pipelining), pipelined
or permits to choose between these two;

e Web Accessibility: specifies if the tool has online accessibil-
ity for the convenience of the users. Also specifies if the tool
requires plug-ins or is directly usable without any additional
software;

e Arch: whether the standard variable format of the simula-
tor’s architecture is 32-bit wide, 64-bit wide, or both.

Having described RISC-V growing importance, in our analy-
sis we have considered in more detail the current versions of
WeDbRISC-V and Ripes simulators. As of our knowledge, these two
simulators are the only ones that visually expose the datapath
of the RISC-V processor for educational purpose. WebRISC-V and
Ripes have in-depth focus on different aspects of the processor.
Compared to WebRISC-V, Ripes adds facilities to explore cache
behavior and how to use memory mapped I/O. Instead WebRISC-
V provides more facilities than Ripes for the exploration of the
details of the pipelined datapath. For example, it models the so
called branch delay-slot [26] and permits students to experiment
with code-reordering for taking advantage of such-delay slot,
whereas this feature is not available in Ripes. WebRISC-V also
provides other educational features missing on Ripes, such as
explanations for RISC-V Assembly instruction and directives, de-
scriptions and details for high-level components of the datapath
and special features on the pipeline table for easier comparison
with pencil-and-paper approaches.

2. Software description

Here, we outline the main features of WebRISC-V, a simulation
environment useful to facilitate students in investigating the par-
allel execution of instructions in the different stages of a pipelined
processor.

It includes facilities to edit assembly programs and view mem-
ory contents, registers, basic architectural elements and their
internal state. The user can run interactive simulations through
a step-by-step execution of the instructions and observe the
changes of the architectural state. Also, the user can replay in-
structions in order to better detect an interesting event. WebRISC-
V includes the simulation of structural, control and data haz-
ard; also, it permits to investigate the forwarding and hazard-
detection units, it presents the schematic with or without for-
warding and can show the execution in both these two cases.
Separately, the simulator can produce a pipeline diagram through
a compact view of the active stages at each cycle.

WeDbRISC-V is a web application. Being a client-server appli-
cation, it provides advantages and disadvantages compared to
native applications. Native applications are developed for run-
ning on a particular platform, and are installed directly on such
devices for usage. Developers therefore need to create separate
versions for each supported platform. Client-server applications
are instead developed and executed on a single environment,
with no installation required on user machines and upgrades
of the software only performed on server side and immediately
available to all users. Therefore this makes for easier testing
and support compared to the multitude of operating system and
hardware configurations that a native application will be installed
on, with the drawback of needing network connectivity. In the
case of WebRISC-V, we minimize this drawback by releasing the

Gianfranco Mariotti and Roberto Giorgi

Table 1
Comparison of datapath simulators.

SoftwareX 18 (2022) 101105

ISA Simulation Graphical Visualization of Console 1/0 Datapath implementation ~ Web accessibility Arch
tool presentation architectural elements Syscalls single pipelined client side® server side®
cycle
PBSE Stage blocks 1/0 v 32-bit
MIPS X-RAY Datapath 1/0 32-bit
DrMIPS Datapath with v v 32-bit
MIPS control unit
Mipster32 Stage blocks 32-bit
UCOMIPSIM Datapath with v 32-bit
control unit
Visimips Datapath with v 32-bit
control unit
WASP Datapath with v v v 32-bit
control unit
WebMIPS Datapath with v v v 32-bit
control unit
RISC-V RIPES Datapath vylth 0 v v 32/64-bit
control unit
WebRISC-V Datapath with v 1/0 v v 32/64-bit

control unit

2Additional plug-ins required.
bAccessible directly from the Web without the use of plug-ins.

open-source code, giving the possibility to spin up your own local
server instance, like the installation of a native application.

To validate the correctness of this software tool we have
used a pencil-and-paper approach related to several textbook
examples [26] that were also assigned as exam exercises for the
Computer Architecture course. The outcome from the simulations
have been validated regarding several aspects, including the cor-
rectness of the data, the correctness of the pipeline diagram with
and without forwarding, and the final clock cycle count.

2.1. Software architecture

WebRISC-V has its back-end written in PHP and its front-
end in HTML, CSS and JavaScript [27]. Being a server-side web
application, it is installed and executed on a web server and
presented to the user on their client interface. If the teaching staff
wants a local installation, an instance can be hosted with a simple
procedure on a Linux or Windows server.

This simulator supports the full implementation of four RISC-V
‘modules’! as they are described in the RISC-V ISA unprivileged
specification [28]: the 32-bit and 64-bit Base Integer (“fence” in-
struction excluded) modules - identified as ‘RV32I’' and ‘RV64I’' -
and their Extensions for Integer Multiplication and Division mod-
ule — identified as ‘M’, therefore making the tool run according
to the ‘RV32IM’ and ‘RV64IM’ specifications.

