
T-Star (T*): An x86-64 ISA Extension to

support thread execution on many cores

Antoni Portero, Zhibin Yu and Roberto Giorgi
University of Siena Dipartimento di Ingegneria dell’Informazione Via Roma, 56 -- 53100 SIENA -
Italy

ABSTRACT

The number of cores per chip keeps increasing in order to improve performance while
controlling the power. According to semiconductor roadmaps, future computing
systems will reach the scale of 1 Tera devices in a single package and therefore many-
core (e.g. 1000 or more) will be the norm. Here, we describe an ISE (ISA Extension) that
we are experimenting in the x86-64 ISA in order to provide an efficient, fast support for
fine-grained threads. The new ISE enables a different execution model based on the
availability of data and opens the doors for many architectural optimizations not
possible in current cores. We also describe the architectural support related to the T*
extension

KEYWORDS: Many-core; Multi-Threading; Dataflow; Parallelism;

1 Introduction

We assume that the applications can take advantage of either sequential or parallel

programming models [EDP10]. At compile time the application is divided into a number

of data-flow threads (DF-threads) and a producer-consumer graph that encodes the data

dependencies among the threads [KGA01],[GPP07],[GPP09]. A DF-thread can be

scheduled for execution after all its inputs become available. It enters the execution phase

once the physical resources (e.g. a core) are available for it, based on scheduling criteria.

Therefore, the basic execution model is a multithreaded execution model that exploits

application parallelism at different levels. It derives from the data-flow principles

[EDP10],[PZG11]. The platforms that we are considering contain 1000 or more cores.

2 Basic Execution Model

The execution model aims at supporting the execution of a very large number of fine-

grained threads that are generated after the compilation process. We also want to target

threads that have a “dataflow behavior” in the sense that they are repeatable with no-side

effects and their inputs and outputs are clearly identified. We call these threads DF-

Threads (dataflow threads).The execution model uses special instructions (the T* ISA

Extension) to support the execution of data-flow threads (DF-threads). In this scenario we

are exploring how different applications may exploit the benefits of the features of

different programming models. Experimentation and tight collaboration with the compiler

and simulation tools will assess the merits of these programming models. The results will

help in the development of optimizations that will be studied in the context of a more

advanced architecture. We begin by providing background information on the data-flow

execution model that we use.

3 T* Architectural Support
T-Star (T*) is designed to exploit Thread Level Parallelism (TLP) by using many simple off-

the-shelf cores and it builds on previous models like DTA [GPP07],[GPP09] and SDF

[KGA01].Similarly to DTA, T* addresses scalability by a hierarchical structure of the nodes

and a distributed scheduler. The architecture is divided into nodes. Each thread that uses

T* have a portion of local memory (known as frame) associated with it, where data that are

needed for the execution are kept. Only when all data that are needed for execution are

stored into the frame, a thread will execute. Since frames are located near the processor,

accesses to frame memory should have very low latency. Hence, the pipeline should not

stall because of frame memory accesses. The thread management is handled by a

Distributed Thread Scheduler (DTS) which is composed by a hierarchy of node level

scheduling units (D-TSUs or Distributed Thread Scheduling Units) and of core level

scheduling units (L-TSUs ore Local Thread Scheduling Units). The D-TSU is responsible

for allocating tasks for processors inside the node and for maintaining balanced workload

on each of them. The L-TSU is located inside each core, and it is responsible for managing

frames and execution of threads in the core.

4 A possible top-level design of a T* based architecture
We assumed that the compiler implicitly embeds the threads' data dependencies and

consumers in the code of each thread. Moreover, at runtime new dependencies can be

managed through the allocation of the threads’ DF-frames. A DF-frame is allocated for

every newly created DF-thread and each DF-thread writes its results in the DF-frames of

its consumers. A thread is scheduled to run when all its input data are available in the

corresponding frame and its "parent" completed.

The architecture is an “evolving architecture” where the Execution Model decouples the

Programming Model from the Architecture. In the initial instance of the architecture the

basic computational elements (Figure 1) are the Cores which contains a processing element

(in our case an x86-64 based core with our T* ISE [RG11],[KGA01],[GPP07]) along with its

L1 Cache and some core level hardware like the L-TSU. Each core may also include a

partition of the L2 Cache. In order to support the data-flow execution of threads, each core

also includes a hardware module that handles the scheduling of threads, the Local Thread

Scheduling Unit (L-TSU). Cores are grouped together into nodes. In addition to the cores,

the nodes also contain a hardware module to coordinate the scheduling of the data-flow

threads among the cores, the Distributed Thread Scheduling Unit (D-TSU). We can assume

that the cores within a node can communicate with low latency. Each core is identified

with a unique id, the Core ID (CID), and each group of cores belongs to a node whose id is

the Node ID (NID). Nodes are connected via an inter-node network, the Network on Chip

(NoC). Cores within a node are also connected via the NoC. A NoC may not distinguish

among inter-node or Inter-core NoC, i.e., it can be a single NoC. The Task Pipeline (TP),

may decompose coarser grain threads into fine-grain threads to be scheduled by the TSU

units [ECR+10]. Also, we have the I/O devices at the top level. These devices are controlled

by certain dedicated cores, the Service-Cores, which run the OS for that purpose (not

specifically highlighted in the Figure 1).

