
Simulating the Future kilo-x86-64 core Processors and their Infrastructure
Antoni Portero1, Alberto Scionti1, Zhibin Yu1, Paolo Faraboschi2, Caroline Concatto3, Luigi Carro3, Arne Garbade4,

Sebastian Weis4, Theo Ungerer4, Roberto Giorgi1
1University of Siena

2HP labs
3UFGRS Universidade Federal do Rio Grande do Sul

4Augsburg University
1{portero, scionti, zhibin, giorgi}@dii.unisi.it,

2paolo.faraboschi@hp.com,
3{concatto, carro}@inf.ufrgs.br

4{arne.garbade, sebastian.weis, ungerer}@informatik.uni-augsburg.de

Abstract
The continuous improvements offered by the silicon tech-
nology enables the integration of always increasing number
of cores on a single chip. Following this trend, it is ex-
pected to approach microprocessor architectures composed
of thousands of cores (i.e., kilo-core architectures) in the
next future. To cope with the increasing demand for high
performance systems, many-core designs rely on integrated
network-on-chips to deliver the correct bandwidth and
latency for the inter-core communications. In this context,
simulation tools represent a crucial factor for designing
architectures at such scale of integration. The efficient simu-
lation of the interconnection network along with the overall
architecture (i.e., cores, cache memories, accelerators, etc.)
still represents a complete open issue. This paper proposes a
framework based on the COTSon simulator, able of scaling
towards heterogeneous kilo-core architectures. Compared
with current state-of-the-art architectural simulators, our
framework provides not only a full-system architectural
simulator, but a full-integrated accurate network-on-chip
simulator. The framework shows a well balanced trade-off
between simulation speed and accuracy, supporting the
power consumption estimation. Experimental results demon-
strate the ability of our framework to correctly simulate a
large many-core machine and its interconnection network,
considering different traffic patterns.
Keywords: Performance Analysis and Design Aids, Simu-
lation, Verification, Verification, Worst- case analysis.

1. INTRODUCTION
Looking at the Moore’s Law, the continuous improvements

offered by silicon technology make possible placing always
increasing number of transistors on a single chip. Following
this trend, it is expected that future high performance mi-
croprocessor systems will be composed of thousand of cores
(i.e., kilo-core architectures). Matching the performance re-
quest with the power consumption requirement will lead to a

massive adoption of heterogeneous architectures. This huge
amount of processing units requires an adequate interconnec-
tion subsystem in order to provide enough bandwidth for both
inter-core and external to the chip communications. Among
the possible systems (i.e., bus, crossbar switch, network-
on-chip), networks-on-chips, or simply NoCs, have demon-
strated to be highly scalable and reliable interconnections,
delivering large bandwidth and low latency communications.
Further, NoC infrastructures can meet the increasing strin-
gent power consumption requirements of modern many-core
architectures.

More than in the past, the adoption of architectural simula-
tors has become essential for assuring the correctness of any
design. Architectural simulators historically suffered from
low simulation speed and accuracy, imposing serious limi-
tations on the ability of predicting correct behaviors of the
designed architecture, especially in the many-core era. The
adoption of always complex interconnection systems, and in
particular of NoCs, has led to the creation of tools specifically
devoted to the accurate timing simulation (i.e., the tool can
provide an accurate simulation of the behavior of the network
with an estimation of the communication bandwidth and la-
tency and the energy consumption) of these communication
infrastructures. Although the existence of such tools provid-
ing functional, timing and energy models, there is a lack of
frameworks that integrate both many-core architecture and
network-on-chip simulators.

With the aim of providing a tool characterized by a high
simulation speed and accuracy for an heterogeneous kilo-core
architecture integrating an accurate network-on-chip simu-
lator, this paper proposes a framework based on the COT-
Son infrastructure and the Noxim simulator [5]. Compared
with current state-of-the-art simulation platforms, the pro-
posed one offers a complete environment for a many-core
full-system simulation, for accurate NoC timing simulation
and energy characterization, and for the power consumption
estimation of the many-core architecture. In order to guar-
antee fast simulations, COTSon implements a functional-



directed approach, where functional emulation is alternated
to a complete timing-based simulation. The result is the abil-
ity of supporting the full stack of applications, middlewares
and OSs. The modular approach on which COTSon is based,
allow us the adoption of both the proprietary AMD SimNow
[4] (available now) emulator and the open source Qemu [10]
(in progress) based functional emulator, opening the door to
the support of several different micro-architectures. Finally,
the integration of the proposed framework with the McPAT
tool [18], provides the ability of predicting the power con-
sumption for a given design.

