
Dataflow Support in x86 64 Multicore Architectures
through Small Hardware Extensions

Andrea Mondelli†, Nam Ho∗, Alberto Scionti§, Marco Solinas†, Antoni Portero‡ and Roberto Giorgi†
∗ University of Paderborn

Email:namh@mail.upb.de
† Università degli Studi di Siena

Email:{mondelli,solinas,giorgi}@dii.unisi.it
‡ IT4Innovations – National Supercomputing Center

Email:antonio.portero@vsb.cz
§ ISMB – Istituto Superiore Mario Boella

Email:scionti@ismb.it

Abstract—The path towards future high performance comput-
ers requires architectures able to efficiently run multi-threaded
applications. In this context, dataflow-based execution models
can improve the performance by limiting the synchronization
overhead, thanks to a simple producer-consumer approach. This
paper advocates the ISE of standard cores with a small hardware
extension for efficiently scheduling the execution of threads on
the basis of dataflow principles. A set of dedicated instructions
allow the code to interact with the scheduler. Experimental results
demonstrate that, the combination of dedicated scheduling units
and a dataflow execution model improve the performance when
compared with other techniques for code parallelization (e.g.,
OpenMP, Cilk).

Keywords—manycore; multicore; dataflow;

I. INTRODUCTION

In the near future, the number of cores is expected to be one
or two orders of magnitude larger than current systems. In this
context, it is well known that data movement is becoming more
energy hungry than processing data [1]. This implies that data
synchronization and communication overheads, experienced by
multi-threaded real-world applications, may have an enormous
impact on such systems. New execution models are needed
to overcome the limitations of current technologies. Dataflow
computing offers a simple way to achieve high-performance,
and high degree of concurrency and speculation, by means of
implicit synchronization [2], [3]. Architectural exploitation of
dataflow principles have been investigated in several research
works [4]–[11]. Generally, dataflow-inspired execution models
split the applications into a large set of threads [14], [25].
Thus, a multicore architecture has the potential of executing
many of these threads concurrently. Maxeler’s dataflow engines
[12] allow mapping FPGA’s blocks with nodes of the dataflow
execution graph. Other approaches, such as in Culler et al. [13],
rely on the compiler capabilities, the programming languages
features, and the availability of run-time libraries to provide
efficient thread scheduling. The most similar approach to the
ours is represented by Carbon [26]. It is designed to support
the scheduling of fine-grained threads through an instruction
set extension and a two-level hierarchy of hardware units.
However it is limited to the pure scheduling and load-balancing
of threads without considering special techniques to reduce the
amount of data to be moved. On the contrary, in our approach
the memory model is a key part of the design [21]–[23].

This paper advocates the enhancement of a x86 64 mul-
ticore architecture with a set of fine-grain thread scheduling
units operating on the basis of dataflow principles. We syn-
thetically refer to these units as the Distributed Scheduler –
DS. The DS is organized as a two-level hierarchy with the aim
of improving scalability of the architecture and eliminating a
single point of failure [25], [28]. A small set of instructions
is added to the x86 64 ISA limiting the complexity of the
programming model [27].

II. SYSTEM OVERVIEW

We considered a System-on-Chip organized in the fol-
lowing manner. A scalable interconnection (e.g., Network-on-
Chip) is used to connect a set of Computing Clusters (CCs)
having the same internal organization. Specialized blocks can
also be connected, in order to access external peripherals.
Figure 1 shows an instantiation of the multi-node system,
although this paper shows only the analysis of a single node.

Scalable Interconnects

TS
1

Bus

TS2 NI

TS
1MC TS
1

NI

Bus

TS2

TS
1 MC

TS
1

Bus

TS2NI

TS
1

MC

NI

I/O controller

Chip

DR
AM

Pe
rip

he
ra

l

… …

…

MC NIMemory
Controller

Network
InterfaceL2TSUComputing Core +

L1TSU

DR
AM

DR
AM

TS2TS1

Figure 1: An example of the target system with 3 computing
clusters and one I/O controller.

