
	

An	FPGA-based	Scalable	Hardware	Scheduler	
for	Data-Flow	Models	
Marco	Procaccini,	Farnam	Khalili,	Roberto	Giorgi	

Department	of	Information	Engineering	and	Mathematics,	University	of	Siena,	Italy1	

	

ABSTRACT	

This	 paper	 presents	 a	 scheduler	 for	 Data-Flow	 threads	 implemented	 in	 reconfigurable	 logic	 for	 being	
deployed	 on	 Reconfigurable	 MPSoCs	 (i.e.,	 Multi-Processing	 System	 on	 Chips	 with	 FPGA).	 "Data-Flow	
threads"	 (DF-Threads)	 is	 a	 novel	 execution	 model	 for	 mapping	 threads	 on	 local	 or	 distributed	 cores	
transparently	to	the	programmer.	This	model	is	capable	of	being	parallelized	massively	among	different	
cores	and	it	handles	even	hundreds	of	thousands	or	more	Data-Flow	threads,	and	their	associated	data	
frames,	 in	order	 to	distribute	 them	both	 in	a	 local	node	and	 through	 the	network	 to	other	nodes	 in	a	
transparent	way.	The	Hardware	Scheduler	(HS)	is	designed	for	being	used	in	Programmable	Logic	(PL)	of	
MPSoC	 FPGAs	 and	 it	 deals	 with	 the	 GPP	 cores,	 providing	 them	 with	 Data-Flow	 threads	 ready	 to	 be	
executed.	The	overall	design	is	modeled	and	tested	through	the	HPLabs	COTson	simulator.	Here	we	use	
the	Block	Matrix	Multiply	benchmark	to	analyze	the	potentiality	of	the	proposed	model.	

Keywords:	Data-Flow;	Reconfigurable;	FPGA;	Hardware	Scheduler;	Thread	Level	Parallelism	

	

1. Introduction	
The	end	of	the	Dennard	scaling	[1]	and	the	resulting	difficulty	to	increase	clock	frequency	forced	the	
engineering	 community	 to	 shift	 to	 the	 multicore	 processors	 as	 an	 alternative	 way	 to	 improve	
performance	at	the	limited	power	budget.	
An	 increased	core	number	benefits	many	workloads,	but	programming	 limitations	 to	exploit	 full	
performance	still	remain	due	to	the	not	fully	exploited	parallelism.	According	to	Mondelli	et	al.	[2],	
the	Data-Flow	execution	model	 is	 capable	of	 taking	advantage	of	 the	 full	 parallelism	offered	by	
multicore	 systems.	 Each	Data-Flow	 thread	 is	 a	node	of	 the	Data-Flow	graph,	 each	of	 them	only	
executes	when	its	inputs	are	available	and	we	succeeded	to	impose	this	condition	locally	to	each	
core.	In	a	Data-Flow	based	execution,	a	program	could	be	executed	out	of	its	linear	order	but	in	a	
partial	order,	which	it	depends	on	the	data	dependencies.	As	a	result,	individual	partial	orders	are	
data	independent	and	can	be	executed	in	parallel.	The	length	of	the	data	independent	path	is	the	
expression	of	the	granularity	of	the	parallelism	[3].	
There	exist	many	attempts	of	Data-Flow	based	architectures,	which	can	exploit	the	potential	of	the	
Data-Flow	 execution	 model	 (explicit-Data-Flow	 architectures),	 but	 currently	 they	 cannot	 totally	
replace	the	conventional	general	purpose	processors	(GPP)	due	to	some	limitation	of	the	execution	

																																																													
1	This	work	is	partly	funded	by	the	European	Commission	under	the	projects	AXIOM	(645496),	HiPEAC	(687698)	
	



model.	For	example,	the	control	transfer	might	be	more	expensive	in	the	Data-Flow	model,	and	the	
latency	cost	of	explicit	data	communication	could	be	prohibitive	[4].	
	
In	order	to	overcome	these	limitations,	a	hybrid	Data-Flow	model	is	presented	in	this	work,	which	
is	based	on	heterogeneous	architecture	composed	by	GPP	cores	and	FPGA.	
GPP	cores	allow	us	 to	be	 suitable	 for	a	 large	 set	of	 applications	and	FPGAs	are	known	 for	 their	
reconfigurability	 and	 power	 efficiency,	 compared	 to	 software	 only	 designs,	 so	 that	 they	 are	 a	
suitable	 choice	 for	 being	 deployed	 in	 the	many-threads	 Data-Flow	 execution	models	 as	well	 as	
providing	 a	 spatial	 substrate	 for	 mapping	 Data-Flow	 threads.	 These	 models	 evolve	 around	 the	
optimizing	 of	 data	mobility	 and	 exploiting	massively	 parallelism	 among	 thousands	 of	 Data-Flow	
threads	to	offer	more	modularity	and	higher	performance	[5][6][7]	[8]	[9][15][16].	
Here	the	idea	is	to	detach	the	execution	of	the	Data-Flow	threads	from	its	scheduling,	reducing	the	
latency	of	 the	data	communication	and	 increase	 the	overall	performance	of	 the	execution.	 	We	
propose	 a	 scalable	 hardware	 scheduler	 (HS),	 implemented	mainly	 on	 the	 FPGA,	which	 provides	
Data-Flow	 threads	 ready	 to	 be	 executed	 to	 the	 GPP	 cores.	 The	 overall	 architecture	 has	 been	
modeled	and	tested	first	on	the	COTSon	simulator	[10]	and	the	model	is	mapped	and	designed	for	
being	employed	in	a	heterogeneous	architecture.	
	