The remaining part of the paper is organized in five sec-
tions as follows. In Section 2. the state-of-the-art for the sim-
ulation frameworks and tools supporting both architectural
and NoC simulation is analyzed. Section 3. presents the ar-
chitecture of the proposed simulation framework, detailing on
the functional-directed architectural simulator based on COT-
Son, while Section 4. describes an instance of the proposed
architecture with the integrated Network-on-chip simulator.
Section 5. provides the main results of a large experimental
campaign obtained with the proposed simulation framework.
Finally, Section 6. summarizes the main contribution and re-
sults of our work.

2. PREVIOUS WORK
Historically, architectural simulators, such as Trace-

Factory [14] and GEMS [22], have been used to accurately
simulate the behavior of always more complex processor de-
signs. Moving towards multi-core architectures requires the
integration of different components that allow to correctly an-
alyze the power consumption of the target system and its in-
terconnections. Recent works proposed different approaches
aiming at the simulation of kilo-core systems and of network-
on-chip infrastructures. In [20] the authors present HORNET,
an architectural simulator based on a highly configurable
network-on-chip engine. It may use processor traces, execute
a MIPS-based timing simulation or execute native code using
the Pin instrumentation tool [21]. Although it targets kilo-
core systems, it exploits a network oriented design, with a
limited support for accurate heterogeneous core timing sim-
ulations and the inability of running full-system simulations.
Similarly, in [28] the authors describe Multi2Sim, a frame-
work for super-scalar, multi-threaded and multi-core proces-
sors simulations. It is composed of a functional emulation and
a timing simulation layers.

One of the main characteristics distinguishing this tool
from the others, is the implementation of a timing model also
for graphic processors, allowing the simulation of GPU-based
systems. However, there is a complete lack for the intercon-
nection network model, thus limiting the design space ex-
ploration only to the architectural side. Other limitations are
given by the only support to the MIPS architecture and the

inability of supporting full-system simulation. MARSS-x86
[25] is a fast cycle-accurate full-system simulator for het-
erogeneous architectures. It combines the functional emula-
tion provided by Qemu with the timing simulation offered by
PTLsim [31]. While the Qemu emulation makes possible to
target several core architectures including chip-sets and pe-
ripheral devices, PTLsim only offers accurate timing models
for the x86-64 micro-architecture, requiring additional code
to target different systems. Furthermore, PTLsim has not been
designed to work on a kilo-core scale, thus it does not in-
tegrate any model (i.e., neither functional, nor timing mod-
els) for the interconnection network of such systems. A sim-
ilar approach has been explored by the authors of MPTLsim
[32]. It is a cycle-accurate, full-system simulator targeting
x86 and x86-64 multi-core architectures. MPTLsim uses the
hardware abstraction provided by the Xen hypervisor [3] to
fast-forward execution and reach a given point where simu-
lation can start. MPTLsim provides a significant faster simu-
lation rate compared to simulators such as GEMS, which use
an off-the-shelf sequential emulator (Intel’s Simics) with a
timing-first simulation approach (i.e., the timing model drives
Simics one instruction at a time, thus resulting in low perfor-
mance). MPTLsim makes use of a cycle accurate out-of-order
core design implementing the x86-64 ISA.

However, the fast-forwarding approach is completely
opaque to the simulator and during the Xen execution nothing
can be inferred about memory accesses, instructions or I/O
operations. MANIFOLD [30] is a simulator designed with
a similar approach to our proposed framework. It decouples
functional and timing simulations. Functional simulation is
based on the Qsim library, while the timing model is based
on a dedicated module. It supports also the integration of
thermal and power modeling, however it appears to a pre-
mature stage of development. Finally, GRAPHITE [24] is a
multi-core simulator designed to provide high level of simula-
tion performance by distributing the simulation workload. Al-
though its ability of scaling up to kilo-core machines keeping
a fast simulation process, it only provides accurate estimation
methods, while completely lacking of timing and functional
models for the interconnection system.