Voluntarily, for easier student’s reference, WebRISC-V resem-
bles very closely the schematic used in the Patterson/Hennessy
book [26], in which the pipelined datapath implementation is
explored and explained.

2.2. Software functionalities

WeDbRISC-V provides:

e The visualization of the complete architectural schematic of
a pipelined RISC-V processor (see Fig. 1);

e The ability of stepping forward and backwards in the exe-
cution of code, to better study what is happening inside the
pipeline and its elements;

1 1nafew words, a RISC-V ‘module’ is a subset of instructions.

e On a single page view, the monitoring of the information
about the current processing state (e.g., cycle count, colored
tags to indicate the current stage of an instruction, highlight-
ing of eventual ‘bubbles’ in the pipelined execution);

e A descriptive explanation of each internal element together
with its current state, that can be shown by simply hovering
with the mouse (see Fig. 2);

e The ability of simulating multiple hazard resolution modes
of the pipeline;

e The possibility of enabling (see Fig. 1a) or disabling (see
Fig. 1b) the data forwarding units (with automatic visual-
ization of the corresponding schematic);

e The possibility of visualizing the memory segment con-
tents (Text Segment, Static Data Segment, Dynamic Data
Segment) and the registers, as shown in Fig. 4;

e An online editor, with some built-in examples, and a con-
textually visible full list of the available instructions and
directives (see Fig. 3);

e Automatic generation of the classic pipeline diagram (see
Fig. 5a); in case of loops, this diagram can be automatically
squashed (see Fig. 5b);

e Basic I/O system calls of the simulated RISC-V are made
possible by prompting the user via a popup window, which
emulates the system console.

In Fig. 2, it is possible to see the simulator in action during
cycle-by-cycle execution. The current clock cycle is always visible,
together with the state of the stages: empty stages (i.e., stages
that are not currently busy executing instructions) and stall ‘bub-
bles’ (i.e., waiting cycles due to hazards) are also clearly visible.

In this schematic, the stage buffers are shown, each with a
specific color (pink, red, yellow, blue, green respectively for the
Fetch, Decode, Execute, Memory Access and Write-Back stages).
These colors are used also to highlight the instructions that are
being processed, on the left side; those instructions are also
visible on top of the architectural schematic, with the same colors,
to have a more direct connection with the corresponding stage.
By activating the corresponding visualization option, as in the
figure, it is possible to see a description and the state of an
architectural element that appears on top of the schematic by
simply hovering the mouse on such element.

Gianfranco Mariotti and Roberto Giorgi

‘COMMANDS
Load Program
Pipeline in New Window

EXECUTION OPTIONS

SoftwareX 18 (2022) 101105

VISUALIZATION OPTIONS

Forvarding Inside Pipeline Data Memory

VERSION 1.1:4 Activated v Lower to Upper bytes
Wiita your foedback System Resat
‘Robato Giorg | Gt
EXECUTION STATUS SCHEMA LAYOUT
not loaded currentcycle - | - I [| |
[ExecuTion TaBLE || CONSOLE]
e
[| DEX %Ar—_<L
Instruction - = wB x
Memory = M — by . EXamy
X v M — v B
| csRUNT 3 x = AEMWE
EMPTY & . B SCAUSE - 1) mml
o | 5 e R (P e PO serc
Click HERE to load a program x IF = r ae
ck HERE to l0ad 3 progra Bl r Sl oo -
T =
e) m AR
a T 2 3l MENORY
1 T
READDATA
TR
MEMORY SHIFT READDATA —f
Lo y poe:
: S v) o ADDRESS
ADDRESS "WRITE REG READ, 3
= I RITEDATA Y — DAt [t i
e — Pl % - x
bl = 5 o
HL B A &
o il coxtRo: ‘ 1
[T "
I ——
=
|l l]
UNITALU
L romuaronva |
S— '?
i
COMMANDS EXECUTION OPTIONS VISUALIZATION OPTIONS
Control Hazard Resolution . oo Data Memory
@ Son g Sow
VERSION 1.14 Fush Instruction v Deactivated v Data Path *4' Control Path [Lower to Upper bytes
Vifite your foedback-
Bobarto Giorg | Gl
EXECUTION STATUS SCHEMA LAYOUT
not loaded current cycle - I [| [
[execution TaBLE || CONSOLE o —
(8051, HAZARD St
= [IRERT) vetecrios |, 9 v
ANXD g UNIT ¢ o Flu
Flush | lIr— L ¥
r 1] X y
E €32, CONTROL J Lol »
v g “or TTL : w — —
=k] | M J— by ™ EXAEM
X HITSFIl v Mo © - U
2 csmusr 3
EMPTY B
— T Braxcr —
ar
-

wB
NEMWE
M W

EADREG |

READDATA

MEMORY

Lot =)
MEMORY READDATA?