Since x86 64 architecture is widely adopted in different
contexts (e.g., HPC, general purpose desktop systems, etc.),
we decided to select it as the basis for our design. However,
different architectures (e.g., VLIW) can benefit from it. The
structure of a CC is based on a shared bus with two separated
channels: one channel is dedicated to exchange synchroniza-

2015 Euromicro Conference on Digital System Design

978-1-4673-8035-5/15 $31.00 © 2015 IEEE

DOI 10.1109/DSD.2015.62

526

tion information among the DS units, while the other transmits
conventional data/instructions. Albeit this type of interconnec-
tion presents many limitations, it is still largely used in com-
mercial processors. Coherency at CC level is needed to run the
operating system, but our dataflow execution model does not
need coherency (shared accesses can be manged by software
transactional memory mechanisms [15]). In Figure 1 we put
in evidence other key components of a CC. The Network
Interface (NI) allows talking with other clusters, while the
Memory Controller (MC) allows accessing DRAM modules.
Each core is enhanced with a Level-1 Thread Scheduling
Unit (L1TSU) that is responsible for executing instructions
devoted to manage dataflow threads. All these units exchange
information with a Level-2 Thread Scheduling Unit (L2TSU)
connected to the shared bus. Together, the L1TSUs and the
L2TSU form the DS. Each CC, as well as each core within
a CC, has an associated a unique identifier. Actually, they are
used to select a specific L2TSU and a specific L1TSU in the
chip. In this paper we focus our attention on the organization
of the single computing cluster, and presenting its execution
performance.

A. Dataflow execution model
The DS main purpose is to support the execution of

applications in a dataflow fashion. Although we assume for
simplicity to run only one dataflow thread at a time in
each core, our execution model can take advantage from the
implementation of a form of Simultaneous Multi-Threading.
Unlike CUDA programming model, we support the execution
of a large set of concurrent threads although we allow each
thread executing its independent group of instructions.

Similarly to the DF-Thread model [16], in our model each
thread is composed of few tens of instructions, and their body
is structured in such a way that load operations of input data are
performed at the beginning, while store operations of values for
other threads are performed at the end of execution. Thus, the
central part of the thread body contains only computations. We
refer to this type of threads as DataFlow Threads (DFTs). Each
DFT has an associated Synchronization Count (SC) and a spe-
cial memory block called Frame Memory Block (FMB), which
respectively store the number of required inputs and their
values. The explicit implementation of a producer-consumer
scheme ensures the correctness of the thread synchronization.
The producer thread generates input data for consumer threads
by writing into specific locations within their FMBs. At the
same time the SC is atomically decremented, and when it is
reduced to zero the DFT is marked as ready for the execution.
FMBs are associated to DFTs at the time of their creation,
while they are deallocated once the threads complete.

The interaction with the DS units and the DFT code takes
place by means of four special instructions referred as T*64
[20]. They support the creation and deletion of DFTs, as
well as write and read operations to/from the FMBs. T*64
instructions are decoded locally by computing cores in the de-
coding stage, and forwarded to the L1TSUs for the execution.
This approach allows standard x86 64 instructions and T*64
instructions to maintain separate execution paths within each
core, thus maximizing the exploitation of the instruction level
parallelism.

III. DISTRIBUTED SCHEDULER – DS
We enhanced computing clusters with a variant of the

micro-architecture proposed in [21], [29] (see figure 2).

L1TSUs are responsible for managing the T*64 instruction
flow coming from the attached cores, allocating resources
for the DFTs, and performing memory accesses to the frame
memory blocks. The role of the L2TSU is that of distributing
the workload among the available cores. To this end, the
L2TSU monitors the activity of each L1TSU, and applies
specific scheduling policies. In this work we limit our analysis
on a simple scheduling strategy: L1TSUs that run out of
resources can interact with the L2TSU to select another core
where to move the DFT’s requests.

A. Level-1 Thread Scheduling Unit – L1TSU
The Level-1 Thread Scheduling Unit (L1TSU) is composed

of three functional blocks. The L1TSU Logic Block contains
the finite state machine (FSM) that governs the operations
of the unit. It consists of four sub-FSMs dedicated to han-
dle the messages associated to T*64 instructions, which are
activated by the decoding stage of the computing core. The
L1TSU Logic Block also contains data structures holding the
next message to be sent through the bus or the one to be
decoded. Messages are used to transmit information regarding
the operation to be performed (e.g., the write operation on
the FMB): they are written in a write queue (see Figure 2),
where they are extracted in the FIFO order by the bus interface.
On the contrary, the L1TSU becomes a bus slave every time
it has to receive a message. The local scheduling unit has a
Ready-Thread Block for keeping information regarding ready
for execution DFTs, which can access a private cache to store
their FMBs. This cache is connected to a frame memory block
prefetcher, which loads the frame memory blocks in the FMB
cache, as well as the instruction pointer (IP) and the frame
pointer (FP) associated to the corresponding threads. The
prefetcher accesses to the interconnection bus using a separated
communication channel (Ch-1 in figure 2). Moreover, since
one DFT at a time can be executed by the core, an IP and a
FP registers are integrated in the Ready-Thread Block to store
the information of this thread. It is important to note that write
operations involve a data transfer with an external unit, while
read operations are always performed on the locally cached
FMB of the executing thread. Thus, to hide the latency gen-
erated by the bus contentions and arbitration, write operations
are actually performed to a write buffer. Asynchronously, the
bus interface extracts data from this buffer and sends them to
the appropriate unit.

