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Abstract

In a multiprocessor system, process migration guar-
antees load balance between processors but causes pas-
sive sharing, since private data blocks of a process can
become resident in multiple caches and generate use-
less coherence-related overhead. We propose a selective
invalidation strategy to eliminate these passive shared
copies. The results of trace-driven simulation prove
that our strategy can result successful in a number of
situations such as the typical case of a general-purpose
workstation.

1. Introduction

A major issue in the design of multiprocessor ar-
chitectures is the cache coherence problem: when two
or more processors store a copy of the same memory
block in their private caches and one of them performs
a write operation on a location within that block, a co-
herence protocol is required in order to guarantee that
each subsequent read operation by any processor may
get the up-to-date value of the modified location.

For any kind of hardware organization, when the
number of nodes in the system exceeds a critical value,
the processor interconnection network reaches a satura-
tion condition, due to both cache misses and coherence-
related overhead. As a consequence, a drastic drop in
global performance occurs.

The frequency and pattern of accesses on shared
copies is the major issue concerning this overhead.
Three different sources for the generation of shared
copies can be observed: i) active sharing, which oc-
curs when the same cached data item is referenced by
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processes concurrently running on different processors;
ii) false sharing, which occurs when several processors
reference separate private data items stored in the same
memory block; iii) passive [21] or process-migration [1]
sharing, which occurs when a memory block, though
belonging to a private area of a process, is replicated in
more than one cache as a consequence of the migration
of the owner process [6], [14], [15].

Active sharing has been widely studied and many
solutions to limit the induced overhead can be found
in the literature [2], [4], [20]. The consequences of false
sharing become more and more evident as block size
increases, since a number of unrelated objects accessed
by multiple distinct processors can fall into the same
cache block [1], [7], [21], [22], [23].

Process migration plays an important role in a
general-purpose multiprocessor environment, since it
allows the programmer to develop his applications
without caring about load balance. For this reason,
the reduction of the number of passive shared copies
represents a key point in the design of multiprocessor
architectures.

Particular scheduling strategies (cache-affinity [18])
have been proposed to limit process migration though
preserving an acceptable degree of load balancing, but
these techniques cannot be successfully applied to all
workload conditions.

Some recent hardware solutions for cache coherence
try to approach an “optimal” behavior by switching
dynamically between write-update and write-invalidate
strategies: the former should be adopted with respect
to shared blocks on which short write-runs [4] are rea-
sonably expected, whereas the latter should be utilized
for blocks which are likely to generate a relevant num-
ber of passive shared copies.

In the Competitive Snoopy Caching technique [11],



the switching point from write-update to write-
invalidate for each cached block occurs when the num-
ber of cycles for the write broadcasts issued equals the
sum of the cycles potentially needed by all processors
to reread the block, had it been invalidated. This tech-
nique limits the coherence-related overhead to twice
the optimal value, but at a relevant cost in hardware
complexity.

Since studies on program behavior showed that in
most cases data is written by one processor either many
times in succession or only once, Smith [7] proposed the
Update-Once protocol, which allows only one extra-
update by a remote processor before invalidation. A
solution which can dynamically detect migratory shar-
ing has been proposed by Cox and Fowler [3] and by
Stenstrom et al. [19].

In general-purpose architectures, a number of crit-
ical workload conditions exist where passive sharing
turns out to be the prevalent one; a cache coherence
scheme which can detect and destroy passive shared
copies appears therefore quite desirable. A solution
in this direction was proposed by the authors (PSCR
— Passive-Shared-Copies-Removal) and can be applied
to every snooping protocol to identify and destroy pas-
sive shared copies [15], [17]. The main purpose of the
present work is that of characterizing the effects of pas-
sive sharing in a number of typical workload conditions
for a general-purpose workstation. In particular, we
show an example of application of the PSCR strategy
in the case of a shared-bus multiprocessor, and discuss
the efficiency of our solution as a function of workload
and system features.

The remainder of the paper is organized as follows:
Section 2 discusses the problem of passive sharing, fo-
cusing on its causes and possible solutions; Section 3
describes our solution and shows an example of its ap-
plication; Section 4 concludes the paper.

2. Characterization of passive sharing

In the present Section we consider the use of a mul-
tiprocessor workstation, where the major concern is to
speed-up the execution of a set of both uniprocess and
parallel applications.