REGISTERS

NRITEREG
TWRITE DATA

Ly spoRESS

Fig. 1. WebRISC-V main page: Schematic

3. Illustrative examples

Several built-in examples are immediately available to the
user for studying specific situations or to become familiar with
simple assembly codes.

Here, we present a detailed example of a simple exercise (see
Listing 1), that is used for training students at our department by
using WebRISC-V [29].

Listing 1: Forwarding Example

.text
addi x12, x0,
addi x10, x3,
loop:
beq x10, x3, fine
1w x5, 100(x10)
add x5, x5, x12
sw x5, 200(x10)
j loop
addi x10, x10,
fine:
addi x0, xO0,

2
8

-4
0

This exercise helps illustrate the functioning of hazard de-
tection and forwarding in the pipeline. The user/student can

(a) with and (b) without Forwarding.

compare the scenario when forwarding is enabled (leading to
faster execution) or without it, as a further experimentation
option.

It also makes use of the branch delay-slot [26] during the
execution, for didactic value. The delay-slot is the ability of fetch-
ing and executing one instruction after a branch, as if it was
before that branch in program order, is an important feature
of a pipelined processor, as it may lead to a faster execution.
This concept is typically surprising for first-time users as the
instructions are executed in a different order than what was
originally specified.

The Ul is quite straight-forward for usage of the simulator (see
Fig. 1). The starting point is loading a program (“Load Program”
button): the user can then write an assembly program into the
editor textbox or select one of the built-in examples.

Once ready, the user is guided to follow the same process that
is done by a computer before running a program, (a step which
is typically invisible, but which is important to understand the
‘magic’ behind the program execution) by pressing the button
“Load into memory”. If the program is written correctly (other-
wise the error is indicated), the visualization comes back to the
schematic and the user can observe the cycle-by-cycle details or

Gianfranco Mariotti and Roberto Giorgi SoftwareX 18 (2022) 101105

COMMANDS EXECUTION OPTIONS VISUALIZATION OPTIONS
Load Program 5P Execute ALL Jump Control Hazard Resolution Forwarding Inside Pipeline a Popup g Shor @ s Data Memory
Pipeline in New Window = Step Forward & Elements < bt /|
VERSION 1.1.4‘ = - ey Execute Delay Slot v Activated v on Hover Data Path Control Path Lower to Upper bytes v
Wite your feedback. ystem Reset tep Bad
Robarto Giorgi | Gitrub
EXECUTION STATUS SCHEMA LAYOUT
hanguatens comentcyce 4 | <[bease, gp 32 | - I 2déd a0, g5, 8 N S A
[ExecuTion TABLE || consoLe o 1
s T memr, sazae HAZARD DETECTION UNIT
- rBE bervcrion
— This unit detects hazard conditions and produces control signals
Flush it | accordingly
! | Example: In the case of previous W instruction using the same
[I t = . | destination register as the current ‘add’ instruction input register
ior 1212 60‘:\\11!?& H (ID/EX RegisterRD = IF/ID RegisterRS1 OR ID/EX RegisterRD =
Lipw &N NT H 1FID RegisterRS2 AND ID/EX MemRead = 1) one 'nop’ must be
ross 0 (Ox scaone U inserted in the pipeline.
Hype Instructon x 1e12]
addi a2, x0, 2 =R
11000010011 R stall=1 | o . e
r 7 R e) I e R R =
000000000010 00000 000 0HCO 0010011 - ey s . 10/EX.Me
| nomwE m maem m or 4 IT: e
INSTRUCTION IN EX STAGE T Close This Window
Address 4 (0xd) =T [b
-type Instruction. 1025201 L 4 READREG 2 U e
addi a0, gp, 8 . X o 3
00000000100000011000010100010011 SR 1 by 1 1
“ . R g MEMORY s 2 g
000000001000 00011 000 01010 0010011 L e '"] ! REGISTERS L ALY iy ADDEE [
IMMEDIATE RS1 FUNCT3 RD oP "1 - a
_ - S . ! - :
WRITE DATA bl n DATA
INSTRUCTION IN IF STAGE % READ) —] v — U L X
—_Address 8 (0xB) NSTR™| = X - X U, WRITE
$B-type Instruction HHH B ALv DATA
beq a0, gp, 32 _lnstyction 123 jocmon |
00000000001101010000110001100011 TIETETESTS i e
n 3 10 0 w9 Jnstryction [24-201 =1 o]
B ecton 130l
000000001100 0001 01010 000 1100011 —
IMMEDIATE RS2 RS1 FUNCT3 OP
FORWARDD
UNITALU
Address 12 (0xc) FORWARDING = Il
Hype Instruction: e LNITBRANCH '—‘ 1
Iw t0, 100(a0) Al
00000110010001010010001010000011 il !