B. Level-2 Thread Scheduling Unit – L2TSU
The Level-2 Thread Scheduling Unit (L2TSU) distributes

the workload among the computing cores, and synchronizes
the information regarding DFTs to execute. Three global data
structures serve the purpose of managing threads during their
lifetime. The Pending Thread Table (PTT) consists of entries
storing a 〈IP,SC〉 tuple. Only instructions that modifies the SC
have access to it. The table is implemented as a small cache
with a tag (TAG) and a validity (V) field for each entry. Since
old data allocated by previous T*64 instructions have higher
priority, this structure keeps them in the local lines and writes
new data directly in the main memory. The Preload Queue
(PLQ) is a scratchpad memory that keeps track of the threads
ready for the execution. In order to run ready threads, each
entry contains a 〈FP,IP〉 tuple. Finally, the Free Frame Queue
(FFQ) is a scratchpad memory that keeps track of the free
FMBs. Each entry contains the reference to a free FP. Due to
limited storage space, these data structures are replicated in the

527

Bus interface (Ch-0)

Processing unit

L2 Cache

I-Cache
L1

D-Cache
L1

I-TLB D-TLB

Bus interface (Ch-1)

Control Logic

Sent MsgHandler Recv MsgHandler
FMB

Cache

Prefetcher

IP FP

w
rit

e
bu

ffe
r

w
rit

e
qu

eu
e

re
ad

qu
eu

e

Ready Thread Block

L1-TSU Logic Block

Core + L1 Scheduler

Bus interface (Ch-1)

Control Logic

Sent MsgHandler Recv MsgHandler

FMB
Cache

PTT base

PLQ base

PLQ head

PLQ tail

FMB base

FFQ base

FFQ head

FFQ tail

PTT V TAG IP SC

PLQ FP IP

FFQ FP

CL …

L2-TSU Logic Block FMB-MMU

L2 Scheduler

Interconnection Bus

w
rit

e
qu

eu
e

re
ad

qu
eu

e

C0 C1 Cn

Figure 2: The internal architecture of the L1TSU integrated into each core, and the internal architecture of the L2TSU.

main memory. It is responsibility of the operating system to
allocate the region where they are placed in. A set of special
purpose registers (FMB-MMU) point to the base address of the
data structures in the main memory. Similarly to the L1TSU,
a FMB cache is used to make FMB accesses faster.

All the operations are governed by a dedicated finite state
machine referred as L2TSU-FSM, which consists of four sub-
FSMs (one for each specific T*64 instruction). These sub-
FSMs are enabled by the interaction with the L1TSU: they
update internal data structures whenever T*64 instructions
are executed, and handle the messages sent/received by the
L2TSU. Two registers (i.e., the Sent MsgHandler and the
Recv MsgHandler registers) manage incoming and outgoing
messages. Messages are stored in two distinct FIFO queues
(respectively the Write Queue and the Read Queue). The Core
Load (CL) data structure allows to distribute the workload
among the cores in accordance to the policy implemented by
the L2TSU-FSM. To this end, it holds the number of DFTs
running on each core. Every time a core runs out of resources,
the L2TSU identifies the core that is more suitable for the
execution of a new DFT through a CL look-up.

C. Bus Transactions
In order to keep T*64 and standard traffic separated, we

designed the interconnection system as a single bus organized
with two channels. We assigned one channel (Ch-0 in figure 2)
to standard communications and data transfers (e.g., x86 64
instruction loading), and a second channel (Ch-1 in figure
2) to T*64 data exchanges. L1TSU and L2TSU operations
are internally translated into a sequence of transactions, while
the communication protocol considers both request and reply
messages. In addition, to support thread distribution among the
L1TSUs, we defined a Load Balancing message. This message
conveys the 〈IP,FP〉 tuple of a ready thread which is assigned
to a L1TSU by the L2TSU.