5 Proposed Instruction Set Extension (T*)

Basically, the extension consists in two instructions for generating/stopping threads, two

instructions for operating on input/output data of the thread, two instructions for

allocating/freeing special purpose memory (the memory model is not in the scope of this

document, but it is an essential part of our execution model). Besides the ISE, we need the

architectural support that we described above. In the following, we assume that the size of

the operands is by default 1 machine word (e.g. 64 bits for x86-64 platforms).

Table 1: T* proposed x86-64 ISA extension description

 T* INSTRUCTIONS IMPLIED COMPILER TARGET

Synopsis TSCHEDULE RS1, RS2, RD <frame_pointer> = TSCHEDULE(<IP>, <SC>)

Description This instruction allocates the resources (a DF-frame of size RS2 words and a corresponding entry in the
Distributed Thread Scheduler – or DTS) for a new DF-thread and returns its Frame Pointer (FP) in RD. RS1
specifies the Instruction Pointer (IP) of the first instruction of the code of this DF-thread and RS2 specifies the
Synchronization Count (SC).

Notes The allocated DF-thread is not executed until its SC reaches 0. The TSCHEDULE can be conditional or non-
conditional based on the value stored in the zero flag. If the zero flag is set to 1 then the TSCHEDULE will take
effect, otherwise it is ignored.

Synopsis TDESTROY TDESTROY

Description The thread that invokes TDESTROY finishes and its DF-frame is freed, (the corresponding entry in the Thread
Scheduling Unit is also freed).

Notes -

Synopsis TWRITE RS, RD, offset *(<frame_pointer> + <offset>) = (<source_register>)

Description The data in RS is stored into the DF-frame pointed to by RD at the specified offset.

Notes Side Effect: The Distributed Thread Scheduler decrements the SC of the corresponding DF-thread entry (located
through the FP): SCFP = SCFP-1

Synopsis TREAD offset, RD (<destination_register>) = *(<self_frame_pointer> + <offset>)

Description Loads the data indexed by 'offset' from the self (current thread) DF-frame into RD.

Notes Assumption: the DTS has to load into the register implicitly used by TREAD the value <self_frame_pointer>. In a
x86-64 implementation, we can reserve RAX for this purpose.

Synopsis TALLOC RS1, RS2, RD <pointer> = TALLOC (<size>, <type>)

Description Allocates a block of memory of RS1 words. The pointer to it is stored in RD. RS2 specifies the special purpose
memory type.

Notes The Distributed Thread Scheduler tracks the memory allocated. An implementation can code <type> in the 2 LSB
of <size>

Synopsis TFREE (RS) TFREE(<pointer>)

Description Frees memory pointed to by RS.

Notes The Thread Scheduling Unit tracks the memory deallocated.

Figure 1: TERAFLUX High Level Architecture (NoC: Network on Chip, LLC: Last Local Memory, MC:

Memory Controller, NI: Network Interface, N: Node, C: Core, PE: Process Element, L-TSU: Local Thread

Scheduler Unit, D-TSU: Distributed Thread Scheduler Unit)

5 Conclusions
In this document we introduce a new x86-64 ISA Extension to support a fine-grained data-

driven execution model. This execution model is based on multithreaded execution that

exploits application parallelism at different levels. It derives from the data-flow. This

model has already shown its benefits in the past but it has not been proved for the new

many-cores. We are working in demonstrating the concepts in systems with 1000 cores or

more.

Acknowledgements

This work was partly funded by the European FP7 project TERAFLUX id. 249013,

http://www.teraflux.eu, HiPEAC IST-217068, and IT PRIN 2008 (200855LRP2).

References
[EDP10] Exploiting Dataflow Parallelism in Teradevice Computing. http://www.teraflux.eu, 2010-2014.

[PZG11] Antoni Portero, Zhibin Yu, Roberto Giorgi, “TERAFLUX: Exploiting Tera-device computing

Challenges”, fet11 The European Future Technologies Conference and Exhibition, 4-6 May, 2011, Budapest.

[RG11] Roberto Giorgi et al, “PR, D7.2– Def. of ISA extensions, custom devices and External COTSon API

extensions”, FET proactive 1: Concurrent Tera-Device Computing (ICT-2009.8.1) PRJ. NUM.: 249013

[KGA01] Krishna M. Kavi, Roberto Giorgi, Joseph Arul, "Scheduled Dataflow: Execution Paradigm,

Architecture, and Performance Evaluation", IEEE Trans. Computers,, Los Alamitos, CA, USA, vol. 50, no. 8,

Aug. 2001, pp. 834-846

[GPP07] R. Giorgi, Z. Popovic, N. Puzovic, "DTA-C: A Decoupled multi-Threaded Architecture for CMP

Systems", Proc. IEEE SBAC-PAD, Gramado, Brasil, Oct. 2007, pp. 263-270

[GPP09] R. Giorgi, Z. Popovic, N. Puzovic, "Exploiting DMA to enable non-blocking execution in Decoupled

Threaded Architecture", Proc. IEEE Int.l Symp. on Parallel and Distributed Processing – MTAAP Multi-

Threading Architectures and Applications, Rome, Italy, May 2009, pp. 1-8.

[ECR+10] Yoav Etsion, et al, “Task Superscalar: An Out-of-Order Task Pipeline.”, MICRO 2010, pp. 89-100

http://www.teraflux.eu/
http://www.informatik.uni-trier.de/~ley/db/conf/micro/micro2010.html#EtsionCRRBALV10