100 10 2 5 3
000001100100 01010 010 00101 0000011
IMMEDIATE RS! FUNCT: RD op

Fig. 2. The case of a stall: A star indicates which instruction has generated the stall. The state of the Hazard Detection Unit is shown.

COMMANDS EXECUTION OPTIONS 'VISUALIZATION OPTIONS
Sample st Load into Memory Jump Control Hazard Resolution Forwarding Inside Pipeline Data Memory
mfnyzm W1TA P < Return to pipeline Execute Delay Slot v Activated v Lower to Upper bytes v
Roberto Glorgi Il Githiub
EXECUTION STATUS EDITOR

not loaded current cycle: - The purpose of this site is to allow students to check the operating of a RISC-V processor having a 5-stage pipeline.
[execution TaBLE || consoLE The programs that can be tested must
» Have no more than 2 ud (1kB Text Segment)
« Execute in no more than 2000 Cycles
* Use no more than 4k8 of Data Memory (3kB Dynamic Data Segment + 1kB Static Data Segment)

ASSEMBLY EDITOR

List of _text Ins
RVGaT RV64M pseudo
2 14, 2ymbo

EMPTY

1
Click HERE to load a program

{(xtrd) = xirs1) < sign_extend(imm) |

[List of .data Directives 1
2 o byt 1

[Supported System Calls

Fig. 3. WebRISC-V assembly editor page: Interactive list of instructions and directives, with explanations of their meaning and usage (and encoding in case of
pseudo-instructions).

execute the program at-once until the end. On the left panel, the to read. Therefore, we introduced a practical way to visualize the
user can select to observe the instructions flow, the content of ‘loop case’ by automatically squashing the cycles of the loop in
the memory, or the content of the registers, as shown in Fig. 4. the diagram, but without losing the precise accounting of the
During the step-by-step execution of the code, we can detect executed cycles. In Fig. 5 both versions of the pipeline diagram
eventual ‘bubbles’ generated by stalls inside the pipeline (see are shown.
Fig. 2). Until now, the user executed the code with forwarding acti-
Another relevant visualization tool is the pipeline diagram, vated: to see the difference in performance, the user can test the
which is obtained by pressing the “Execution Table” button. program without forwarding. The user can compare the cycles
Sometimes, typically due to the presence of loops, the diagram that are necessary for the execution of the code in the these two
could be too large to fit into the screen and it is anyway difficult different situations (with and without forwarding, see Table 2).

Gianfranco Mariotti and Roberto Giorgi

SoftwareX 18 (2022) 101105

handwritten.s

handwritten.s

current cycle: - current cycle: -

handwritten.s

current cycle: -

handwritten.s

current cycle:

[Execution TaBLE || CONSOLE

EXECUTION TABLE | [

CONSOLE

CONSOLE

[Execution TaBLE ||

[ExEcuTION TABLE ||

CONSOLE

Instruction Data
ER =

ﬁ?&'ﬁ:ﬁ.ﬂ@ﬁ’ Display the entire [Data] Memory Got
addi a2, x0, 2 Display the [Dynamic Data] sagment ot
0 0 11000010011 Display the [Static Data] segment GO!
2 0 o 2 19
Display the dwords between
’ 000000000010 00000 000 01100 0010011 address| 1024 v |and| 1024 v GO!
IMMEDIATE RSl FUNCT3 RD oP
Display the dword at address| 1024 v Got
Address 4 (0xt)
ype Instruction
addi a0, gp, 8 SELECT MEMORY
0000000010000001100001 0100010011 TO DISPLAY HERE
3 0 10 3
000000001000 00011 000 01010 0010011 —0
DIMEDIATE RS FUNCT3 RD el
Address (0x®)
B- lyp’:‘l:s"{l:,‘(m!w Static Data —GP: 1024
beq a0, gp, 32
00000000001101010000110001100011
2 3 10 0 % Dynamic Data |
000000001100 0001 0100 000 1100011
IMMEDIATE RS2 RSl FUNCT3 oP
Address 12 (0xc)
Hype Instruction Stack
—SP:5120

Iw 10, 100(a0)
00000110010001010010001010000011
100 10 2 - 3

000001100100 01010 010 00101 0000011
D\MEDIATE RSl FUNCT3 RD oP
Address 16 (0x10)
Retype Instruction’
add 10, 10, a2 .