2. A	New	Data-Flow	Hardware	Scheduler	

	
The	Data-Flow	execution	paradigm	can	be	exploited	either	completely	on	Hardware	or	 it	can	be	
used	in	a	control	flow	processor	to	improve	the	execution	time	by	Thread	Level	Parallelism	(TLP)	
[11].	The	main	task	of	the	Data-Flow	scheduler	is	to	materialize	TLP	in	such	way	that	respects	to	
Data-Flow	paradigm	at	thread	level	[12]	[13].	
The	two	main	actors	of	the	model	are	the	Processing	System	(PS),	the	control	flow	processor,	and	
the	 Hardware	 Scheduler	 (HS)	 implemented	 into	 the	 Programmable	 Logic	 (PL).	 A	 VHDL	 based	
Interface	Architecture	is	used	to	allow	information	exchange	between	PS	and	HS	[14].	
The	PS	is	responsible	to	create	and	execute	the	Data-Flow	threads.	Whenever	a	new	DF-thread	is	
created,	the	HS	is	responsible	to	retrieve	the	meta-information	of	the	thread	and	stores	them	into	
the	associated	frame.	When	a	producer	DF-Thread	wants	to	write	its	outputs	into	the	consumer	DF-
Thread,	the	HS	performs	the	writing	in	a	lazy	and	asynchronous	way,	without	blocking	the	PS.	After	
the	output's	writes,	the	HS	decrease	the	synchronization	count	(SC)	of	the	consumer	DF-Thread.	If	
the	SC	is	equal	to	zero,	the	DF-Thread	is	ready	to	execute	and	it	is	moved	into	a	FIFO	queue	named	
Ready	Queue	(RQ).	When	the	PS	asks	for	a	new	DF-Thread	to	execute,	the	HS	dequeues	the	first	
element	of	the	RQ	and	sends	it	to	the	PS.	In	order	to	distribute	the	computation	among	multiple	
nodes,	the	HS	checks	its	RQ	status	and	if	the	RQ	size	is	under	a	certain	threshold,	the	HS	try	to	steal	
DF-Treads	ready	to	execute	from	other	nodes	into	the	network.	
	



	

	

	

Figure	1:	Interaction	between	System	(PS)	and	the	Hardware	Scheduler	(HS),	exploiting	the	Interface	
Architecture,	 to	 realize	 the	 Data-Flow	 thread	 (DF-Thread)	 execution	 model.	 A	 General	 Purpose	
Processor	(GPP)	execute,	create	and	write	DF-Threads.	On	the	other	side,	the	HS	collects	and	uses	
meta-information	of	a	DF-Threads	to	schedule	them.	SC	is	the	synchronization	count,	RQ	is	the	Ready	
Queue.		

	
3. Performance	Analysis	

In	order	to	evaluate	the	proposed	model,	we	
implemented	it	first	on	the	COTson	simulator	
and	we	performed	tests	based	on	 the	Block	
Matrix	 Multiplication	 benchmark.	 Several	
experiments	were	made,	varying	the	number	
of	GPPs,	the	number	of	nodes,	the	matrix	size	
and	the	block	size.	As	we	can	see	in	figure	2,	
the	 speedup	 of	 the	 execution	 is	 reasonable	
good,	 specially	 increasing	 the	 number	 of	
nodes/GPPs	and	with	large	size	of	the	Matrix.	
The	 block	 size	 does	 not	 affect	 much	 the	
overall	 performance.	 Due	 to	 the	 decrease	
available	parallelism,	with	a	small	matrix	size	too	few	threads	are	generated	and	this	produces	a	
decrease	of	performance	when	the	number	of	nodes	and	GPPs	increases.		

References		

[1]		 Frank,	D.	J.,	Dennard,	R.	H.,	Nowak,	E.,	Solomon,	P.	M.,	Taur,	Y.,	&	Wong,	H.	S.	P.	(2001).	
Device	scaling	limits	of	Si	MOSFETs	and	their	application	dependencies.	Proceedings	of	the	
IEEE,	89(3),	259-288.	

[2]	 Mondelli,	Andrea,	et	al.	"Dataflow	support	in	x86_64	multicore	architectures	through	small	
hardware	extensions."	Digital	 System	Design	 (DSD),	 2015	Euromicro	Conference	on.	 IEEE,	
2015	

[3]	 Dennis,	J.	B.	(1980).	Data	flow	supercomputers.	Computer,	(11),	48-56.	

Figure	2:	Speedup	study	of	the	Block	Matrix	Multiply	test,	
varying	the	matrix	size	sizes	and	block	size.	Different	nodes	
and	General	Purpose	processors	(GPP)	were	used.	