As an example, we consider the UniP workload,
consisting of 30 uniprocess applications, and the Miz
workload, consisting of 30 uniprocess applications and
an additional load due to a parallel application which
generates a number of processes equal to half the total
number of processors available.

As uniprocess applications, we selected a number of
typical Unix commands (awk, cp, du, lex, rm and 1s)
with different command line options, some utility pro-

grams (cjpeg, djpeg and gzip), a network application
(telnet) and a user application (msim, the multipro-
cessor simulator used in this work). In a typical situa-
tion, a number of users run some UNIX commands and
ordinary applications. For this reason, the proposed
workloads include two or three copies of the same pro-
gram taken in different execution sections.

As parallel application, we consider a coarse-
grain parallel program (mp3d), which comes from the
SPLASH suite and simulates rarefied hypersonic flow;
the trace generated is relative to the case of 10,000
molecules and 20 time steps.

Figure 1 shows the percentages of write operations
on shared copies due to passive sharing and to the other
kinds of sharing for the two workloads, respectively.
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Figure 1. Write operations on shared blocks

(256-Kbyte, 2-way set-associative cache, 64-
byte block size, Dragon protocol, worst-case

scheduling sequence)

In the case of the UniP workload, the accesses to
shared copies are due to both kernel activity and pro-
cess migration; in the Miz workload, the presence of
the parallel application increases the amount of shared
accesses due to active sharing.

A way to reduce passive sharing consists in the adop-
tion of an invalidation-based coherence protocol; this
solution can provide good performance in that it re-
duces the amount of the global traffic on the interpro-
cessor connection network. Poor results, however, are



obtained when the low number of coherence-related ac-
tions due to write operations is achieved at the cost of
an increased miss rate. This typically happens when a
non-selective invalidation strategy is adopted, as in the
case of the Berkeley protocol (Figure 2).
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Since read operations are typically synchronous for
the processor, in the case of read miss the CPU must
wait for the block fetching to complete before start-
ing a new cache operation. On the other hand, write
operations (in both hit/miss conditions) are managed
in an asynchronous way because of write buffering, i.e.
the processor can start working on the next operation
even though the current one has not been actually com-
pleted. This implies that write operations do not di-
rectly involve idle time for the CPU, even though they
may significantly affect the traffic concerning miss han-
dling and coherence-related activity. Finally, it has to
be considered that the amount of data to be trans-
ferred is generally lower in the case of a write oper-
ation, even though the cost of each coherence-related
operation depends on both the kind of interconnection
network and the coherence strategy. The considera-
tions just exposed justify the fact that a reduction in
the number of write operations on shared copies (as a

| Processors | Psame | Ndist | Dsched |

12 0.72 5 500
16 0.81 3 388
20 0.03 6 310
24 0.00 7 258

Table 1. Statistics of scheduling tables in a
system based on cache-affinity (UniP work-
load, Dragon protocol)

consequence of a good invalidation strategy) can result
in a real advantage only if it does not involve a relevant
increase in the miss rate.

Two negative effects of process migration on global
performance can usually be observed: i) a peak of
misses needed to load the working set of the newly-
scheduled process, and ii) the generation of passive
shared copies when the migrated process is rescheduled
in a short time on a different processor.

A solution which contributes to reduce both effects
is the adoption of a scheduling strategy based on cache-
affinity [18]; in this case, each process is preferably
rescheduled on the same processor on which it was for-
merly executed, so that part of its working set is still
resident in cache.

Table 1 shows some significant metrics concerning
the scheduling activity for the UniP workload. In par-
ticular, Psome is the relative frequency for a process to
be scheduled on the same processor where it was last
executed, Ng;s¢ is the average number of distinct pro-
cesses executed on each processor, and Dgcpeq is the
average distance in terms of the number of references
(thousands) between two subsequent schedulings of a
process.

A measure of the actual efficiency of the cache-
affinity scheduling algorithm is expressed by the av-
erage number of distinct processes which alternate ex-
ecution on a specific processor (Ng;st). A lower value
of such metric corresponds to higher benefits induced
by the cache-affinity strategy. Intuitively, if a large
number of distinct processes are scheduled on a pro-
cessor in sequence, each of them will most likely find
a very small portion of its working set still resident in
cache in the case it is rescheduled on the same proces-
sor. As shown in Figure 3, however, the cache-affinity
technique cannot succeed in eliminating passive shar-
ing when the effects of process migration become more
relevant.