Data Data
B - W N - S

Instruction Data

==

Momory

Display the entire [Data] Memory Go! RNo |[Reg id][DecVal Binary Value (64 bit)

is 1 00000000000000000000000000000000
Disphey U0 e Dot sngrvrt] 00000000000000000000000000000000

Display the [Static Data] segment Go! 00000000000000000000000000000000

Display the dwords between

00000000000000000000000000000000

address | 1024 v |and| 1024 v Got 00000000000000000000000000000000
00000000000000000001010000000000

Display the dword at address | 1024 v GOt 00000000000000000000000000000000
00000000000000000000010000000000

Byte0 || ader. 00000000000000000000000000000000

Lw»”(wd) R | v | v 00000000000000000000000000000000

nn‘mcaa 00000000 | 00000000 onuouannn 1024)

00000000 oaauaocc 00000000 oouoanua 10

(0) (0

00000000 | 000! o 0| 00000000 ooaou 0000
)

1032

00000000 C‘ﬂ VC 00000000 ODUD 000 7
©) o)

00000000 unuum/)"c u\nonunu ouuou?uu 1040|
40000000 60000000 movouu Wuo vuc-
(0) 0) (0) 0)

06000000 00000000 | 10060060 oooo 00K
0) 0)

DDDMCJG 00000000 ﬂDOGﬂDﬂD DMODDBD
) 1052

uuuomo 06000000 | 60000060 wuowuu
0)

30| 03000000 oncowuu
o e) R

EDDDDDGO "D’\HDDGC HDDODDDD Dﬂﬂo 0000 64
0) 0) 0)

nououcco 00

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000001010000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000

vocoucco 50000060 u\monouu oouwuu ocs
(0) o) {9). 00000000000000000000000000000000
30000000000000000000000000000000
00000000000000000000000000000000
o o0000000000000000000000000000000

30000000000000000000000000000000 | _

00000000 00000000 WGQODUU 00000000
(0) (0) (0)

00 00000000 00000000
0 (0)

00000000 00000000 | 00000000 00000000
0\ 0\ o LN 1050 g

c) d)

Fig. 4. WebRISC-V views of the left panel: (a) Instruction Memory, Data Memory (b) before and (c) after selecting the Memory Segment to display, (d) Registers.

FULLLOOPS v EXECUTION TABLE (sauasiEoLooPs v EXECUTION TABLE
CPU Cycles CPU Cycles
Instruction | 1] 23] 4]5]6]7[8]9 [10[11]12[13[14[1516[17[18[19]20[21[22]23[24]25]26 Instruction | 1[2]3[4]5]6]7[s]9[to]11[12[13]14[15[16[17[18
[addiazx0.2 [F[D[xXM[W| | | [[| [[[[[[1[] | addia2x0.2 |F|D|X|M[W| | | | [[
[addia0.gp.8 | [F[D[x[M[W] | [[[[][] Il addia0.gp.8 | [F[D[X[M[W[[| [
beqa0.gp.48 | | |F|-|D|X|M[W| |] beqa0.gp.48 | | |F|- D|X|MW|]
Iwt0,100@0) | | | | |F|p[x|M[W | 1w 10, 100(a0) | F|D[X|MW \ |
add 10, 10, a2 F|-|D[x|M[W add 10, 10, a2 | [F[-[p[x|M[w] | |
swt0.200@0) | | | | | | F[D[x[MW[[[[[] sw10.20000) | || REEREL |
jal x0,-32 F|D|X MW D|X|M|W
addia0,a0,4 | | | | || [TF[oxMw [[[[||] Flp[xM[w| | |
beqal, gp.48 | | | F|-|p[x|Mlw beqw 2p. 48 F|-[p[x|MW
[ww100@0) | [[[[[[[T TT1 F|D[X[M[W] wt0,10000) | | | | | | [[| [F[D[x[M[W]
add 10, 10, 22 F|-|D[X|MW addi x0, x0, 0 F|D|X|M[W
sw 10, 200(20) 111 1 [[[F[p|x[M[w)
+ ~ LOOP #0 - 'beq a@, gp, 48' TO ‘addi a0, a@, -4': 8 cycles 2 times
jalx0, 32 F|D|X|MW
addi a0, 20, -4 | | [EBERE
beq a0, gp, 48 F|- |D[X|MW
w0, 100(20) | | [L] F|D[x|m]W
[mddixox00 [[[[[[[[[[[T T TTTTTI] F|D[x|M[W]

b)

Fig. 5. Pipeline diagram in both visualization methods: (a) ‘Full loops’ and (b) ‘squashed loops’. In (b), we can see a squashed diagram where the ‘condensed loop’

is marked with two red vertical bars from cycle 3 to cycle 10; also an automatically generated note under the diagram (“LOOP #0 ...