IV. EXPERIMENTAL RESULTS

The simulation platform we chose for the experimental
evaluation consists of the integration of COTSon and SimNow
tools [30]. We integrated a timing model of the L1TSU
and L2TSU units. To this end, we estimated the latency
for the operations performed by L1TSU and L2TSU as the
number of cycles equals to the number of states of each sub-
FSM. Similarly, we estimated the latency of the bus module
for different configurations of the system. Cores in a single
computing cluster share the same memory hierarchy: a 2-way
32KiB L1-I$ and 32KiB L1-D$, both with 3 cycles latency,
a 4-way 512KiB L2$ with 5 cycles hit latency, 1GB of main

memory (150 cycles latency). The cores run at 1GHz and have
the following configuration for the DFT data structures: 1-way
16KiB L1TSU FMB$ with 1 cycle latency, 1-way 128KiB
L2TSU FMB$ with 5 cycles latency, 32 entries of 16B line
size with 2 cycles latency for PTT, PLQ, and FFQ, 32 entries
of 1B for CL. The performance have been evaluated using
a computing cluster configured with 1, 2, 4, 8, 16, and 32
cores, and resorting to two widely deployed examples: Re-
cursive Fibonacci Sequence and Block Matrix Multiplication
applications. The speedup has been normalized to that of the
sequential execution, and compared with OpenMP, Cilk1. The
results show that the choice of deploying a hardware scheduler
is most effective when the number of running threads increases.

Figure 3: Recursive Fibonacci Sequence: evaluation of T*64,
T*64 optimistic, OpenMP, and Cilk executions.

Figure 3 shows the normalized speedup (it is the ratio
between the execution time of a parallelized execution and the
sequential one) for the Recursive Fibonacci Sequence (input
n = 35) when the T*64, OpenMP and Cilk implementations
are used. For the T*64 implementation we considered two
cases: (i) the latency are set as described at the beginning
of this section (default execution), (ii) CPU executes one
instruction per cycle, i.e., CPI = 1 (optimistic execution).
The T*64 optimistic execution presents a speedup of +18%
when compared to the Cilk execution on 4 cores, +34%

1OpenMP and Cilk versions of the test applications have been compiled
without any specific optimization.

528

when compared to the Cilk execution on 16 cores, and +78%
when executing on 32 cores. Also the T*64 default execution
generally performs better than OpenMP and Cilk. This shows
the capability of our hardware scheduling support to manage
a high number of concurrent threads. Figure 4 shows the

Figure 4: Block Matrix Multiplication: evaluation of T*64,
T*64 optimistic, OpenMP, and Cilk executions.

normalized speedup for the Block Matrix Multiplication (input
256× 256 matrices). Similarly to the previous case, the T*64
execution on 16 cores presents a +20% of speedup w.r.t. the
Cilk execution, while it is smaller moving from 16 to 32 cores.
The speedup is also much greater than the OpenMP. Finally,
we estimated the area overhead measuring the Register Bit
Equivalent (RBE)2 for the implementation of the L1TSU and
L2TSU unit on a 32 cores computing cluster. Implementing
one L2TSU and 32 L1TSUs require 654.4KiB, leading to
a 3.5% of the overall cache size (18MB for the 32 cores).
This demonstrates the benefits of adopting our design: higher
performance and scalability w.r.t. pure software scheduling
approaches, and low area overhead.

V. CONCLUSIONS

We discussed a x86 64 multicore system with a small
set of hardware units supporting the scheduling of fine-grain
threads. The paper also advocates an execution model based
on the dataflow principles, which allows to exploit a more ef-
ficient thread communication and synchronization mechanism.
Experimental results demonstrate the benefits of adopting the
proposed scheduling system in terms of performance and
scalability w.r.t. pure software approaches (OpenMP, Cilk).
The area cost of the proposed solution is also negligible.

ACKNOWLEDGMENT

This article was elaborated within the framework
of European Union funded projects with reg. num-
bers CZ.1.07/2.3.00/30.0055, CZ.1.05/1.1.00/02.0070, and
LM2011033, by the European FP7/H2020 projects HARPA
id. 612069, ERA id. 249059, TERAFLUX id. 249013, and
AXIOM id. 645496.

2It measures the area in terms of the number of high-performance 6T-SRAM
cells required to implement the storage structures of the specified circuit.