Finally, a rather easy and efficient method to destroy
passive shared copies consists in invalidating the copies
belonging to private data areas of a process as soon as
they are fetched by another processor.

This strategy ensures that a write operation in-



volving such a block will never require any coherence-
related action. As soon as a private block is fetched
by a remote node as a consequence of a miss condition,
the only other copy possibly left by the migrated pro-
cess in a remote cache is immediately invalidated. As
a consequence, blocks belonging to private data areas
of a process are gradually forced to “follow” the owner
process in its migration, and coherence-related activity
due to passive sharing is completely eliminated.
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Figure 3. Write operations on shared blocks
(256-Kbyte, 2-way set-associative cache, 64-
byte block size, Dragon protocol, cache-
affinity scheduling strategy)

3. The PSCR protocol

As an example, we will show how the technique just
described has been implemented in the PSCR coher-
ence protocol for a shared-bus multiprocessor [9].

For the sake of simplicity, we shall refer to private
blocks of a process as P-blocks, whereas S-blocks are
blocks belonging to a code or a shared data area.

The hardware implementation is quite simple: we
assume that the processor, on each memory reference,
“tells” the local cache whether the referenced address
involves a private data area (P-block) of the running
process or not. This information can be supplied by

the MMU through each memory segment (page) de-
scriptor, as typically happens in modern processors.

In the case of miss condition, the cache spreads this
information on the shared bus by means of a line (L)
during the read-block transaction; if the transaction
involves a P-block and a remote cache holds a copy of
this block, the copy is immediately invalidated.
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Figure 4. State transition diagrams for the
PSCR protocol

A second line (L2, handled by the “listening” caches)
is required for a couple of (mutually excluding) pur-
poses: i) during a read-block transaction involving a
P-block (L; = ON), to indicate that a modified copy is
resident in a remote cache, so that the state of the new
loaded block is marked as dirty; ii) during a read-block
or a write transaction involving a S-block (L; = OFF),
to indicate that a copy is resident in at least one remote
cache, so that the state of the loaded or newly-written
copy must be set to one of the shared states.



Figure 4 synthesizes the behaviour of the proto-
col by means of state transition diagrams for the two
kinds of blocks. Regarding the hardware implementa-
tion costs, the complexity of PSCR is comparable to
the one of other commonly adopted protocols based on
either write-update (e.g. Dragon) or write-invalidate
(e.g. Berkeley). In particular, the number of logical
states is the same as in Dragon and Berkeley, and a
single additional line is required compared to Dragon.

As an example of application, we consider a shared-
bus multiprocessor configuration based on a 64-bit bus,
with a 256-Kbyte, 2-way set-associative cache. The
block size is assumed 64 bytes, since the simulations
show that this value can provide the best performance
for both workloads described above and for all the pro-
tocols examined. The number of processors is varied in
the range 2-26; the bus timings are included in Table 2.
The proposed protocol is considered together with two
other protocols which exhibit a different kind of be-
havior concerning shared copies: Dragon [13] (based
on exclusive write-update), and Berkeley [12] (exclu-
sive write-invalidate).

Transaction Clock cycles
memory-to-cache read-block transaction 32
cache-to-cache read-block transaction 24
write transaction 5
update-block transaction 18
invalidate transaction 5

Table 2. Bus timings

The methodology used in our analysis is trace-driven
simulation. We developed a complete simulation envi-
ronment consisting of a set of tools to create traces
representing a predefined user workload and a particu-
lar kernel behavior, with a specific multiprocessor con-
figuration. The environment allows the utilization of
a set of source traces (obtained by TangoLite [5] and
including only user references) to produce complete
multiprocessor target traces. They are generated by
considering the source traces, the target machine con-
figuration (e.g. the number of processors) and the fol-
lowing three kernel activities: i) kernel memory refer-
ences, i.e., the reference bursts due to each system call
and kernel management routine; ii) process scheduling,
i.e., the dynamic assignment of a ready process to an
available processor; and iii) wvirtual-to-physical address
translation. In our hybrid approach, the kernel ref-
erence stream is generated stochastically and inserted
within the user reference stream. All details concerning
the global environment are described in [8], [10], [16].