’) indicates precisely how many

cycles are taken from the single loop iteration and how many times this loop is repeated. Through the pipeline diagrams it is easier to analyze the flow of executed

instructions (F = Fetch, D = Decode, X=eXecute, M = Memory access, W = Write-back, ‘-’ =

Table 2

Execution results.
Pipeline Cycles
With forwarding 26
Without forwarding 35

As can be seen there is a significant speed-up when executing
instructions with the forwarding option.
The user can observe the effect of the forwarding units:

e the result of the sum (“addi”) propagates to stage D, where
the comparison between the two operands is made for the

branch decision (“beq”);
o the result of the memory read (“Iw

to perform the sum (“add”);
e the result of the sum (“add”) propagates to stage M, in

which the data memory is accessed to perform a write
operation (“sw”);

”’) propagates to stage X,

pipeline bubble).

e the result of the sum (“addi”) propagates to stage D; this
functional dependence is generated by the delay-slot, active
on the jump instruction (“j loop”).

It is possible to compare the pipeline diagrams on both kinds of
execution to explore the results.

4. Impact

The plausibly most popular undergraduate textbook in com-
puter architecture, having a readership of over one hundred thou-
sand students a year [30] and having been used around the world
from the 1990s [31], is “Computer Organization and Design” by
D. A. Patterson and]. L. Hennessy [26]. This book introduces to
student the basics of modern processors, which are based on a
pipelined micro-architecture as offered by WebRISC-V.

Courses in computer architecture have been shifting to include
the RISC-V ISA, or to migrate to it from other ISAs such as
MIPS, following the growth of RISC-V popularity in both academic
research, teaching and industry [10,11,13].

Gianfranco Mariotti and Roberto Giorgi

The pipeline concept is a well established standard for im-
plementing high-performance processors, for it represents a sig-
nificant source of performance speed-up widely used in current
processors, therefore being a very significant concept in Com-
puter Architecture [26]. Consequently it is quite important that
students of that course learn this concept in an easy and reliable
way.

In the classroom pipeline scheduling problems are usually
handled by the pencil-and-paper method and are neither small
nor easy to solve in most of cases, this being the reason why the
amount and the versatility of the exercises that both the professor
and students can solve are limited. This might be the reason that
explains why students are not confronted with a great set of
different examples and problems, which may bring them to not
understand all the possible situations that could happen in the
scheduling of a pipeline.

Thus WebRISC-V, a simulator that provides an easy and fast
way to solve or double-check such exercises, provides a notable
contribution as a didactic tool for students.

This software is used as didactic tool in the lessons of Com-
puter Architecture of our department and is offered as one the
educational material that is available on the official RISC-V web-
site [15].

The open-source nature of WebRISC-V makes the software
readily accessible for contributions seeking to enhance its capa-
bilities. In the foreseeable future, we hope that a community of
users can grow around WebRISC-V, so that the tool can improve
even more in terms of both features and user-friendliness.

5. Conclusions

WebRISC-V is available online to be used for educational rea-
sons in Computer Architecture classes at the following URL: https:
|[webriscv.dii.unisi.it. The availability of this kind of tools help un-
derstanding the hidden details of a pipelined processor and how
the performance of the software can be enhanced by appropriate
optimizations.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been partially supported by the European Com-
mission under the AXIOM H2020 project (id. 645496), TERAFLUX
(id. 249013), and HiPEAC (id. 871174)

References

[1] Joint Task Force on Computing Curricula AfCMA, Society IC. Computer
science curricula 2013: Curriculum guidelines for undergraduate degree
programs in computer science. New York, NY, USA: Association for
Computing Machinery; 2013.

[2] Force CT. Computing curricula 2020. 2020, https://cc2020.net.

[3] Lakshminarayanan D. Learning difficulties in computer architecture. COM-
PUSOFT: Int J Adv Comput Technol 2016. URL https://ijact.in/index.php/
ijact/article/view/451.

[4] Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et
al. Active learning increases student performance in science, engineer-
ing, and mathematics. Proc Natl Acad Sci 2014;111(23):8410-5. http://
dx.doi.org/10.1073/pnas. 1319030111, arXiv:https://www.pnas.org/content/
111/23/8410.full.pdf, URL https://www.pnas.org/content/111/23/8410.

[5] Prasad PWC, Alsadoon A, Beg A, Chan A. Using simulators for
teaching computer organization and architecture. Comput Appl Eng
Educ 2016;24(2):215-24. http://dx.doi.org/10.1002/cae.21699, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.21699, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21699.

[6

(7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

SoftwareX 18 (2022) 101105

Mustafa B. Modern computer architecture teaching and learning support:
An experience in evaluation. In: International conference on informa-
tion society. 2011, p. 411-6. http://dx.doi.org/10.1109/i-Society 18435.2011.
5978481.

Alnoukari M. Simulation for computer sciences education. Commun
ACS 2013;6. URL https://www.researchgate.net/publication/249313265_
Simulation_for_Computer_Sciences_Education.