	

GPP

Create	DF-Thread

Interface	Architecture

write	outputs

execute	DF-Threads

store	meta	
information

write	output
update	SC

sc ==	0? RQ

HSPS

yes/enqueue dequeue



[4]	 Budiu,	 M.,	 Artigas,	 P.	 V.,	 &	 Goldstein,	 S.	 C.	 (2005,	 March).	 Dataflow:	 A	 complement	 to	
superscalar.	 In	 Performance	 Analysis	 of	 Systems	 and	 Software,	 2005.	 ISPASS	 2005.	 IEEE	
International	Symposium	on	(pp.	177-186).	IEEE.	

[5]	 Giorgi,	 R.,	 &	 Faraboschi,	 P.	 (2014,	 October).	 An	 introduction	 to	 DF-Threads	 and	 their	
execution	model.	 In	Computer	 Architecture	 and	 High	 Performance	 Computing	Workshop	
(SBAC-PADW),	2014	International	Symposium	on	(pp.	60-65).	IEEE.	

[6]	 Stavrou,	K.,	Pavlou,	D.,	Nikolaides,	M.,	Petrides,	P.,	Evripidou,	P.,	Trancoso,	P.,	...	&	Giorgi,	R.	
(2009,	 June).	 Programming	 abstractions	 and	 toolchain	 for	 dataflow	 multithreading	
architectures.	 In	Parallel	and	Distributed	Computing,	2009.	 ISPDC'09.	Eighth	 International	
Symposium	on	(pp.	107-114).	IEEE.	

[7]	 Verdoscia,	L.,	Vaccaro,	R.,	&	Giorgi,	R.	(2014,	August).	A	clockless	computing	system	based	
on	 the	 static	 dataflow	 paradigm.	 In	 Data-Flow	 Execution	 Models	 for	 Extreme	 Scale	
Computing	(DFM),	2014	Fourth	Workshop	on	(pp.	30-37).	IEEE.	

[8]	 Solinas,	M.,	Badia,	R.	M.,	Bodin,	F.,	Cohen,	A.,	Evripidou,	P.,	Faraboschi,	P.,	...	&	Goodman,	D.	
(2013,	 September).	 The	 TERAFLUX	 project:	 Exploiting	 the	 dataflow	 paradigm	 in	 next	
generation	teradevices.	In	Digital	System	Design	(DSD),	2013	Euromicro	Conference	on	(pp.	
272-279).	IEEE.	

[9]	 Zuckerman,	 S.,	 Suetterlein,	 J.,	 Knauerhase,	R.,	&	Gao,	G.	R.	 (2011,	 June).	Using	a	 codelet	
program	execution	model	for	exascale	machines:	position	paper.	In	Proceedings	of	the	1st	
International	Workshop	on	Adaptive	Self-Tuning	Computing	Systems	for	the	Exaflop	Era	(pp.	
64-69).	ACM.	

[10]	 Argollo,	 E.,	 Falcón,	 A.,	 Faraboschi,	 P.,	 Monchiero,	 M.,	 &	 Ortega,	 D.	 (2009).	 COTSon:	
infrastructure	for	full	system	simulation.	ACM	SIGOPS	Operating	Systems	Review,	43(1),	52-
61.	

[11]	 Giorgi,	R.,	Popovic,	Z.,	&	Puzovic,	N.	 (2007,	October).	DTA-C:	A	decoupled	multi-threaded	
architecture	for	CMP	systems.	In	Computer	Architecture	and	High	Performance	Computing,	
2007.	SBAC-PAD	2007.	19th	International	Symposium	on	(pp.	263-270).	IEEE.	

[12]	 Kavi,	 K.	 M.,	 Giorgi,	 R.,	 &	 Arul,	 J.	 (2001).	 Scheduled	 dataflow:	 Execution	 paradigm,	
architecture,	and	performance	evaluation.	IEEE	Transactions	on	Computers,	50(8),	834-846.	

[13]	 Giorgi,	R.,	&	Popovic,	Z.	(2006).	Core	Design	and	Scalability	of	Tiled	SDF	Architecture.	HiPEAC	
ACACES-2006,	145-148.	

[14]	 Khalili,	F.,	Procaccini,	M.,	Giorgi,R.	(2018).	Reconfigurable	Logic	Interface	Architecture	 for	
CPU-FPGA	Accelerators.	HiPEAC	ACACES-2018.		

[15]	 Kyriacou,	 C.,	 Evripidou,	 P.,	 &	 Trancoso,	 P.	 (2006).	 Data-driven	 multithreading	 using	
conventional	microprocessors.	IEEE	Transactions	on	Parallel	and	Distributed	Systems,	17(10),	
1176-1188.	

[16]	 Alves,	T.	A.,	Marzulo,	L.	A.,	França,	F.	M.,	&	Costa,	V.	S.	(2011).	Trebuchet:	exploring	TLP	with	
dataflow	virtualisation.	International	Journal	of	High	Performance	Systems	Architecture,	3(2-
3),	137-148.	