Recently, with the large adoption of NoCs as the primary
interconnection, several simulation tools have been proposed
to evaluate the impact of the interconnection network on
the overall system. In [12], the authors proposes GARNET,
a detailed cycle-accurate interconnection network model in-
tegrated within GEMS. The tool provides a model for all
the main components of the interconnection: flit-level input
buffers, routing logic, allocators and the crossbar switch. Al-
though it replaces the original simple network model com-
ing with GEMS, using a more sophisticate one, it continues
to suffer of the main limitations of the micro-architectural
GEMS simulator. DARSIM [19] is a tool that offers a highly



Figure 1. Many-core architectural simulation framework
overview.

configurable, parallel network-on-chip engine based on an
ingress-queued wormhole router architecture. Most hardware
parameters are configurable, including geometry, bandwidth,
crossbar dimensions, and pipeline depths. It comes with the
possibility to feed the network with synthetic patterns or
MIPS based application traces. Similarly to the HORNET
simulator, it mainly lacks of the support for more common
architectures (i.e., essentially x86 and x86-64). In [9, 29], au-
thors present a modular, extensible, open-source C++ library
for implementing network simulators. The library offers sev-
eral advantages to the simulation framework such as trace-
ability and debug features. It also provides the support for par-
allel implementation of the simulator frameworks. Although
its potential scalability and flexibility (i.e., with respect to the
previous cited tools, the library allows the definition of any
arbitrary topology), it does not provide any feature for the
architectural simulation, for which an external tool is still re-
quired. The following sections present our approach for the
integration of the Noxim simulator with the COTSon frame-
work.

3. SIMULATION FRAMEWORK
Figure 1 sketches the structure of the proposed simulator.

It is composed of three main blocks connected each other.
The up-center side of the figure shows the functional block,
formed by the functional emulator (without timing annota-
tion). This functional emulator can be the proprietary AMD
SimNow (currently available) tool that targets x86-64 archi-
tectures or the open source Qemu (in the near future) full-
system emulator that offers a larger architectural support
(e.g., x86-64, Microblaze, MIPS, PowerPC, etc.). In this work

we opted for the former, since our focus is the integration of
the interconnection simulator, rather than the support for het-
erogeneous architectures. The down side of the figure shows
the timing simulation block. For each component (i.e., cores,
caches, memory, disks and networks interfaces) of the tar-
get architecture, there is a specific timing model. The third
block is represented by the control interface, which allows
the user to set the simulated guest system, control the simu-
lation, and to run power consumption analysis. Power con-
sumption of the simulated guest system is analyzed recur-
ring to the McPAT tool. The simulation trace (e.g., instruction
counting, memory accesses, etc.) of the guest system is stored
in a database. Subsequently, McPAT tool combines the guest
system configuration and the database traces to estimate the
power consumption of the guest system. Although this mech-
anism can be adapetd to provide periodic power consumption
estimation during the guest system simulation, this task is out
of the scope of this work.

A (timing) simulator can use different approaches to run a
simulation, depending on the relationship between the “func-
tional model” (fm) and the “timing model” (tm) [23]. In the
“functional-first” or “trace-driven” approach, the fm is run
first and separately, while the tm is run later on, in a com-
pletely decoupled fashion. In the “timing directed” or “exe-
cution driven” methodology, the fm and tm are closely cou-
pled (no decoupling), while in the “timing-first” approach,
the tm drives the fm. In this case, the tm and the fm are
completely decoupled, but the functional execution has to be
checked later on and eventually undone. As previously men-
tioned, COTSon explored the “functional-directed” approach,
in which the fm drives the tm. Both the functional and the tim-
ing models are completely decoupled. The functional model
is always assumed to be the right one, but a timing feedback
from tm to correct the timing behavior is introduced, so that
it becomes visible to the applications being simulated [11].