REFERENCES

[1] J. Dongarra et al., The international exascale software project roadmap,
Int. J. High Perform. Comput. Appl., 2011.

[2] K. M. Kavi, B. P. Buckles, U. N. Bhat, A formal definition of dataflow
graph models, IEEE Tr. on Comp., Nov 1986.

[3] G. R. Gao, Exploiting Fine-grain Parallelism on Dataflow Architectures,
Parallel Computing, Vol. 13, No. 3, March 1990.

[4] J. B. Dennis, G. R. Gao, An Efficient Pipelined Dataflow Processor
Architecture, IEEE, 1988.

[5] R. Giorgi, et al., TERAFLUX: harnessing dataflow in next generation
teradevices, MICPRO, vol. 38, no. 8, 2014.

[6] Yazdanpanah F., et al., Hybrid Dataflow/von-Neumann Architectures,
IEEE Trans. Parallel Distrib. Syst., June 2014.

[7] Matheou G. and Evripidou P., Architectural Support for Data-Driven
Execution, ACM Trans. Archit. Code Optim., January 2015.

[8] L. Verdoscia, et al., A matrix multiplier case study for an evaluation of
a configurable Dataflow-Machine, ACM CF’15 - LP-EMS, 2015.

[9] V. Milutinovic, et al., Guide to DataFlow Supercomputing: Basic
Concepts, Case Studies, and a Detailed Example, Springer, 2015.

[10] L. Santiago, et al., Stack-Tagged Dataflow, IEEE SBAC-PAD, 2014.

[11] Y. Etsion, et al., Task Superscalar: An Out-of-Order Task Pipeline,
IEEE/ACM Microarchitecture, 2010.

[12] O. Pell, V. Averbukh, Maximum performance computing with dataflow
engines, Computing in Science Engineering, 2012.

[13] D. Culler et al., TAM: A Compiler Controlled Threaded Abstract
Machine, J. Parallel and Distributed Computing, 1993.

[14] S. Zuckerman, et al., Using a ”codelet” program execution model for
exascale machines: position paper, ACM EXADAPT’11, USA, 2011.

[15] S. Weis, et al., Architectural Support for Fault Tolerance in a Teradevice
Dataflow System, Int’l Journal of Parallel Programming, 2014.

[16] R. Giorgi, P. Faraboschi, An introduction to DF-Threads and their
execution model, IEEE Proc. MPP-2014.

[17] A. Portero, et al., Simulating the future kilo-x86-64 core processors and
their infrastructure, ANSS-12, 2012.

[18] H. Nam, et al., Simulating a multi-core x86 64 architecture with
hardware ISA extension supporting a data-flow execution model, IEEE
Proc. AIMS-2014.

[19] L. Verdoscia, et al., A clockless computing system based on the static
dataflow paradigm, IEEE DFM-2014.

[20] R. Giorgi, TERAFLUX: exploiting dataflow parallelism in teradevices,
ACM Computing Frontiers, 2012.

[21] R. Giorgi, A. Scionti, A scalable thread scheduling co-processor based
on data-flow principles, FGCS, January 2015.

[22] R. Giorgi, Transactional Memory on a Dataflow Architecture for
Accelerating Haskell, WSEAS Trans. On Computers, 2015.

[23] R. Giorgi, Accelerating Haskell on a Dataflow Architecture: a case
study including Transactional Memory, CEA, 2015.

[24] Feng Li, et al., Automatic Extraction of Coarse-Grained Data-Flow
Threads from Imperative Programs, Micro, IEEE, 2012.

[25] R. Giorgi, et al., DTA-C: A Decoupled multi-Threaded Architecture for
CMP Systems, IEEE SBAC-PAD, 2007.

[26] K. Sanjeev et al., Carbon: Architectural Support for Fine-grained
Parallelism on Chip Multiprocessors, Comput. Archit. News, 2007.

[27] M. Solinas, et al., The TERAFLUX project: Exploiting the dataflow
paradigm in next generation teradevices, IEEE DSD, 2013.

[28] S. Weis, et al., A Fault Detection and Recovery Architecture for a
Teradevice Dataflow System, IEEE DFM, 2011.

[29] N. Ho, et al., Enhancing an x86 64 Multi-Core Architecture with Data-
Flow Execution Support, ACM Computing Frontiers, 2015.

[30] E. Argollo, et al., COTSon: infrastructure for full system simulation,
ACM SIGOPS Operating Systems, 2009.

529