Mariotti G, Giorgi R. WebRISC-V. 2019, https://github.com/Mariotti94/
WebRISC-V.

Giorgi R, Mariotti G. WebRISC-V: A web-based education-oriented RISC-
V pipeline simulation environment. In: Proceedings of the workshop on
computer architecture education. WCAE'19, New York, NY, USA: ACM;
2019, p. 3:1-6. http://dx.doi.org/10.1145/3338698.3338894, URL http://doi.
acm.org/10.1145/3338698.3338894.

Greengard S. Will RISC-V revolutionize computing? Commun ACM
2020;63:30-2. http://dx.doi.org/10.1145/3386377.

Zhang K. Evolution and revolution of computer systems courses with the
open RISC-V ISA. In: CompEd '19: Proceedings of the ACM conference
on global computing education. 2019, p. 171. http://dx.doi.org/10.1145/
3300115.3312506.

Waterman A. Design of the RISC-V instruction set architecture (Ph.D.
thesis), EECS Department, University of California, Berkeley; 2016, URL
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html.
Corporation SR. RISC-V market analysis the new kid on the block
(cc315-19 ed.). 2019, https://semico.com/content/risc-v-market-analysis-
new-kid-block.

Doerflinger A, Albers M, Kleinbeck B, Guan Y, Michalik H, Klink R, et al.
A comparative survey of open-source application-class RISC-V processor
implementations. In: CF '21: Proceedings of the 18th ACM international
conference on computing frontiers. 2021, p. 12-20. http://dx.doi.org/10.
1145/3457388.3458657.

RISC-V educational materials. 2020, https://riscv.org/community/learn/
educational-materials/.

Lim DX, Smitha KG. Pipelined MIPS simulation: A plug-in to MARS sim-
ulator for supporting pipeline simulation and branch prediction. In: 2019
IEEE international conference on engineering, technology and education.
2019, p. 1-7.

Vollmar K, Sanderson P. MARS: An education-oriented MIPS assembly
language simulator. In: Proceedings of the 37th SIGCSE technical sym-
posium on computer science education. SIGCSE '06, New York, NY, USA:
ACM; 2006, p. 239-43. http://dx.doi.org/10.1145/1121341.1121415, URL
http://doi.acm.org/10.1145/1121341.1121415.

Sales GCR, Aradjo MRD, Padua FLC, Corréa Janior FL. MIPS X-RAy: A
plug-in to MARS simulator for datapath visualization. In: 2010 2nd Inter-
national conference on education technology and computer, Vol. 2. 2010,
p. V2-32-V2-36. http://dx.doi.org/10.1109/ICETC.2010.5529442.

Nova B, Ferreira JC, Aradjo A. Tool to support computer architecture teach-
ing and learning. In: 2013 1st International conference of the Portuguese
society for engineering education. 2013, p. 1-8. http://dx.doi.org/10.1109/
CISPEE.2013.6701965.

de Oliveira Quintas JC. Mipster32: A 32 bit MIPS simulator. LAP LAMBERT
Academic Publishing; 2017.

Gersnoviez A, Brox M, Montijano MA, Sdjar JA, Moreno CD. UCOMIPSIM
2.0: Pipelined MIPS architecture simulator. In: 2018 XIII Technologies
applied to electronics teaching conference. 2018, p. 1-6. http://dx.doi.org/
10.1109/TAEE.2018.8476063.

Kabir MT, Bari MT, Haque AL. ViSiMIPS: Visual simulator of MIPS32
pipelined processor. In: 2011 6th International conference on computer
science education. 2011, p. 788-93. http://dx.doi.org/10.1109/ICCSE.2011.
6028756.

Stojkovic A, Djordjevic], Nikolic B. WASP: A web-based simulator for an
educational pipelined processor. Int J Electr Eng Educ 2007;44(3):197-215.
http://dx.doi.org/10.7227[IJEEE.44.3.1.

Branovic I, Giorgi R, Martinelli E. WebMIPS: A new web-based MIPS
simulation environment for computer architecture education. In: IEEE
workshop on computer architecture education. Munich, Germany; 2004,
p. 93-8. http://dx.doi.org/10.1145/1275571.1275596, URL http://www.dii.
unisi.it/~giorgi/papers/Branovic04a.pdf.

Petersen MB. Ripes. 2019, https://github.com/mortbopet/Ripes.

Patterson DA, Hennessy JL. Computer organization and design RISC-V
edition: The hardware software interface. 1st ed.. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.; 2017.

Nixon R. Learning PHP, MySQL, JavaScript, and CSS: A step-by-step guide
to creating dynamic websites. O'Reilly Media, Inc.; 2012.