Assuming a functional-directed approach, periodically the
functional emulation is paused in order to perform the tim-
ing simulation. The timing simulator block collects a set of
events (e.g., instruction counts, memory accesses, etc.) from
the functional emulator, and uses its accurate internal mod-
els to adjust the global simulation time and the speed of the
functional emulation. With the aim of decoupling functional
emulation from timing simulation, in COTSon [8] a commu-
nication interface is designed, in order to simplify exchanging
events and feedbacks information. For correctly managing
events produced by a many-core target architecture, a set of
event queues are implemented. Thus, the sequential instruc-
tion stream coming out of each emulated core is interleaved to
account for the correct time order before running the timing
simulation.

The support for a kilo-core system is given by intercon-
necting a large number of nodes (i.e., currently SimNow in-



stances). Each node is compose of a certain number of cores
with their cache hierarchies, memory blocks, network inter-
faces and disks. Nodes are connected each other through their
network interfaces. Properly setting the timing model of the
network interfaces it is possible to correctly simulate the pres-
ence of a network-on-chip. As previously mentioned, one of
the main issues, when design an architectural simulator, con-
cerns the trade-off between simulation speed and accuracy.
Since timing simulation is a time consuming process that
causes the main slowdown, COTSon [7] adopts a sampling
strategy to choose the timing simulation only for those appli-
cation phases of interest. This goal is accomplished by im-
plementing a sampling mechanism: the functional emulation
is monitored, and whenever one of the phases is reached the
timing simulation is enabled.

Currently, COTSon can perform multi-(guest-) machine
simulations but only if the applications are written assuming a
distributed memory machine (e.g., using a messaging library
like MPI). Based on this premise, in this work we want to
target the simulation of a future many-core microprocessor
architecture, where standard x86-64 cores are grouped into
several asymetric nodes and the communication is guaran-
teed by an integrated network-on-chip. Noxim simulator [5]
is used to correctly model the communication infrastructure,
and can be extended in order to support specific applications.
It provides both the functional emulation and the timing simu-
lation models. Since the tendency of this kind of architectures
is to support the execution of a huge number of threads, in
this work we target also a new execution model for the simu-
lated architecture. The following section will detail about the
architecture of the target microprocessor.

4. TARGET KILO-CORE PROCESSOR
As mentioned in the Section 3., the proposed simula-

tion framework has been designed to support the simula-
tion of complex microprocessor architectures composed of
thousands of cores, and their interconnection infrastructures.
Starting from this premise, the processor architecture we want
to target is based on several x86-64 cores grouped into asym-
metric nodes. Currently, COTSon support timing models for
x86-64 architecture, but it can be extended in order to pro-
vide models for different architectures enabling the simula-
tion of heterogeneous systems. Each node can have a different
number of cores, and the interconnection among the nodes is
based on an embedded Network-on-Chip. It is expected that
such type of machines will be able to support the execution of
massive set of threads. Looking at this processor architecture
tendency, we also propose an extension in the x86-64 ISA al-
lowing threads in the processor to be executed in a Data-Flow
fashion.

Figure 2. Noxim instance and its interface with the architec-
tural simulation framework.

4.1. ISA extension supporting Data-Flow
threads

The basic execution model aims at supporting the exe-
cution of a very large number of fine-grained threads that
are generated after the compilation process. Moreover, we
also want to target threads that have a “Data-Flow behav-
ior” [17, 16], in the sense that they are repeatable with no-
side effects and their inputs and outputs are clearly identi-
fied. We call these threads DF-Threads (Data-Flow threads).
However, in order to make possible the execution of DF-
threads, a set of special instructions called T* ISA Extension
[27, 13, 15, 26] are required. In particular, the proposed exten-
sion consists in two instructions for generating/stopping DF-
Threads (TSCHEDULE, TDESTROY), two instructions for
operating on input/output data of the DF-Threads (TWRITE,
TREAD), two instructions for allocating/freeing (TALLOC,
TFREE) special purpose memory (even if the memory model
is out of the scope of this document, it is an essential part of
our execution model). Besides the ISE, we introduced the ar-
chitectural support: an integrated Distributed Thread Sched-
uler Unit (D-TSU) is responsible for allocating tasks for pro-
cessors inside the node and for maintaining balanced work-
load on each of them, depending on the execution of the T*
based instructions.

