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ABSTRACT 
 
The number of cores per chip keeps increasing in order to improve performance while 
controlling the power. According to semiconductor roadmaps, future computing 
systems will reach the scale of 1 Tera devices in a single package and therefore many-
core (e.g. 1000 or more) will be the norm. Here, we describe an ISE (ISA Extension) that 
we are experimenting in the x86-64 ISA in order to provide an efficient, fast support for 
fine-grained threads. The new ISE enables a different execution model based on the 
availability of data and opens the doors for many architectural optimizations not 
possible in current cores. We also describe the architectural support related to the T* 
extension 
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1  Introduction 

We assume that the applications can take advantage of either sequential or parallel 

programming models [EDP10]. At compile time the application is divided into a number 

of data-flow threads (DF-threads) and a producer-consumer graph that encodes the data 

dependencies among the threads [KGA01],[GPP07],[GPP09]. A DF-thread can be 

scheduled for execution after all its inputs become available. It enters the execution phase 

once the physical resources (e.g. a core) are available for it, based on scheduling criteria. 

Therefore, the basic execution model is a multithreaded execution model that exploits 

application parallelism at different levels. It derives from the data-flow principles 

[EDP10],[PZG11]. The platforms that we are considering contain 1000 or more cores. 

2  Basic Execution Model 

The execution model aims at supporting the execution of a very large number of fine-

grained threads that are generated after the compilation process. We also want to target 

threads that have a “dataflow behavior” in the sense that they are repeatable with no-side 

effects and their inputs and outputs are clearly identified. We call these threads DF-

Threads (dataflow threads).The execution model uses special instructions (the T* ISA 

Extension) to support the execution of data-flow threads (DF-threads). In this scenario we 

are exploring how different applications may exploit the benefits of the features of 

different programming models. Experimentation and tight collaboration with the compiler 

and simulation tools will assess the merits of these programming models. The results will 



help in the development of optimizations that will be studied in the context of a more 

advanced architecture. We begin by providing background information on the data-flow 

execution model that we use. 

3  T* Architectural Support 
T-Star (T*) is designed to exploit Thread Level Parallelism (TLP) by using many simple off-

the-shelf cores and it builds on previous models like DTA [GPP07],[GPP09] and SDF 

[KGA01].Similarly to DTA, T* addresses scalability by a hierarchical structure of the nodes 

and a distributed scheduler. The architecture is divided into nodes. Each thread that uses 

T* have a portion of local memory (known as frame) associated with it, where data that are 

needed for the execution are kept. Only when all data that are needed for execution are 

stored into the frame, a thread will execute. Since frames are located near the processor, 

accesses to frame memory should have very low latency. Hence, the pipeline should not 

stall because of frame memory accesses.  The thread management is handled by a 

Distributed Thread Scheduler (DTS) which is composed by a hierarchy of node level 

scheduling units (D-TSUs or Distributed Thread Scheduling Units) and of core level 

scheduling units (L-TSUs ore Local Thread Scheduling Units). The D-TSU is responsible 

for allocating tasks for processors inside the node and for maintaining balanced workload 

on each of them. The L-TSU is located inside each core, and it is responsible for managing 

frames and execution of threads in the core.  

4  A possible top-level design of a T* based architecture 
We assumed that the compiler implicitly embeds the threads' data dependencies and 

consumers in the code of each thread. Moreover, at runtime new dependencies can be 

managed through the allocation of the threads’ DF-frames. A DF-frame is allocated for 

every newly created DF-thread and each DF-thread writes its results in the DF-frames of 

its consumers. A thread is scheduled to run when all its input data are available in the 

corresponding frame and its "parent" completed.  

The architecture is an “evolving architecture” where the Execution Model decouples the 

Programming Model from the Architecture. In the initial instance of the architecture the 

basic computational elements (Figure 1) are the Cores which contains a processing element 

(in our case an x86-64 based core with our T* ISE [RG11],[KGA01],[GPP07]) along with its 

L1 Cache and some core level hardware like the L-TSU. Each core may also include a 

partition of the L2 Cache. In order to support the data-flow execution of threads, each core 

also includes a hardware module that handles the scheduling of threads, the Local Thread 