Waterman A, Asanovic K. The RISC-V instruction set manual, volume I:
Unprivileged ISA. 2019, https://riscv.org/specifications/isa-spec-pdf/.
Mariotti G, Giorgi R. Understanding the advantage of forwarding logic.
2020, https://arcal.dii.unisi.it/lab-webriscv.htm.

Patterson DA, Hennessy JL. Computer organization and design
RISC-V edition: The hardware software interface. 2021, https:
//www.elsevier.com/books/computer-organization-and-design-risc-v-
edition/patterson/978-0-12-820331-6.

Clements A. The undergraduate curriculum in computer architecture. IEEE
Micro 2000;20(3):13-21. http://dx.doi.org/10.1109/40.846305.

https://webriscv.dii.unisi.it
https://webriscv.dii.unisi.it
https://webriscv.dii.unisi.it
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb1
https://cc2020.net
https://ijact.in/index.php/ijact/article/view/451
https://ijact.in/index.php/ijact/article/view/451
https://ijact.in/index.php/ijact/article/view/451
http://dx.doi.org/10.1073/pnas.1319030111
http://dx.doi.org/10.1073/pnas.1319030111
http://dx.doi.org/10.1073/pnas.1319030111
http://arxiv.org/abs/https://www.pnas.org/content/111/23/8410.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/111/23/8410.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/111/23/8410.full.pdf
https://www.pnas.org/content/111/23/8410
http://dx.doi.org/10.1002/cae.21699
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.21699
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21699
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21699
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21699
http://dx.doi.org/10.1109/i-Society18435.2011.5978481
http://dx.doi.org/10.1109/i-Society18435.2011.5978481
http://dx.doi.org/10.1109/i-Society18435.2011.5978481
https://www.researchgate.net/publication/249313265_Simulation_for_Computer_Sciences_Education
https://www.researchgate.net/publication/249313265_Simulation_for_Computer_Sciences_Education
https://www.researchgate.net/publication/249313265_Simulation_for_Computer_Sciences_Education
https://github.com/Mariotti94/WebRISC-V
https://github.com/Mariotti94/WebRISC-V
https://github.com/Mariotti94/WebRISC-V
http://dx.doi.org/10.1145/3338698.3338894
http://doi.acm.org/10.1145/3338698.3338894
http://doi.acm.org/10.1145/3338698.3338894
http://doi.acm.org/10.1145/3338698.3338894
http://dx.doi.org/10.1145/3386377
http://dx.doi.org/10.1145/3300115.3312506
http://dx.doi.org/10.1145/3300115.3312506
http://dx.doi.org/10.1145/3300115.3312506
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
https://semico.com/content/risc-v-market-analysis-new-kid-block
https://semico.com/content/risc-v-market-analysis-new-kid-block
https://semico.com/content/risc-v-market-analysis-new-kid-block
http://dx.doi.org/10.1145/3457388.3458657
http://dx.doi.org/10.1145/3457388.3458657
http://dx.doi.org/10.1145/3457388.3458657
https://riscv.org/community/learn/educational-materials/
https://riscv.org/community/learn/educational-materials/
https://riscv.org/community/learn/educational-materials/
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb16
http://dx.doi.org/10.1145/1121341.1121415
http://doi.acm.org/10.1145/1121341.1121415
http://dx.doi.org/10.1109/ICETC.2010.5529442
http://dx.doi.org/10.1109/CISPEE.2013.6701965
http://dx.doi.org/10.1109/CISPEE.2013.6701965
http://dx.doi.org/10.1109/CISPEE.2013.6701965
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb20
http://dx.doi.org/10.1109/TAEE.2018.8476063
http://dx.doi.org/10.1109/TAEE.2018.8476063
http://dx.doi.org/10.1109/TAEE.2018.8476063
http://dx.doi.org/10.1109/ICCSE.2011.6028756
http://dx.doi.org/10.1109/ICCSE.2011.6028756
http://dx.doi.org/10.1109/ICCSE.2011.6028756
http://dx.doi.org/10.7227/IJEEE.44.3.1
http://dx.doi.org/10.1145/1275571.1275596
http://www.dii.unisi.it/~giorgi/papers/Branovic04a.pdf
http://www.dii.unisi.it/~giorgi/papers/Branovic04a.pdf
http://www.dii.unisi.it/~giorgi/papers/Branovic04a.pdf
https://github.com/mortbopet/Ripes
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb27
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb27
http://refhub.elsevier.com/S2352-7110(22)00070-X/sb27
https://riscv.org/specifications/isa-spec-pdf/
https://arcal.dii.unisi.it/lab-webriscv.htm
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-820331-6
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-820331-6
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-820331-6
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-820331-6
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-820331-6
http://dx.doi.org/10.1109/40.846305

	WebRISC-V: A 32/64-bit RISC-V pipeline simulation tool
	Motivation and significance
	A comparison of computer architecture pipeline simulators

	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