4.2. The NoC interconnection
The NoC model is based on the Noxim simulator. Noxim is

cycle-accurate simulator, developed using C++ and SystemC
languages, and it can be downloaded from SourceForge under
GPL license terms. The NoC model consists of a low-level in-
terconnection network modeling the detailed features of a real
network-on-chip infrastructure. Researchers interested in in-
vestigating different network-on-chips can easily modify the
NoC architecture. The NoC follows, somehow, the strategy



used by COTSon, that is to split the overall simulation pro-
cess into a functional and a timing simulation processes, as
depicted in figure 2. The functional block (i.e., the media-
tor) is responsible for emulating the communication process
among the cores. The emulation process produces a set of
events (i.e., mainly packet identifier, time entering a router,
etc.) that is temporarly stored in event queue. Events in the
queue are processed by the timing simulation block, extract-
ing the latency and throughput of the communication infras-
tructure. Noxim makes available these information to the ar-
chitectural simulator, in order to correctly adjust the overall
simulation process. The timing model exported by the NoC
simulator is called by the user whenever the computation of
the application performance in presence of a NoC is required.
In this work we configured the NoC configuration as a 2D-
Mesh NoC.

4.3. Simulation platform
In this subsection, we expose the architecture of the plat-

form able to support the simulation of a very high number
of cores. In order to achieve this goal, we need a powerful
simulation system. We define the host machine as the com-
puter where we run the simulated processor, and the guest
machine as the proper simulated one. Currently, we use a host
machine equipped with 64 cores and 1TB of main memory.
There is a trade-off between complexity of the guest system
and the time required by the simulation. A good trade-off is
to use one host-core for each functional instance. Each node
can have till 32 cores but we have experimented that 16 cores
per node can better scale up. The simulation of larger archi-
tectures can be achieved distributing the simulation on more
than one host. However since we want to focus on the simu-
lation of a 1K-core system, considering a single host machine
is sufficient.

In order to correctly simulate a kilo-core architecture, we
booted up 64 nodes, each one containing 16 cores. Each node
runs a Linux distribution operating system. On top of this sys-
tem, we are able to run several test benches based on both
OpenMP and MPI programming models. One of the main
modifications we did, has also been the implementation of the
support of DF-threads through the ISA extension. DF-threads
enable a different execution model based on the availability of
data and opens the doors for many architectural optimizations
not possible in current standard off-the-shelf cores.

5. EXPERIMENTS
Given the scenario exposed in the previous section, we an-

alyzed the execution of different applications that use both
OpenMP and MPI programming models on the top of the
proposed target processor architecture. Experimentation and
tight collaboration with the compiler and simulation tools will

Figure 3. Execution time vs. number of workers for the Se-
quential Recursive Fibonacci application with input in the
range of 25 to 30.

assess the merits of these programming models running on
the target architecture.

In the following subsections, we present the set of exper-
iments performed. The experiments are intended to validate
the simulation framework, when both the processor archi-
tecture and the communication infrastructure are considered.
From this point of view, a first experiment is used to show
the impact and scaling capability of the Data-Flow support.
A second experiment presents the performance of different
real benchmark applications running on the platform with 64
nodes and 16 cores for each node. In particular, over this clus-
ter of nodes, we executed HPL 2.0-linpack [2] and Graph500
[1] to get performance of the system. The last experiment
presents the network load distribution induced by sending and
receiving packets from a server node to all the auxiliary cores
nodes. All the experiments demonstrate the ability of the pro-
posed framework to target the simulation of complex kilo-
core systems and their interconnection NoC.