The simulations with the two workloads described
above show that our strategy exhibits good perfor-

mance in terms of both absolute GSP values (Global
System Power, i.e. the sum of the average processor uti-
lization ratios x 100) and of linearity range (Figure 5).
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Figure 5. Global System Power for a
shared-bus architecture (worst-case schedul-
ing strategy)

The good performance of PSCR is mainly due to
the low total number of bus transactions per proces-
sor, which drastically reduces the global traffic on the
shared bus. Table 3 presents the number of transac-
tions per thousand memory operations and the average
bus utilization for N = 18 (in the case of the Berke-
ley protocol, the number of invalidations is considered
instead of the number of write transactions).

‘Workload PSCR Dragon Berkeley

UnmiP  Mizx UmiP  Miz | UnP  Miz
read-block 4.1 4.3 4.6 4.4 6.7 8.2
write (inv) 4.5 13.1 | 45.8 435 2.7 4.5
bus util (%) 57.5 73.9 97.7 97.9 73.3 83.9

Table 3. Bus transactions for a 18-processor
architecture

The low number of total bus transactions in the case
of the PSCR protocol results from both a low miss rate
and a limited number of write transactions. The two
aspects are strictly related to each other, in that the



PSCR selective invalidation strategy only eliminates
the useless copies of cached P-blocks, without caus-
ing further unnecessary misses. Actually, PSCR is the
protocol which exhibits the lowest number of invalida-
tions. Berkeley is the only protocol which exhibits a
lower number of coherence-related bus actions due to
write operations, but at the cost of an increased miss
rate, due to a non-selective invalidation strategy (Fig-
ure 2).

In the second step of our analysis we consider the
effects of a scheduling strategy based on cache-affinity.
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Figure 6. Global System Power for a shared-
bus architecture (cache-affinity scheduling
strategy)

The system performance diagrams show that, for a
low number of processors, Dragon appears to obtain
the highest benefits from this solution, and its perfor-
mance approaches the PSCR values. As we can see
in Figure 6, however, the cache-affinity technique can-
not provide good results in all workload conditions. In
particular, it proves to be inefficient when the effects
of process migration become more relevant. Indeed,
while the number of cache misses due to context switch-
ing keeps roughly constant, the coherence overhead in-
duced by passive shared copies depends on the interval
between the instant in which a process is suspended
from execution and its subsequent rescheduling (Dgcped
in Table 1). The ordinary cache replacement activ-

ity progressively eliminates all passive shared copies,
and therefore, if the suspension time lapse of a pro-
cess is large enough, the effects of process migration
on coherence overhead are drastically reduced. This
time lapse statistically decreases when the number of
ready-to-run processes is comparable to the number of
processors. In this case, the probability that a pro-
cess can be rescheduled on the same processor where
it was previously rescheduled also decreases (Psqme in
Table 1), and this is the main reason for the failure of
the cache-affinity scheduling strategy and for the drop
in the Dragon performance when the number of proces-
sors roughly equals half the number of processes run-
ning in the system.

In systems where a cache-affinity scheduling policy
is implemented, the adoption of the PSCR protocol can
therefore provide relevant benefits, in that it drastically
reduces one of the effects of process migration when it
cannot be eliminated by the scheduler.

4. Conclusions

Multiprocessors represent a significant, percentage of
recent architectural solutions for workstations; they are
rarely used to speed-up individual parallel applications,
and more intensively employed to achieve a high sys-
tem throughput by running multiple processes simul-
taneously.

Process migration represents a critical issue concern-
ing the target system of our analysis. On one hand,
it can provide load balance by performing an opti-
mal distribution of the workload among the processors;
on the other hand, it generates passive shared copies,
which introduce a relevant amount of coherence over-
head. We proposed a selective invalidation strategy
which completely eliminates this overhead by operat-
ing directly during the fetching of the block as a conse-
quence of a miss condition (on the other hand, all write-
invalidating protocols do not succeed in completely
eliminating this overhead), and without affecting the
hardware complexity in a significant way. The pro-
posed solution can also be successfully employed in sys-
tems that adopt a cache-affinity scheduler, which can-
not always eliminate process migration and its effects.

The performance of the PSCR protocol would be
highly improved if the compiler could operate an ef-
ficient selection of all variables, so that shared data
which exhibit large write-runs could be handled as pri-
vate, and the choice between updating and invalidating
cached copies could be performed as a function of the
expected sharing pattern.
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