Scheduling Unit (L-TSU). Cores are grouped together into nodes. In addition to the cores, 

the nodes also contain a hardware module to coordinate the scheduling of the data-flow 

threads among the cores, the Distributed Thread Scheduling Unit (D-TSU). We can assume 

that the cores within a node can communicate with low latency. Each core is identified 

with a unique id, the Core ID (CID), and each group of cores belongs to a node whose id is 

the Node ID (NID). Nodes are connected via an inter-node network, the Network on Chip 

(NoC). Cores within a node are also connected via the NoC. A NoC may not distinguish 

among inter-node or Inter-core NoC, i.e., it can be a single NoC. The Task Pipeline (TP), 

may decompose coarser grain threads into fine-grain threads to be scheduled by the TSU 



units [ECR+10]. Also, we have the I/O devices at the top level. These devices are controlled 

by certain dedicated cores, the Service-Cores, which run the OS for that purpose (not 

specifically highlighted in the Figure 1). 

5  Proposed Instruction Set Extension (T*) 

Basically, the extension consists in two instructions for generating/stopping threads, two 

instructions for operating on input/output data of the thread, two instructions for 

allocating/freeing special purpose memory (the memory model is not in the scope of this 

document, but it is an essential part of our execution model). Besides the ISE, we need the 

architectural support that we described above. In the following, we assume that the size of 

the operands is by default 1 machine word (e.g. 64 bits for x86-64 platforms). 
 

Table 1: T* proposed x86-64 ISA extension description 

 T*  INSTRUCTIONS IMPLIED COMPILER TARGET 

Synopsis TSCHEDULE RS1, RS2, RD <frame_pointer> = TSCHEDULE(<IP>, <SC>) 

Description This instruction allocates the resources (a DF-frame of size RS2 words and a corresponding entry in the 
Distributed Thread Scheduler – or DTS) for a new DF-thread and returns its Frame Pointer (FP) in RD. RS1 
specifies the Instruction Pointer (IP) of the first instruction of the code of this DF-thread and RS2 specifies the 
Synchronization Count (SC). 

Notes The allocated DF-thread is not executed until its SC reaches 0. The TSCHEDULE can be conditional or non-
conditional based on the value stored in the zero flag. If the zero flag is set to 1 then the TSCHEDULE will take 
effect, otherwise it is ignored. 

Synopsis TDESTROY TDESTROY 

Description The thread that invokes TDESTROY finishes and its DF-frame is freed, (the corresponding entry in the Thread 
Scheduling Unit is also freed). 

Notes - 

Synopsis TWRITE RS, RD, offset *(<frame_pointer> + <offset>) = (<source_register>) 

Description The data in RS is stored into the DF-frame pointed to by RD at the specified offset. 

Notes Side Effect: The Distributed Thread Scheduler decrements the SC of the corresponding DF-thread entry (located 
through the FP):    SCFP = SCFP-1 

Synopsis TREAD offset, RD (<destination_register>) = *(<self_frame_pointer> + <offset>) 

Description Loads the data indexed by 'offset' from the self (current thread) DF-frame into RD. 

Notes Assumption: the DTS has to load into the register implicitly used by TREAD the value <self_frame_pointer>. In a 
x86-64 implementation, we can reserve RAX for this purpose. 

Synopsis TALLOC RS1, RS2, RD <pointer> = TALLOC (<size>, <type>) 

Description Allocates a block of memory of RS1 words. The pointer to it is stored in RD. RS2 specifies the special purpose 
memory type. 

Notes The Distributed Thread Scheduler tracks the memory allocated. An implementation can code <type> in the 2 LSB 
of <size> 

Synopsis TFREE (RS) TFREE(<pointer>) 

Description Frees memory pointed to by RS. 

Notes The Thread Scheduling Unit tracks the memory deallocated. 

 



 

Figure 1: TERAFLUX High Level Architecture (NoC: Network on Chip, LLC: Last Local Memory, MC: 

Memory Controller, NI: Network Interface, N: Node, C: Core, PE: Process Element, L-TSU: Local Thread 

Scheduler Unit, D-TSU: Distributed Thread Scheduler Unit) 

5 Conclusions 
In this document we introduce a new x86-64 ISA Extension to support a fine-grained data-

driven execution model. This execution model is based on multithreaded execution that 

exploits application parallelism at different levels. It derives from the data-flow. This 

model has already shown its benefits in the past but it has not been proved for the new 

many-cores. We are working in demonstrating the concepts in systems with 1000 cores or 

more.   
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