5.1. Data-Flow Threads experiment
As we have explained in subsection 4.1., we have modi-

fied the architecture allowing to integrate 6 new instructions
that allow using DF-Threads. We used Sequential Recursive
Fibonacci (SRF) in modified assembler. The node has 32 pro-
cessors and we have added to the node architecture the model
of the D-TSU. We can observe in figure 3, that execution time
of SRF example with DF-threads can scale-down almost lin-
early. Compared to this result, standard processor architec-
tures exhibit a constant execution time, regardless of the in-
put parameter. Thus, this example shows that fine grain DF-
Threads scale up linearly at node level.



Figure 4. Network load distribution induced by test-bench
example using XY routing.

5.2. Running benchmarks to assess the perfor-
mance of a 1024 core processor

We executed HPL-2.0. linpack in the simulated platform
composed of 64 nodes with 16 cores per node (with the pa-
rameters N, NB, P and Q respectively equal to 4000, 100,
1, 16). The maximum performance achieved per node is 2.1
Gflops. We have also executed Graph500, the example based
on MPI programming model with a problem size equal to
15. The result obtained was 12.3 Million TEPS (Traversed
Edges per Second) per node. If we ideally scale up to 64
nodes, we could get 788 Million TEPs. With this result, the
reference MPI machine would rank in number 38, according
to the graph 500 list (Nov. 2011). Although, we are running
these benchmarks in this complex platform, we foresee that
the inter-tile communication is our bottleneck since currently,
we are not able to produce enough input data for each node
to obtain this ideal performance. Therefore, we are working
in the memory layer architecture and the software support to
scale up the test-benches. But without any doubt, the simu-
lator helps us to make an architecture exploration and detect
problems that in another way it would be very difficult or even
impossible. As we show in the following experiment, where
it is depicted how the inter-tile communication produces the
bottle-neck of the system.

5.3. Simulating NoC load Distribution
In this experiment, a server (master) node injects data pack-

ets through the NoC to the rest of the auxiliary (slave) cores.
We show the communication pattern in the 2D-Mesh Noxim
NoC simulator with 12 by 12 tiles. As we can observe in fig-
ure 4, the centralized communication overhead influences the
communication capabilities directly, as the data message in
the NoC interfere with other messages within the communi-
cation network.

6. CONCLUSIONS
This work introduces a first version of a simulation frame-

work targeting future heterogeneous kilo-core architectures.

The paper presents diverse scenarios where the x86-64 in-
struction set has been modified to support Data-Flow threads.
In these scenarios we simulated a full-system with 1024 cores
and the communication among nodes. The simulator frame-
work serves to find the bottle-necks of the system and allow
us to produce architectural explorations that would not be fea-
sible in another way. Experimental results confirmed the abil-
ity of simulating future kilo-core systems.

COTSon trunk and the diverse branches with some of the
developments explained in this paper can be found in source-
forge [6].

ACKNOWLEDGEMENTS
This work was partly funded by the European FP7 projects

TERAFLUX id. 249013 http://www.teraflux.eu, ERA (Em-
bedded Reconfigurable Architectures) id. 249059 (FP7)
http://era-project.eu; HiPEAC IST-217068, and IT PRIN
2008 (200855LRP2).

REFERENCES
[1] The graph500 list. http://www.graph500.org.

[2] Hpl - a portable implementation of the hp lin-
pack benchmark for distributed-memory computers.
netlib.org/benchmark/hpl.

[3] Xen community overview. http://xensource.com/xen,
1999.

[4] AMD SimNow Simulator 4.6.1 User’s Manual, Novem-
ber 2009.

[5] Noxim simulator. http://noxim.sourceforge.net/, 2009.

[6] Cotson sourceforge. svn
https://cotson.svn.sourceforge.net/svnroot/cotson
cotson, 2012.

[7] Patent: US 7,912,690 B2, Mar. 22, 2011.

[8] Patent: US 2008/0270959 A1, Oct. 30 2008.

[9] Al-Badi and et al. A parameterized noc simulator using
omnet++. In International Conference on Ultra Modern
Telecommunications & Workshops, 2009.

[10] F. Bellard. Qemu, a fast and portable dynamic translator.
In Proceedings of the 2005 USENIX Annual Technical
Conference, 2005.

[11] E. Argollo et al. Cotson infrastructure for full system
simulation. Operating Systems Rev, 43:52–61, 2009.

[12] Niket Agarwal et al. Garnet: A detailed on-chip network
model inside a full-system simulator. In Performance
Analysis of Systems and Software (ISPASS), pages 33–
42, 2009.



[13] Roberto Giorgi et al. Pr d7.2 definition of isa exten-
sions, custom devices and external cotson api exten-
sions. Technical report, FET proactive 1: Concurrent
Tera-Device Computing (ICT-2009.8.1) PRJ. NUM.:
249013, 2011.

[14] R. Giorgi and et al. Trace factory: Generating workloads
for trace-driven simulation of shared-bus multiproces-
sors. In IEEE Concurrency, pages 54–68, October 1997.

[15] R. Giorgi, Z. Popovic, and N. Puzovic. Dta-c: A decou-
pled multi-threaded architecture for cmp systems. In
Proc. IEEE SBAC-PAD, Gramado, Brasil, Oct. 2007,
pp. 263.

[16] Roberto Giorgi, Zdravko Popovic, and Nikola Puzovic.
Implementing fine/medium grained tlp support in a
many-core architecture. In SAMOS, pages 78–87, 2009.

[17] Krishna M. Kavi, Roberto Giorgi, and Joseph Arul.
Scheduled dataflow: Execution paradigm, architecture,
and performance evaluation. IEEE Trans. Computers„
Los Alamitos, CA, USA, 50, no. 8,:pp. 834–846, Aug.
2001.

[18] S. Li and et al. Mcpat: An integrated power, area, and
timing modeling framework for multicore and many-
core architectures. In Proceedings of the 42nd Annual
International Symposium on Microarchitecture, pages
469–480. IEEE/ACM, December 2009.

[19] M. Lis and et al. Darsim: A parallel cycle-level noc
simulator. In Workshop on Modeling, Benchmarking,
and Simulation, June 2010.

[20] M. Lis and et al. Scalable, accurate multicore simulation
in the 1000-core era. In ISPASS, pages 175–185, April
2011.

[21] Chi-Keung Luk and et al. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In
ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, 2005.

[22] M. M. K. Martin and et al. Multifacet’s gen-
eral execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99,
November 2005.

[23] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system
timing-first simulation. In SIGMETRICS 2002 Proceed-
ings of the 2002 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer sys-
tems, 1:118–116, 2002.

[24] J. E. Miller and et al. Graphite: A distributed parallel
simulator for multicores. In HPCA, 2010.

[25] A. Patel and et al. Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore
processors. In 1st International Qemu Users’ Forum,
pages 29–30, 2011.

[26] Antoni Portero, Zhibin Yu, and Roberto Giorgi. T-star
(t*): An x86-64 isa extension to support thread execu-
tion on many cores. ACACES Advance Computer Ar-
chitecture and Compilation for High-Performance and
Embedded Systems, 1:277–280, 2011.

[27] Antoni Portero, Zhibin Yu, and Roberto Giorgi. Ter-
aflux: Exploiting tera-device computing challenges.
Procedia Computer Science, Proceedings of the 2nd Eu-
ropean Future Technologies Conference and Exhibition
2011 (FET 11), 4-6 May, 2011, Budapest, 7:146–147,
2011.

[28] R. Ubal and et al. Multi2sim: A simulation frame-
work to evaluate multicore-multithreaded processors. In
SBAC-PAD, pages 62–68, 2007.

[29] A. Varga and et al. The omnet++ discrete event simula-
tion system. In In Proceedings of the European Sim-
ulation Multiconference (ESM’2001), pages 319–324,
2001.

[30] S. Yalamanchili. Manifold: Modeling and simulation
of many core architectures. In First Workshop on High
Performance Computing Architectural Simulation (HP-
CAS), September 2009.

[31] M. T. Yourst. Ptlsim: A cycle accurate full system x86-
64 microarchitectural simulator. In ISPASS, pages 23–
34, April 2007.

[32] Hui Zeng and et al. Mptsim: A cycle-accurate, full-
system simulator for x86-64 multicore architectures
with coherent caches. ACM SIGARCH Computer Ar-
chitecture News, 37(2), 2009.


